Porjaz commited on
Commit
728fe25
·
verified ·
1 Parent(s): 2444127

Create custom_interface.py

Browse files
Files changed (1) hide show
  1. custom_interface.py +98 -0
custom_interface.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from speechbrain.inference.interfaces import Pretrained
3
+ import librosa
4
+
5
+
6
+ class ASR(Pretrained):
7
+ def __init__(self, *args, **kwargs):
8
+ super().__init__(*args, **kwargs)
9
+
10
+ def encode_batch(self, device, wavs, wav_lens=None, normalize=False):
11
+ wavs = wavs.to(device)
12
+ wav_lens = wav_lens.to(device)
13
+
14
+ # Forward pass
15
+ encoded_outputs = self.mods.encoder_w2v2(wavs.detach())
16
+ # append
17
+ tokens_bos = torch.zeros((wavs.size(0), 1), dtype=torch.long).to(device)
18
+ embedded_tokens = self.mods.embedding(tokens_bos)
19
+ decoder_outputs, _ = self.mods.decoder(embedded_tokens, encoded_outputs, wav_lens)
20
+
21
+ # Output layer for seq2seq log-probabilities
22
+ predictions = self.hparams.test_search(encoded_outputs, wav_lens)[0]
23
+ # predicted_words = [self.hparams.tokenizer.decode_ids(prediction).split(" ") for prediction in predictions]
24
+ predicted_words = []
25
+ for prediction in predictions:
26
+ prediction = [token for token in prediction if token != 0]
27
+ predicted_words.append(self.hparams.tokenizer.decode_ids(prediction).split(" "))
28
+ prediction = []
29
+ for sent in predicted_words:
30
+ sent = self.filter_repetitions(sent, 3)
31
+ prediction.append(sent)
32
+ predicted_words = prediction
33
+ return predicted_words
34
+
35
+ def filter_repetitions(self, seq, max_repetition_length):
36
+ seq = list(seq)
37
+ output = []
38
+ max_n = len(seq) // 2
39
+ for n in range(max_n, 0, -1):
40
+ max_repetitions = max(max_repetition_length // n, 1)
41
+ # Don't need to iterate over impossible n values:
42
+ # len(seq) can change a lot during iteration
43
+ if (len(seq) <= n*2) or (len(seq) <= max_repetition_length):
44
+ continue
45
+ iterator = enumerate(seq)
46
+ # Fill first buffers:
47
+ buffers = [[next(iterator)[1]] for _ in range(n)]
48
+ for seq_index, token in iterator:
49
+ current_buffer = seq_index % n
50
+ if token != buffers[current_buffer][-1]:
51
+ # No repeat, we can flush some tokens
52
+ buf_len = sum(map(len, buffers))
53
+ flush_start = (current_buffer-buf_len) % n
54
+ # Keep n-1 tokens, but possibly mark some for removal
55
+ for flush_index in range(buf_len - buf_len%n):
56
+ if (buf_len - flush_index) > n-1:
57
+ to_flush = buffers[(flush_index + flush_start) % n].pop(0)
58
+ else:
59
+ to_flush = None
60
+ # Here, repetitions get removed:
61
+ if (flush_index // n < max_repetitions) and to_flush is not None:
62
+ output.append(to_flush)
63
+ elif (flush_index // n >= max_repetitions) and to_flush is None:
64
+ output.append(to_flush)
65
+ buffers[current_buffer].append(token)
66
+ # At the end, final flush
67
+ current_buffer += 1
68
+ buf_len = sum(map(len, buffers))
69
+ flush_start = (current_buffer-buf_len) % n
70
+ for flush_index in range(buf_len):
71
+ to_flush = buffers[(flush_index + flush_start) % n].pop(0)
72
+ # Here, repetitions just get removed:
73
+ if flush_index // n < max_repetitions:
74
+ output.append(to_flush)
75
+ seq = []
76
+ to_delete = 0
77
+ for token in output:
78
+ if token is None:
79
+ to_delete += 1
80
+ elif to_delete > 0:
81
+ to_delete -= 1
82
+ else:
83
+ seq.append(token)
84
+ output = []
85
+ return seq
86
+
87
+
88
+ def classify_file(self, path, device):
89
+ waveform, sr = librosa.load(path, sr=16000)
90
+
91
+ waveform = torch.tensor(waveform).to(device)
92
+ waveform = waveform.to(device)
93
+ # Fake a batch:
94
+ batch = waveform.unsqueeze(0)
95
+ rel_length = torch.tensor([1.0]).to(device)
96
+ outputs = self.encode_batch(device, batch, rel_length)
97
+ outputs = " ".join(outputs[0])
98
+ return outputs