Upload modeling_got.py
Browse files- modeling_got.py +149 -108
modeling_got.py
CHANGED
@@ -408,46 +408,71 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
408 |
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
409 |
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
410 |
|
411 |
-
|
|
|
|
|
412 |
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
qs = str(bbox) + ' ' + qs
|
438 |
-
|
439 |
-
# Process OCR color if provided
|
440 |
-
if ocr_color:
|
441 |
-
qs = '[' + ocr_color + '] ' + qs
|
442 |
-
|
443 |
-
# Image token embedding
|
444 |
-
if use_im_start_end:
|
445 |
-
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs
|
446 |
-
else:
|
447 |
-
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
448 |
|
449 |
-
|
450 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
system="""<|im_start|>system
|
452 |
You should follow the instructions carefully and explain your answers in detail.""",
|
453 |
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
@@ -456,90 +481,106 @@ class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
|
456 |
offset=0,
|
457 |
sep_style=SeparatorStyle.MPT,
|
458 |
sep="<|im_end|>",
|
459 |
-
|
460 |
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
# Tokenize input
|
470 |
-
inputs = tokenizer([prompt])
|
471 |
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
480 |
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
num_beams=1,
|
488 |
-
no_repeat_ngram_size=20,
|
489 |
-
streamer=streamer if stream_flag else None,
|
490 |
-
max_new_tokens=4096,
|
491 |
-
stopping_criteria=[stopping_criteria]
|
492 |
-
)
|
493 |
|
494 |
-
#
|
495 |
-
|
496 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
|
498 |
-
|
499 |
-
|
500 |
|
501 |
-
|
502 |
-
|
503 |
-
|
|
|
|
|
|
|
504 |
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
if '**kern' in outputs:
|
509 |
-
import verovio
|
510 |
-
tk = verovio.toolkit()
|
511 |
-
tk.loadData(outputs)
|
512 |
-
tk.setOptions({
|
513 |
-
"pageWidth": 2100,
|
514 |
-
"footer": 'none',
|
515 |
-
'barLineWidth': 0.5,
|
516 |
-
'beamMaxSlope': 15,
|
517 |
-
'staffLineWidth': 0.2,
|
518 |
-
'spacingStaff': 6
|
519 |
-
})
|
520 |
-
svg = tk.renderToSVG()
|
521 |
-
svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"")
|
522 |
-
svg_to_html(svg, save_render_file)
|
523 |
else:
|
524 |
-
# If 'format' OCR is being used without '**kern'
|
525 |
html_path_2 = save_render_file
|
526 |
-
outputs = outputs.
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
lines = lines.split("const text =")
|
536 |
-
|
537 |
|
538 |
-
|
539 |
-
|
540 |
-
web_f_new.write(new_web)
|
541 |
|
542 |
-
|
543 |
|
544 |
def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
|
545 |
|
|
|
408 |
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
409 |
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
410 |
|
411 |
+
# Move the generate_output function outside the chat method
|
412 |
+
def generate_output(input_ids, image_tensor, model, tokenizer, stopping_criteria, stream_flag):
|
413 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
414 |
|
415 |
+
if stream_flag:
|
416 |
+
with torch.autocast("cpu", dtype=torch.bfloat16):
|
417 |
+
output_ids = model.generate(
|
418 |
+
input_ids,
|
419 |
+
images=[image_tensor.unsqueeze(0).half().cpu()],
|
420 |
+
do_sample=False,
|
421 |
+
num_beams=1,
|
422 |
+
no_repeat_ngram_size=20,
|
423 |
+
streamer=streamer,
|
424 |
+
max_new_tokens=4096,
|
425 |
+
stopping_criteria=[stopping_criteria]
|
426 |
+
)
|
427 |
+
else:
|
428 |
+
with torch.autocast("cpu", dtype=torch.bfloat16):
|
429 |
+
output_ids = model.generate(
|
430 |
+
input_ids,
|
431 |
+
images=[image_tensor.unsqueeze(0).half().cpu()],
|
432 |
+
do_sample=False,
|
433 |
+
num_beams=1,
|
434 |
+
no_repeat_ngram_size=20,
|
435 |
+
max_new_tokens=4096,
|
436 |
+
stopping_criteria=[stopping_criteria]
|
437 |
+
)
|
438 |
+
return output_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
|
440 |
+
# The chat method optimized for CPU performance with multiprocessing
|
441 |
+
def chat(self, tokenizer, image_file, ocr_type, ocr_box='', ocr_color='', render=False, save_render_file=None,
|
442 |
+
print_prompt=False, gradio_input=False, stream_flag=False, num_workers=1):
|
443 |
+
|
444 |
+
self.disable_torch_init()
|
445 |
+
|
446 |
+
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
447 |
+
image_token_len = 256
|
448 |
+
|
449 |
+
if gradio_input:
|
450 |
+
image = image_file.copy()
|
451 |
+
else:
|
452 |
+
image = self.load_image(image_file)
|
453 |
+
|
454 |
+
w, h = image.size
|
455 |
+
qs = 'OCR with format: ' if ocr_type == 'format' else 'OCR: '
