File size: 1,871 Bytes
0811421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97fac3b
0811421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97fac3b
0811421
 
 
97fac3b
 
 
 
 
 
 
 
 
 
 
 
0811421
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_voxpopuli_de_Merkel
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_voxpopuli_de_Merkel

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4112

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.4831        | 4.06  | 1000  | 0.4406          |
| 0.4583        | 8.12  | 2000  | 0.4271          |
| 0.4482        | 12.18 | 3000  | 0.4177          |
| 0.4435        | 16.24 | 4000  | 0.4148          |
| 0.433         | 20.3  | 5000  | 0.4142          |
| 0.4333        | 24.37 | 6000  | 0.4128          |
| 0.4306        | 28.43 | 7000  | 0.4111          |
| 0.4288        | 32.49 | 8000  | 0.4110          |
| 0.4262        | 36.55 | 9000  | 0.4109          |
| 0.4228        | 40.61 | 10000 | 0.4112          |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3