{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b2b8b6b09d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b2b8b6b0a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b2b8b6b0af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b2b8b6b0b80>", "_build": "<function ActorCriticPolicy._build at 0x7b2b8b6b0c10>", "forward": "<function ActorCriticPolicy.forward at 0x7b2b8b6b0ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b2b8b6b0d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b2b8b6b0dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b2b8b6b0e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b2b8b6b0ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b2b8b6b0f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b2b8b6b1000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b2b8b6b4440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715022093014605902, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKYB873hms66suooupNHoLaEpfQ6GQpEOQAAgD8AAIA/jeqLvaT5Lj7S1HA9TyNEvjEvCb1lq6o8AAAAAAAAAACaA+S9GJaOPQ3rXj7Jxlm+QttCPbK0rD0AAAAAAAAAAGamNzr2tCS6/rqjuzdqVjjJ2JW6OlOPNwAAgD8AAIA/AFgSvY/mNbqelBO8Kjdutv2whbqjp9U1AACAPwAAgD/mvmm9w41Wus37ljuv5W04QVyhu6bSKbkAAIA/AACAP5o9sbwUjqC6QtnMujFG67WK2/a6QBXsOQAAgD8AAIA/5owEvSk4ALrWq5u7izoCNmqJYbrmCGu1AACAPwAAgD+aRQu99uRIuu7MEbykjEg2yXvWuuIdsLUAAIA/AACAP03Se71I05i6SUseuNWHFbMlNtg5Bd42NwAAgD8AAIA/zTn+PBRIsLqojO+6C2f7tXU4FDoX5Ag6AACAPwAAgD/NVzC9rjmSuiPBgDjJg2Mz56HIuuImlbcAAIA/AACAP5oDj7xc43C662m9ubP8lbbSfdI6mK/dOAAAgD8AAIA/APS1vFwPfrr9XRA6OhKytXHM+zo63aW0AACAPwAAgD/menQ9pIN3PhWn9L1wSHO+YxUHvbUbgr0AAAAAAAAAADNZlrzDCXS67nLmOiIOWrUzg1W76b0DugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGYh40dilSGMAWyUTegDjAF0lEdAmDMo2n8893V9lChoBkdAaOV4cFQl8mgHTegDaAhHQJg61zZHuqp1fZQoaAZHQGSzDua4MF5oB03oA2gIR0CYO/aDPGADdX2UKGgGR0BiyMQf6oETaAdN6ANoCEdAmD1lCTlkpnV9lChoBkdAYHFlNlAeJmgHTegDaAhHQJg+PlS0jTt1fZQoaAZHQGUjY2S+xnpoB03oA2gIR0CYQWPy08eTdX2UKGgGR0BtYZjQRf4RaAdN5AJoCEdAmEnloDgZTHV9lChoBkdAX9wP3BYV7GgHTegDaAhHQJhK/PGACnx1fZQoaAZHQGMa6isXBP9oB03oA2gIR0CYT5RQJokBdX2UKGgGR0Bna9KTSsr/aAdN6ANoCEdAmFL/xDst03V9lChoBkdAY5skVN5+pmgHTegDaAhHQJhTkGgSOBF1fZQoaAZHQGS14CZF5OdoB03oA2gIR0CYU9cnmaH9dX2UKGgGR0BmlJPKuB+XaAdN6ANoCEdAmFbduLrHEXV9lChoBkdAYgW+cH4XXWgHTegDaAhHQJhYNX7tRel1fZQoaAZHQGGnBSDRMOBoB03oA2gIR0CYWXYLb5/LdX2UKGgGR0BeOQQYk3S8aAdN6ANoCEdAmFvk1yeZonV9lChoBkdARK8oBq9GqmgHS9RoCEdAmGFg0XP7enV9lChoBkdAconIDHOryWgHTYcDaAhHQJh6SmQ8wHt1fZQoaAZHQGMsoq0+kgxoB03oA2gIR0CYh9Rh+fAcdX2UKGgGR0Bhs3J/5LyuaAdN6ANoCEdAmIiWWdEsrnV9lChoBkdAZxgB+WnjyWgHTegDaAhHQJiJ672+PBB1fZQoaAZHQGMp3BpHqeNoB03oA2gIR0CYipebNKRMdX2UKGgGR0BkXAOx0MgEaAdN6ANoCEdAmIzoVARkE3V9lChoBkdAZa5y6MBIWmgHTegDaAhHQJiVt04iosJ1fZQoaAZHQGed92ovSMNoB03oA2gIR0CYlt1VHWjHdX2UKGgGR0BkHn71qWTpaAdN6ANoCEdAmJxrJr+HanV9lChoBkdAZGViF0xM4GgHTegDaAhHQJigwrNGEwp1fZQoaAZHQGP7Bw++ueVoB03oA2gIR0CYoXmKZUkwdX2UKGgGR0BmsvrfLs8gaAdN6ANoCEdAmKHT/yXlbXV9lChoBkdAZOya6z3RHGgHTegDaAhHQJil3CMxXXB1fZQoaAZHQGeYT8P4EfVoB03oA2gIR0CYpwX2/SH/dX2UKGgGR0BjyV67dznzaAdN6ANoCEdAmKl1lPJq7HV9lChoBkdAa7HY9xIatWgHTYEDaAhHQJitzYkE9uB1fZQoaAZHQGMIi0F8ohJoB03oA2gIR0CYrq6u4gA7dX2UKGgGR0BxlaXBxgiNaAdNXwNoCEdAmMlWNBF/hHV9lChoBkdAY4/82rGR3mgHTegDaAhHQJjUmZ2IO6N1fZQoaAZHQGYDKnFYMfBoB03oA2gIR0CY1Z78vVVhdX2UKGgGR0Bm3sulGgBcaAdN6ANoCEdAmNZGJemelXV9lChoBkdAYxQctGus92gHTegDaAhHQJjYocABDG91fZQoaAZHQGfbzPKMefZoB03oA2gIR0CY4VZKFqSHdX2UKGgGR0BmIENWluWKaAdN6ANoCEdAmOJ+bAk9lnV9lChoBkdAZJZUb1h9cGgHTegDaAhHQJjnSnAIpph1fZQoaAZHQGPH9US7GvRoB03oA2gIR0CY6oJ9AooedX2UKGgGR0Bogw3eenQ6aAdN6ANoCEdAmOsDzErGznV9lChoBkdAYpnVDKHO8mgHTegDaAhHQJjrQcyWRih1fZQoaAZHQGbf++M6zVtoB03oA2gIR0CY7zwAlv61dX2UKGgGR0BxtUXm/336aAdNmQJoCEdAmO/CaiKziXV9lChoBkdAaDPyHVPN3WgHTegDaAhHQJjwaDujRD11fZQoaAZHQGU32TX8O09oB03oA2gIR0CY8s6Q/5ckdX2UKGgGR0Bg9ebVjI7vaAdN6ANoCEdAmPb1jy4FzXV9lChoBkdAZnIqBmPHUGgHTegDaAhHQJj3yIrOJLx1fZQoaAZHQGQQqdQO4G5oB03oA2gIR0CZH4N7jT8YdX2UKGgGR0Bfe75IpYs/aAdN6ANoCEdAmSDSeVcD83V9lChoBkdAYT9T5O8CgmgHTegDaAhHQJkhod92HL11fZQoaAZHQGUG3QD3dsVoB03oA2gIR0CZJHTS9du6dX2UKGgGR0BhU/Ijnmq6aAdN6ANoCEdAmTA3dfsu4HV9lChoBkdAYke2CuloDmgHTegDaAhHQJkyGCNCJGh1fZQoaAZHQF+2kyDZlFtoB03oA2gIR0CZOBuw5eZ5dX2UKGgGR0BiiXvjOs1baAdN6ANoCEdAmTxH1jAi3XV9lChoBkdAYHv6Tnq3VmgHTegDaAhHQJk86xA0Kqp1fZQoaAZHQGS3P/BFd9loB03oA2gIR0CZPTe4TbnHdX2UKGgGR0Blrk7bL2YfaAdN6ANoCEdAmUI0W2w3YXV9lChoBkdAYuivFm4Aj2gHTegDaAhHQJlCyejEehh1fZQoaAZHQGFBlhw2l2xoB03oA2gIR0CZQ41WsA/+dX2UKGgGR0Bjxh5mh/RWaAdN6ANoCEdAmUZGpVCHAXV9lChoBkdAPM7VrhzeXWgHTQIBaAhHQJlK/KISDh91fZQoaAZHQGPFJiZv1lJoB03oA2gIR0CZSvwAEMb4dX2UKGgGR0Bly3ZXdTHbaAdN6ANoCEdAmUvUP1+RYHV9lChoBkdAYVhX2/SH/WgHTegDaAhHQJlxKa6STyJ1fZQoaAZHQGMDsBhhH9ZoB03oA2gIR0CZcjJ7sv7FdX2UKGgGR0BdFQN5MURGaAdN6ANoCEdAmXLWjsUqQXV9lChoBkdAZHx1nuiN82gHTegDaAhHQJl1IyJsO5J1fZQoaAZHQGD2BnzxwyZoB03oA2gIR0CZfbORT0g9dX2UKGgGR0BmksupS75EaAdN6ANoCEdAmX7bb1yvLXV9lChoBkdAZop48EFGG2gHTegDaAhHQJmDjwF1SwZ1fZQoaAZHQGNhJosZpBZoB03oA2gIR0CZhri8nNPhdX2UKGgGR0Bmq72Dg62faAdN6ANoCEdAmYeCSq2jPHV9lChoBkdAXeUuf29L6GgHTegDaAhHQJmMore67NB1fZQoaAZHQGVjC7CiyptoB03oA2gIR0CZjXXY150KdX2UKGgGR0Bh+ScLBsQ/aAdN6ANoCEdAmY5jziCJ43V9lChoBkdAZydELH+6y2gHTegDaAhHQJmR/bah6B11fZQoaAZHQGesL5RCQcRoB03oA2gIR0CZlse8f3evdX2UKGgGR0BkammJm/WUaAdN6ANoCEdAmZbIhpxm03V9lChoBkdAY0ci8nNPg2gHTegDaAhHQJmXk//vOQh1fZQoaAZHQGapGukk8ihoB03oA2gIR0CZuqhwVCXydX2UKGgGR0BmKaOHWSU1aAdN6ANoCEdAmbvyyhSLqHV9lChoBkdAYzmqBEroXGgHTegDaAhHQJm88I1LrX11fZQoaAZHQGOFZZB9kSVoB03oA2gIR0CZwBsV+I/JdX2UKGgGR0Bgyb7fpD/maAdN6ANoCEdAmcnZxR2r4nV9lChoBkdAYC6jM3ZPEmgHTegDaAhHQJnLCETQE6l1fZQoaAZHQGb1lg+hXbNoB03oA2gIR0CZz/1WsA/+dX2UKGgGR0BnbwP/aQFLaAdN6ANoCEdAmdOfCZWq+HV9lChoBkdAY4qwRGtp22gHTegDaAhHQJnUgVLzwtt1fZQoaAZHQGPfisGPgeloB03oA2gIR0CZ2S1NQCSzdX2UKGgGR0BkLiuW8h9taAdN6ANoCEdAmdnCeZof0XV9lChoBkdAY3I/jbSJCWgHTegDaAhHQJnadDCxeLN1fZQoaAZHQGjn/oicG1RoB03oA2gIR0CZ3RXzDn/2dX2UKGgGR0Bm0TWNFSbZaAdN6ANoCEdAmeFzlxOtXHV9lChoBkdAZeXKqXF98mgHTegDaAhHQJnhdGmUGFB1fZQoaAZHQGSl99Ujs2NoB03oA2gIR0CZ4j+OwPiDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |