a2c-PandaReachDense-v2 / config.json
Marc-Elie's picture
Initial commit
0d699e8
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f34763008b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3476304800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684241516693865483, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAgKXUPoTFFL1OyRY/gKXUPoTFFL1OyRY/gKXUPoTFFL1OyRY/gKXUPoTFFL1OyRY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWpKJv8253bvd6JC/q60yvxKjgT8nZoe+CkLMv/ohRb+cLrI/eLnAPydL3b/mSAo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACApdQ+hMUUvU7JFj8pRCA7V5OMuzh717uApdQ+hMUUvU7JFj8pRCA7V5OMuzh717uApdQ+hMUUvU7JFj8pRCA7V5OMuzh717uApdQ+hMUUvU7JFj8pRCA7V5OMuzh717uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41532516 -0.03632118 0.58900917]\n [ 0.41532516 -0.03632118 0.58900917]\n [ 0.41532516 -0.03632118 0.58900917]\n [ 0.41532516 -0.03632118 0.58900917]]", "desired_goal": "[[-1.0747788 -0.00676653 -1.1321064 ]\n [-0.69796246 1.012789 -0.26445124]\n [-1.5957654 -0.7700497 1.3920474 ]\n [ 1.50566 -1.728856 0.54017484]]", "observation": "[[ 0.41532516 -0.03632118 0.58900917 0.00244547 -0.00429003 -0.00657597]\n [ 0.41532516 -0.03632118 0.58900917 0.00244547 -0.00429003 -0.00657597]\n [ 0.41532516 -0.03632118 0.58900917 0.00244547 -0.00429003 -0.00657597]\n [ 0.41532516 -0.03632118 0.58900917 0.00244547 -0.00429003 -0.00657597]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfs6GvMVCFr1uMKY9jWwWu8v1gr0oTvc9GaKfvWdpCj6atoI+AIqHPZZxtD00EEE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01645589 -0.03668477 0.08114706]\n [-0.00229529 -0.06394538 0.12075454]\n [-0.0779459 0.1351677 0.2552994 ]\n [ 0.06618118 0.08810727 0.18853837]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItkjajT4m/r+UhpRSlIwBbJRLMowBdJRHQK+lpjNpudh1fZQoaAZoCWgPQwhOKhprfyfxv5SGlFKUaBVLMmgWR0CvpUs+3YthdX2UKGgGaAloD0MILCtNSkE39L+UhpRSlGgVSzJoFkdAr6SSMxXXAnV9lChoBmgJaA9DCEQwDi4dM/i/lIaUUpRoFUsyaBZHQK+kMQ2/BWR1fZQoaAZoCWgPQwjMBwQ6kzYAwJSGlFKUaBVLMmgWR0CvpprZrYXgdX2UKGgGaAloD0MIY9LfS+HB7b+UhpRSlGgVSzJoFkdAr6ZAEGJN03V9lChoBmgJaA9DCHU8ZqAyvvi/lIaUUpRoFUsyaBZHQK+lhwKBuoB1fZQoaAZoCWgPQwgFTraBO1D1v5SGlFKUaBVLMmgWR0CvpSXazu4PdX2UKGgGaAloD0MIchb2tMOf+7+UhpRSlGgVSzJoFkdAr6efbM5fdHV9lChoBmgJaA9DCE2G4/kMKPW/lIaUUpRoFUsyaBZHQK+nRLgXMyJ1fZQoaAZoCWgPQwhoBvGBHf/zv5SGlFKUaBVLMmgWR0CvpovH1e0HdX2UKGgGaAloD0MIOq+xS1Qv87+UhpRSlGgVSzJoFkdAr6YqzRhMJ3