MalikIbrar commited on
Commit
e619a34
·
verified ·
1 Parent(s): c308fbf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md CHANGED
@@ -7,4 +7,69 @@ base_model:
7
  - google/flan-t5-base
8
  pipeline_tag: text-generation
9
  library_name: adapter-transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
 
7
  - google/flan-t5-base
8
  pipeline_tag: text-generation
9
  library_name: adapter-transformers
10
+ license: apache-2.0
11
+ ---
12
+
13
+ # flan-python-expert 🚀
14
+
15
+ This model is a fine-tuned version of [`google/flan-t5-base`](https://huggingface.co/google/flan-t5-base) on the [`codeagent-python`](https://huggingface.co/datasets/Programming-Language/codeagent-python) dataset.
16
+
17
+ It is designed to generate Python code from natural language instructions.
18
+
19
+ ---
20
+
21
+ ## 🧠 Model Details
22
+
23
+ - **Base Model:** FLAN-T5 Base
24
+ - **Fine-tuned on:** Python code dataset (`codeagent-python`)
25
+ - **Task:** Text-to-code generation
26
+ - **Language:** English
27
+ - **Framework:** 🤗 Transformers
28
+ - **Library:** `adapter-transformers`
29
+
30
+ ---
31
+
32
+ ## 🏋️ Training
33
+
34
+ The model was trained using the following setup:
35
+
36
+ ```python
37
+ from transformers import TrainingArguments
38
+
39
+ training_args = TrainingArguments(
40
+ output_dir="flan-python-expert",
41
+ evaluation_strategy="epoch",
42
+ learning_rate=2e-6,
43
+ per_device_train_batch_size=1,
44
+ per_device_eval_batch_size=1,
45
+ num_train_epochs=1,
46
+ weight_decay=0.01,
47
+ save_total_limit=2,
48
+ logging_steps=1,
49
+ push_to_hub=False,
50
+ )
51
+
52
+ ```
53
+
54
+
55
+ Trained for 1 epoch
56
+
57
+ Optimized for low-resource fine-tuning
58
+
59
+ Training performed using Hugging Face Trainer
60
+
61
+ ## Example Usage
62
+ ```python
63
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
64
+
65
+ model = AutoModelForSeq2SeqLM.from_pretrained("MalikIbrar/flan-python-expert")
66
+ tokenizer = AutoTokenizer.from_pretrained("MalikIbrar/flan-python-expert")
67
+
68
+ input_text = "Write a Python function to check if a number is prime."
69
+ inputs = tokenizer(input_text, return_tensors="pt")
70
+
71
+ outputs = model.generate(**inputs, max_length=256)
72
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
73
+ ```
74
+
75
  ---