vits_with_chatbot / attentions.py
Mahiruoshi's picture
Upload 68 files
f8a0cc5
raw
history blame
14.9 kB
import math
import torch
from torch import nn
from torch.nn import functional as F
import commons
from modules import LayerNorm
class Encoder(nn.Module):
def __init__(self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size=1,
p_dropout=0.,
window_size=4,
**kwargs):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.drop = nn.Dropout(p_dropout)
self.attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.attn_layers.append(
MultiHeadAttention(hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
window_size=window_size))
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout))
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.attn_layers[i](x, x, attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class Decoder(nn.Module):
def __init__(self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size=1,
p_dropout=0.,
proximal_bias=False,
proximal_init=True,
**kwargs):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.drop = nn.Dropout(p_dropout)
self.self_attn_layers = nn.ModuleList()
self.norm_layers_0 = nn.ModuleList()
self.encdec_attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.self_attn_layers.append(
MultiHeadAttention(hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
proximal_bias=proximal_bias,
proximal_init=proximal_init))
self.norm_layers_0.append(LayerNorm(hidden_channels))
self.encdec_attn_layers.append(
MultiHeadAttention(hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout))
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout,
causal=True))
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask, h, h_mask):
"""
x: decoder input
h: encoder output
"""
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
device=x.device, dtype=x.dtype)
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.self_attn_layers[i](x, x, self_attn_mask)
y = self.drop(y)
x = self.norm_layers_0[i](x + y)
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class MultiHeadAttention(nn.Module):
def __init__(self,
channels,
out_channels,
n_heads,
p_dropout=0.,
window_size=None,
heads_share=True,
block_length=None,
proximal_bias=False,
proximal_init=False):
super().__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.p_dropout = p_dropout
self.window_size = window_size
self.heads_share = heads_share
self.block_length = block_length
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = nn.Conv1d(channels, channels, 1)
self.conv_k = nn.Conv1d(channels, channels, 1)
self.conv_v = nn.Conv1d(channels, channels, 1)
self.conv_o = nn.Conv1d(channels, out_channels, 1)
self.drop = nn.Dropout(p_dropout)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev)
self.emb_rel_v = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev)
nn.init.xavier_uniform_(self.conv_q.weight)
nn.init.xavier_uniform_(self.conv_k.weight)
nn.init.xavier_uniform_(self.conv_v.weight)
if proximal_init:
with torch.no_grad():
self.conv_k.weight.copy_(self.conv_q.weight)
self.conv_k.bias.copy_(self.conv_q.bias)
def forward(self, x, c, attn_mask=None):
q = self.conv_q(x)
k = self.conv_k(c)
v = self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def attention(self, query, key, value, mask=None):
# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s, t_t = (*key.size(), query.size(2))
query = query.view(b, self.n_heads, self.k_channels,
t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels,
t_s).transpose(2, 3)
scores = torch.matmul(query / math.sqrt(self.k_channels),
key.transpose(-2, -1))
if self.window_size is not None:
msg = "Relative attention is only available for self-attention."
assert t_s == t_t, msg
key_relative_embeddings = self._get_relative_embeddings(
self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(
query / math.sqrt(self.k_channels), key_relative_embeddings)
scores_local = self._relative_position_to_absolute_position(
rel_logits)
scores = scores + scores_local
if self.proximal_bias:
msg = "Proximal bias is only available for self-attention."
assert t_s == t_t, msg
scores = scores + self._attention_bias_proximal(t_s).to(
device=scores.device, dtype=scores.dtype)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length is not None:
msg = "Local attention is only available for self-attention."
assert t_s == t_t, msg
block_mask = torch.ones_like(scores).triu(
-self.block_length).tril(self.block_length)
scores = scores.masked_fill(block_mask == 0, -1e4)
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
p_attn = self.drop(p_attn)
output = torch.matmul(p_attn, value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(
p_attn)
value_relative_embeddings = self._get_relative_embeddings(
self.emb_rel_v, t_s)
output = output + self._matmul_with_relative_values(
relative_weights, value_relative_embeddings)
output = output.transpose(2, 3).contiguous().view(
b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output, p_attn
def _matmul_with_relative_values(self, x, y):
"""
x: [b, h, l, m]
y: [h or 1, m, d]
ret: [b, h, l, d]
"""
ret = torch.matmul(x, y.unsqueeze(0))
return ret
def _matmul_with_relative_keys(self, x, y):
"""
x: [b, h, l, d]
y: [h or 1, m, d]
ret: [b, h, l, m]
"""
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
return ret
def _get_relative_embeddings(self, relative_embeddings, length):
max_relative_position = 2 * self.window_size + 1
# Pad first before slice to avoid using cond ops.
pad_length = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = F.pad(
relative_embeddings,
commons.convert_pad_shape([[0, 0], [pad_length, pad_length],
[0, 0]]))
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[:,
slice_start_position:
slice_end_position]
return used_relative_embeddings
def _relative_position_to_absolute_position(self, x):
"""
x: [b, h, l, 2*l-1]
ret: [b, h, l, l]
"""
batch, heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0,
1]]))
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch, heads, length * 2 * length])
x_flat = F.pad(
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0,
length - 1]]))
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch, heads, length + 1,
2 * length - 1])[:, :, :length, length - 1:]
return x_final
def _absolute_position_to_relative_position(self, x):
"""
x: [b, h, l, l]
ret: [b, h, l, 2*l-1]
"""
batch, heads, length, _ = x.size()
# padd along column
x = F.pad(
x,
commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0,
length - 1]]))
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
# add 0's in the beginning that will skew the elements after reshape
x_flat = F.pad(
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
return x_final
def _attention_bias_proximal(self, length):
"""Bias for self-attention to encourage attention to close positions.
Args:
length: an integer scalar.
Returns:
a Tensor with shape [1, 1, length, length]
"""
r = torch.arange(length, dtype=torch.float32)
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
return torch.unsqueeze(
torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
class FFN(nn.Module):
def __init__(self,
in_channels,
out_channels,
filter_channels,
kernel_size,
p_dropout=0.,
activation=None,
causal=False):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.activation = activation
self.causal = causal
if causal:
self.padding = self._causal_padding
else:
self.padding = self._same_padding
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
self.drop = nn.Dropout(p_dropout)
def forward(self, x, x_mask):
x = self.conv_1(self.padding(x * x_mask))
if self.activation == "gelu":
x = x * torch.sigmoid(1.702 * x)
else:
x = torch.relu(x)
x = self.drop(x)
x = self.conv_2(self.padding(x * x_mask))
return x * x_mask
def _causal_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = self.kernel_size - 1
pad_r = 0
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x
def _same_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = (self.kernel_size - 1) // 2
pad_r = self.kernel_size // 2
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, commons.convert_pad_shape(padding))
return x