V9lChoBmgJaA9DCFPnUfF/x/e/lIaUUpRoFUsyaBZHQK+onGXokiV1fZQoaAZoCWgPQwgIBaVo5d7xv5SGlFKUaBVLMmgWR0CvqEIXbdrPdX2UKGgGaAloD0MI/wQXK2qw7b+UhpRSlGgVSzJoFkdAr6eKCQLeAXV9lChoBmgJaA9DCBnKiXYV0vW/lIaUUpRoFUsyaBZHQK+nKSSvC/J1fZQoaAZoCWgPQwgJ4dHGEevzv5SGlFKUaBVLMmgWR0CvqY4PPLPldX2UKGgGaAloD0MI1ZXP8jy42L+UhpRSlGgVSzJoFkdAr6kzNQj2SXV9lChoBmgJaA9DCO87hsd+tgLAlIaUUpRoFUsyaBZHQK+oeiKziS91fZQoaAZoCWgPQwiKHvgYrLjyv5SGlFKUaBVLMmgWR0CvqBj0+TvBdX2UKGgGaAloD0MIIR6Jl6dz7r+UhpRSlGgVSzJoFkdAr6qP9LpRoHV9lChoBmgJaA9DCIdPOpFgavC/lIaUUpRoFUsyaBZHQK+qNTy8SPF1fZQoaAZoCWgPQwgsY0M3+0P6v5SGlFKUaBVLMmgWR0CvqXwrMC9zdX2UKGgGaAloD0MI4UIewY0U6L+UhpRSlGgVSzJoFkdAr6kbAk9lmXV9lChoBmgJaA9DCDDYDdsW5ey/lIaUUpRoFUsyaBZHQK+riQjlgc91fZQoaAZoCWgPQwgy6ITQQZf8v5SGlFKUaBVLMmgWR0Cvqy433pOfdX2UKGgGaAloD0MI9DRgkPTp6L+UhpRSlGgVSzJoFkdAr6p1PepGWnV9lChoBmgJaA9DCJ4I4jycQPe/lIaUUpRoFUsyaBZHQK+qFMRpUPx1fZQoaAZoCWgPQwjVzcXf9oT0v5SGlFKUaBVLMmgWR0CvrI6OHWSVdX2UKGgGaAloD0MIv/T256Kh+L+UhpRSlGgVSzJoFkdAr6w0ONHYpXV9lChoBmgJaA9DCMKmzqPif+q/lIaUUpRoFUsyaBZHQK+re07bL2Z1fZQoaAZoCWgPQwh5PgPqzej6v5SGlFKUaBVLMmgWR0Cvqxo42jwhdX2UKGgGaAloD0MIpDZxcr/D9r+UhpRSlGgVSzJoFkdAr61+twJgLXV9lChoBmgJaA9DCBt/orJhDfe/lIaUUpRoFUsyaBZHQK+tI/sVtXR1fZQoaAZoCWgPQwjvb9Beffzxv5SGlFKUaBVLMmgWR0CvrGr7O3UhdX2UKGgGaAloD0MI71UrE34p67+UhpRSlGgVSzJoFkdAr6wJ3NcGDHV9lChoBmgJaA9DCBVypZ4Foe+/lIaUUpRoFUsyaBZHQK+ubg0j1PF1fZQoaAZoCWgPQwgVWABTBo7xv5SGlFKUaBVLMmgWR0CvrhMchkiEdX2UKGgGaAloD0MI3jtqTIg59b+UhpRSlGgVSzJoFkdAr61Z/I8yOHV9lChoBmgJaA9DCGhaYmU0cuu/lIaUUpRoFUsyaBZHQK+s+OzY2891fZQoaAZoCWgPQwhA22rWGZ/2v5SGlFKUaBVLMmgWR0Cvr3aY3Ns4dX2UKGgGaAloD0MIUFJgAUxZ+7+UhpRSlGgVSzJoFkdAr68b5O8CgnV9lChoBmgJaA9DCC2VtyOclvm/lIaUUpRoFUsyaBZHQK+uYu/1xsF1fZQoaAZoCWgPQwh1x2KbVLTkv5SGlFKUaBVLMmgWR0CvrgHlXA/LdX2UKGgGaAloD0MIIF9CBYcX9r+UhpRSlGgVSzJoFkdAr7BuX5WRzXV9lChoBmgJaA9DCCZzLO+qh+K/lIaUUpRoFUsyaBZHQK+wE4TbnHN1fZQoaAZoCWgPQwg02xX6YBn1v5SGlFKUaBVLMmgWR0Cvr1p1zQu3dX2UKGgGaAloD0MIyJbl6zK89L+UhpRSlGgVSzJoFkdAr675XQtz0nV9lChoBmgJaA9DCA9+4gD6vfO/lIaUUpRoFUsyaBZHQK+xdcbBGhF1fZQoaAZoCWgPQwhOJm4VxEDqv5SGlFKUaBVLMmgWR0CvsRsLF4s3dX2UKGgGaAloD0MIIAn7dhKR/r+UhpRSlGgVSzJoFkdAr7BiDEm6XnV9lChoBmgJaA9DCN/cXz3u2/O/lIaUUpRoFUsyaBZHQK+wARMewLV1fZQoaAZoCWgPQwjvx+2XT9bqv5SGlFKUaBVLMmgWR0CvsmiNKh+OdX2UKGgGaAloD0MINV1PdF1467+UhpRSlGgVSzJoFkdAr7INyBClanV9lChoBmgJaA9DCHDNHf0vl/O/lIaUUpRoFUsyaBZHQK+xVMajveB1fZQoaAZoCWgPQwiT4A1pVGDlv5SGlFKUaBVLMmgWR0CvsPPBSDRMdX2UKGgGaAloD0MI7KUpApye9L+