|
456 |
+
|
457 |
+
if ocr_box:
|
458 |
+
bbox = eval(ocr_box)
|
459 |
+
if len(bbox) == 2:
|
460 |
+
bbox[0] = int(bbox[0]/w*1000)
|
461 |
+
bbox[1] = int(bbox[1]/h*1000)
|
462 |
+
if len(bbox) == 4:
|
463 |
+
bbox[0] = int(bbox[0]/w*1000)
|
464 |
+
bbox[1] = int(bbox[1]/h*1000)
|
465 |
+
bbox[2] = int(bbox[2]/w*1000)
|
466 |
+
bbox[3] = int(bbox[3]/h*1000)
|
467 |
+
qs = str(bbox) + ' ' + qs
|
468 |
+
|
469 |
+
if ocr_color:
|
470 |
+
qs = f"[{ocr_color}] " + qs
|
471 |
+
|
472 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs
|
473 |
+
|
474 |
+
# Setup conversation prompt
|
475 |
+
conv_mpt = Conversation(
|
476 |
system="""<|im_start|>system
|
477 |
You should follow the instructions carefully and explain your answers in detail.""",
|
478 |
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
|
|
481 |
offset=0,
|
482 |
sep_style=SeparatorStyle.MPT,
|
483 |
sep="<|im_end|>",
|
484 |
+
)
|
485 |
|
486 |
+
conv = conv_mpt.copy()
|
487 |
+
conv.append_message(conv.roles[0], qs)
|
488 |
+
conv.append_message(conv.roles[1], None)
|
489 |
+
prompt = conv.get_prompt()
|
490 |
|
491 |
+
if print_prompt:
|
492 |
+
print(prompt)
|
|
|
|
|
|
|
493 |
|
494 |
+
inputs = tokenizer([prompt])
|
495 |
+
image_tensor_1 = image_processor_high(image)
|
496 |
+
input_ids = torch.as_tensor(inputs.input_ids).cpu()
|
497 |
|
498 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
499 |
+
keywords = [stop_str]
|
500 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
|
|
501 |
|
502 |
+
# Multiprocessing setup
|
503 |
+
with Pool(num_workers) as pool:
|
504 |
+
results = pool.starmap(
|
505 |
+
generate_output,
|
506 |
+
[(input_ids, image_tensor_1, self, tokenizer, stopping_criteria, stream_flag)] * num_workers
|
507 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
508 |
|
509 |
+
output_ids = results[0] # Take the first result (or aggregate depending on task)
|
510 |
+
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
511 |
+
|
512 |
+
if outputs.endswith(stop_str):
|
513 |
+
outputs = outputs[:-len(stop_str)]
|
514 |
+
outputs = outputs.strip()
|
515 |
+
|
516 |
+
response_str = outputs
|
517 |
+
|
518 |
+
# Rendering logic
|
519 |
+
if render:
|
520 |
+
print('==============rendering===============')
|
521 |
+
from .render_tools import svg_to_html, content_mmd_to_html, tik_html, translation_table
|
522 |
+
|
523 |
+
if '**kern' in outputs:
|
524 |
+
import verovio
|
525 |
+
tk = verovio.toolkit()
|
526 |
+
tk.loadData(outputs)
|
527 |
+
tk.setOptions({
|
528 |
+
"pageWidth": 2100, "footer": 'none',
|
529 |
+
'barLineWidth': 0.5, 'beamMaxSlope': 15,
|
530 |
+
'staffLineWidth': 0.2, 'spacingStaff': 6
|
531 |
+
})
|
532 |
+
tk.getPageCount()
|
533 |
+
svg = tk.renderToSVG()
|
534 |
+
svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"")
|
535 |
+
svg_to_html(svg, save_render_file)
|
536 |
+
|
537 |
+
if ocr_type == 'format' and '**kern' not in outputs:
|
538 |
+
if '\\begin{tikzpicture}' not in outputs:
|
539 |
+
html_path_2 = save_render_file
|
540 |
+
right_num = outputs.count('\\right')
|
541 |
+
left_num = outputs.count('\\left')
|
542 |
|
543 |
+
if right_num != left_num:
|
544 |
+
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
545 |
|
546 |
+
outputs = outputs.replace('"', '``').replace('$', '')
|
547 |
+
outputs_list = outputs.split('\n')
|
548 |
+
gt = ''
|
549 |
+
for out in outputs_list:
|
550 |
+
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
551 |
+
gt = gt[:-2]
|
552 |
|
553 |
+
lines = content_mmd_to_html
|
554 |
+
lines = lines.split("const text =")
|
555 |
+
new_web = lines[0] + 'const text =' + gt + lines[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
556 |
else:
|
|
|
557 |
html_path_2 = save_render_file
|
558 |
+
outputs = outputs.translate(translation_table)
|
559 |
+
outputs_list = outputs.split('\n')
|
560 |
+
gt = ''
|
561 |
+
for out in outputs_list:
|
562 |
+
if out:
|
563 |
+
if '\\begin{tikzpicture}' not in out and '\\end{tikzpicture}' not in out:
|
564 |
+
while out[-1] == ' ':
|
565 |
+
out = out[:-1]
|
566 |
+
if out is None:
|
567 |
+
break
|
568 |
+
if out:
|
569 |
+
if out[-1] != ';':
|
570 |
+
gt += out[:-1] + ';\n'
|
571 |
+
else:
|
572 |
+
gt += out + '\n'
|
573 |
+
else:
|
574 |
+
gt += out + '\n'
|
575 |
+
|
576 |
+
lines = tik_html
|
577 |
lines = lines.split("const text =")
|
578 |
+
new_web = lines[0] + gt + lines[1]
|
579 |
|
580 |
+
with open(html_path_2, 'w') as web_f_new:
|
581 |
+
web_f_new.write(new_web)
|
|
|
582 |
|
583 |
+
return response_str
|
584 |
|
585 |
def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
|
586 |
|