File size: 4,059 Bytes
5ff73ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---

pipeline_tag: image-text-to-text
library_name: transformers
language:
- multilingual
tags:
- got
- vision-language
- ocr2.0
- custom_code
license: apache-2.0
---


<h1>General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
</h1>

[🔋Online Demo](https://huggingface.co/spaces/ucaslcl/GOT_online) | [🌟GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/) | [📜Paper](https://arxiv.org/abs/2409.01704)</a> 


[Haoran Wei*](https://scholar.google.com/citations?user=J4naK0MAAAAJ&hl=en), Chenglong Liu*, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu,  [Zheng Ge](https://joker316701882.github.io/), Liang Zhao, [Jianjian Sun](https://scholar.google.com/citations?user=MVZrGkYAAAAJ&hl=en), [Yuang Peng](https://scholar.google.com.hk/citations?user=J0ko04IAAAAJ&hl=zh-CN&oi=ao), Chunrui Han, [Xiangyu Zhang](https://scholar.google.com/citations?user=yuB-cfoAAAAJ&hl=en)







![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6653eee7a2d7a882a805ab95/QCEFY-M_YG3Bp5fn1GQ8X.jpeg)







## Usage

Inference using Huggingface transformers on CPU. Requirements tested on python 3.10:

```

torch==2.0.1

torchvision==0.15.2

transformers==4.37.2

tiktoken==0.6.0

verovio==4.3.1

accelerate==0.28.0

```





```python

from transformers import AutoModel, AutoTokenizer



tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)

model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)

model = model.eval()





# input your test image

image_file = 'xxx.jpg'



# plain texts OCR

res = model.chat(tokenizer, image_file, ocr_type='ocr')



# format texts OCR:

# res = model.chat(tokenizer, image_file, ocr_type='format')



# fine-grained OCR:

# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_box='')

# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_box='')

# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_color='')

# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_color='')



# multi-crop OCR:

# res = model.chat_crop(tokenizer, image_file, ocr_type='ocr')

# res = model.chat_crop(tokenizer, image_file, ocr_type='format')



# render the formatted OCR results:

# res = model.chat(tokenizer, image_file, ocr_type='format', render=True, save_render_file = './demo.html')



print(res)





```

More details about 'ocr_type', 'ocr_box', 'ocr_color', and 'render' can be found at our GitHub.

Our training codes are available at our [GitHub](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/).







## More Multimodal Projects



👏 Welcome to explore more multimodal projects of our team:



[Vary](https://github.com/Ucas-HaoranWei/Vary) | [Fox](https://github.com/ucaslcl/Fox) | [OneChart](https://github.com/LingyvKong/OneChart)



## Citation



If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️!



```bib

@article{wei2024general,

  title={General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model},

  author={Wei, Haoran and Liu, Chenglong and Chen, Jinyue and Wang, Jia and Kong, Lingyu and Xu, Yanming and Ge, Zheng and Zhao, Liang and Sun, Jianjian and Peng, Yuang and others},

  journal={arXiv preprint arXiv:2409.01704},

  year={2024}

}

@article{liu2024focus,

  title={Focus Anywhere for Fine-grained Multi-page Document Understanding},

  author={Liu, Chenglong and Wei, Haoran and Chen, Jinyue and Kong, Lingyu and Ge, Zheng and Zhu, Zining and Zhao, Liang and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},

  journal={arXiv preprint arXiv:2405.14295},

  year={2024}

}

@article{wei2023vary,

  title={Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models},

  author={Wei, Haoran and Kong, Lingyu and Chen, Jinyue and Zhao, Liang and Ge, Zheng and Yang, Jinrong and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},

  journal={arXiv preprint arXiv:2312.06109},

  year={2023}

}

```