UhpRSlGgVSzJoFkdAr7NZpDeCTXV9lChoBmgJaA9DCNSdJ56zBey/lIaUUpRoFUsyaBZHQK+y/tvXK8t1fZQoaAZoCWgPQwidZ+xLNh7yv5SGlFKUaBVLMmgWR0CvskXWOIZZdX2UKGgGaAloD0MI6Q33kVvT+r+UhpRSlGgVSzJoFkdAr7HkofCAMHV9lChoBmgJaA9DCMi2DDhLyfu/lIaUUpRoFUsyaBZHQK+0TQla8pV1fZQoaAZoCWgPQwimttRBXo/2v5SGlFKUaBVLMmgWR0Cvs/JaA4GVdX2UKGgGaAloD0MIW+1hLxSw67+UhpRSlGgVSzJoFkdAr7M5WV/tpnV9lChoBmgJaA9DCDroEg69Rea/lIaUUpRoFUsyaBZHQK+y2Ovt+kR1fZQoaAZoCWgPQwj9oC5SKIv4v5SGlFKUaBVLMmgWR0CvtUmff4yodX2UKGgGaAloD0MIpiiXxi+81L+UhpRSlGgVSzJoFkdAr7Tu6f8Mu3V9lChoBmgJaA9DCL/udOeJZ/q/lIaUUpRoFUsyaBZHQK+0Nd43WFx1fZQoaAZoCWgPQwgVN24xPzfuv5SGlFKUaBVLMmgWR0Cvs9S7PIGRdX2UKGgGaAloD0MIDksDP6ph8L+UhpRSlGgVSzJoFkdAr7ZKXfIjnnV9lChoBmgJaA9DCO/FF+3xQvi/lIaUUpRoFUsyaBZHQK+1757gKnh1fZQoaAZoCWgPQwh7T+W0p2Twv5SGlFKUaBVLMmgWR0CvtTaaCtihdX2UKGgGaAloD0MIhGVs6GZ/6b+UhpRSlGgVSzJoFkdAr7TVrO7g9HV9lChoBmgJaA9DCDvj++JSFei/lIaUUpRoFUsyaBZHQK+3UxY7q6h1fZQoaAZoCWgPQwgbZJKRs7Dov5SGlFKUaBVLMmgWR0CvtvhjFyaNdX2UKGgGaAloD0MI4fCCiNT09b+UhpRSlGgVSzJoFkdAr7Y/WnTAnHV9lChoBmgJaA9DCLXGoBNCB/y/lIaUUpRoFUsyaBZHQK+13jTa0yB1fZQoaAZoCWgPQwijrUoi++D1v5SGlFKUaBVLMmgWR0CvuEcVHnU2dX2UKGgGaAloD0MIRnu8kA4P1r+UhpRSlGgVSzJoFkdAr7fsXpGFz3V9lChoBmgJaA9DCCWvzjEg+/i/lIaUUpRoFUsyaBZHQK+3M0elsP91fZQoaAZoCWgPQwhK628JwL/4v5SGlFKUaBVLMmgWR0CvttImXw9adX2UKGgGaAloD0MIstr8v+oI9L+UhpRSlGgVSzJoFkdAr7mQlF+d9XV9lChoBmgJaA9DCImyt5TzRfK/lIaUUpRoFUsyaBZHQK+5Np6hQFd1fZQoaAZoCWgPQwihTQ6fdCLjv5SGlFKUaBVLMmgWR0CvuH5gw482dX2UKGgGaAloD0MIrFPle0Yi47+UhpRSlGgVSzJoFkdAr7geFpPAPHV9lChoBmgJaA9DCBYvFobI6eq/lIaUUpRoFUsyaBZHQK+7MI1tO211fZQoaAZoCWgPQwjtuOF3063tv5SGlFKUaBVLMmgWR0Cvutafzz3AdX2UKGgGaAloD0MIda+T+rK047+UhpRSlGgVSzJoFkdAr7oefGuLaXV9lChoBmgJaA9DCEzFxryOOOK/lIaUUpRoFUsyaBZHQK+5vkjopx51fZQoaAZoCWgPQwi4lV6bjZXzv5SGlFKUaBVLMmgWR0CvvNFrl/6PdX2UKGgGaAloD0MIISBfQgUH6L+UhpRSlGgVSzJoFkdAr7x5agVXWHV9lChoBmgJaA9DCGXEBaBRuua/lIaUUpRoFUsyaBZHQK+7wUL2HtZ1fZQoaAZoCWgPQwg/qIsUygL6v5SGlFKUaBVLMmgWR0Cvu2GrCFbndX2UKGgGaAloD0MImrUUkPa//L+UhpRSlGgVSzJoFkdAr756qsEJSnV9lChoBmgJaA9DCJ58emzLgPC/lIaUUpRoFUsyaBZHQK++IK77Kq51fZQoaAZoCWgPQwiKPbSPFfznv5SGlFKUaBVLMmgWR0CvvWiSJTESdX2UKGgGaAloD0MICRoziXrB9L+UhpRSlGgVSzJoFkdAr70IYBNmDnV9lChoBmgJaA9DCPHYz2IpEv6/lIaUUpRoFUsyaBZHQK/ALeQ+2Vp1fZQoaAZoCWgPQwipZ0Eo72P1v5SGlFKUaBVLMmgWR0Cvv9Q2VE/jdX2UKGgGaAloD0MIlbVN8bgo8L+UhpRSlGgVSzJoFkdAr78cNjLB9HV9lChoBmgJaA9DCJ9x4UBIVva/lIaUUpRoFUsyaBZHQK++vDqGDcx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}