File size: 2,106 Bytes
657506f
 
 
 
 
 
 
240e60d
 
657506f
 
240e60d
 
 
 
 
 
 
 
 
 
 
 
 
 
657506f
 
 
 
 
 
 
 
240e60d
 
 
657506f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240e60d
657506f
 
 
827943a
 
240e60d
 
 
 
 
657506f
 
 
 
240e60d
657506f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---

license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-cry-detector
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.96045197740113
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-cry-detector

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0929
- Accuracy: 0.9605

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 8

- eval_batch_size: 8

- seed: 123

- gradient_accumulation_steps: 8

- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:--------:|

| No log        | 1.0   | 11   | 0.1843          | 0.9322   |

| No log        | 2.0   | 22   | 0.1730          | 0.9379   |

| No log        | 3.0   | 33   | 0.1143          | 0.9492   |

| No log        | 4.0   | 44   | 0.0885          | 0.9661   |

| No log        | 5.0   | 55   | 0.0929          | 0.9605   |





### Framework versions



- Transformers 4.43.4

- Pytorch 2.3.1+cu118

- Datasets 2.20.0

- Tokenizers 0.19.1