MUTSC commited on
Commit
198574e
1 Parent(s): f61e72d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22541d3f22f9b7478079151004d9e0915f5dd4c12b363af5118dab0aa2bc9668
3
+ size 122848
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7acb427a77f0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7acb4279af00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1692361126055315892,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4cONP/mBw75lrAs+FmsPP2OIFT64qws+JYhlv9ngLT/1pws+M2epv+dzm78GqAs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfXM5P3Vzab967AU/e4vhve1n1T4StYO/3b1jv9I1gD6BWr0+zmQdP3ASGL8XPGI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAfX5C8dYWHvxQ4bL2QNJ+/A7IMwJwfoj/+FZo/4cONP/mBw75lrAs+w5i1vHZ7hLxkCoq8GpNBPYbeiTxBZXI9WBIdvLIyjbztTYW8ojbrvyADAUDR37Q/oeevPN4c0z7w1zO+LoaWPxZrDz9jiBU+uKsLPhXLtbzrvoK8BaJ1vOBgQz2EToo8CaRxPYROBrx2cXe8ynmBvNb7Yr9OMec/EsRvP/tbXj+v7yq+0rmdvwOSYb8liGW/2eAtP/WnCz5WbLO8NPOCvI8PiLyS4kE9+/6HPAmkcT2VTga8hXF3vD2DhLwbEEI+PszevyqAnD0zvIs95l4UvxrdQL+49ia/M2epv+dzm78GqAs+UHGzvFrygrxpjaC+hgxCPaYwiDwJpHE9mE4GvIRxd7yjHoW8lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 1.1075402 -0.381851 0.13639982]\n [ 0.56022775 0.14602809 0.13639724]\n [-0.89660865 0.67921215 0.1363829 ]\n [-1.3234619 -1.2144746 0.13638315]]",
34
+ "desired_goal": "[[ 0.72441846 -0.911918 0.5231396 ]\n [-0.11012932 0.41680852 -1.0289633 ]\n [-0.88961583 0.25041062 0.36983112]\n [ 0.6148194 -0.59403133 0.8837294 ]]",
35
+ "observation": "[[-0.01762348 -1.0587603 -0.05767067 -1.2437916 -2.198365 1.2665896\n 1.2037961 1.1075402 -0.381851 0.13639982 -0.02216757 -0.01617215\n -0.01685066 0.04725943 0.01682974 0.05917859 -0.00958689 -0.01723609\n -0.01627251]\n [-1.8376048 2.0158157 1.4130803 0.02147275 0.4123296 -0.17562842\n 1.1759698 0.56022775 0.14602809 0.13639724 -0.02219156 -0.01596018\n -0.01499224 0.04769981 0.01688314 0.05899433 -0.00819743 -0.01510273\n -0.01580514]\n [-0.8866552 1.8061922 0.93658555 0.868591 -0.16692995 -1.2322333\n -0.8811342 -0.89660865 0.67921215 0.1363829 -0.02190224 -0.01598511\n -0.01660898 0.04733521 0.01660108 0.05899433 -0.00819745 -0.01510275\n -0.01617586]\n [ 0.18951456 -1.740608 0.07641633 0.06823006 -0.57957304 -0.75337374\n -0.6522021 -1.3234619 -1.2144746 0.13638315 -0.02190462 -0.0159847\n -0.31357887 0.04737522 0.01662476 0.05899433 -0.00819745 -0.01510275\n -0.01624996]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5tadvPPs1DsK16M87gO5vf0P8bwK16M8p3mAPQ4YrLwK16M8siegvYC2ULwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAv/3ou01mwD21x4U99ZeWPQoNFjxtf5M9wI0OPioAdT0LUBM+T1yaPdVN3rwfoIM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA5tadvPPs1DsK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAO4Dub39D/G8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACneYA9DhisvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAsiegvYC2ULwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.01926751 0.00649797 0.02 ]\n [-0.09033953 -0.02942657 0.02 ]\n [ 0.06273203 -0.02100756 0.02 ]\n [-0.07820071 -0.01273882 0.02 ]]",
45
+ "desired_goal": "[[-0.00711033 0.09394512 0.06532232]\n [ 0.07353202 0.00915838 0.07202039]\n [ 0.13921261 0.05981461 0.14386003]\n [ 0.07537138 -0.02713672 0.06427025]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.9267511e-02\n 6.4979731e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.0339527e-02\n -2.9426569e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.2732033e-02\n -2.1007564e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -7.8200713e-02\n -1.2738824e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CppWY/NZ/1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CppbkRzzVddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpprJZW7vodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CppgTg/C66dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cppm93Sro4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CppsH5JsfrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpp7ntF8XvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CppwyLIgeSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpp3gYxcmjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpp8+ee4CqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqNL/bTMJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqCSh8IAwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqI47zTWodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqOWattALdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqfWRigCfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqUdp7CzkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqbWOQyRCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqggYP5HmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqxnvUjLTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpqm/HPu5SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpquDdP+GXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqzX3Hq/udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprEZZSvTxdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CprE3cxj8UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpq5nCO3lTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprAN+so2GdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CprAq/VRUFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprFfj81n/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprV6FuejEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprKl4TsY3dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CprK6ufVZtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprRoHcDbKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprWWhysCDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpro/cFhXsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpreL1uivgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprlsKTjebdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprqrXDm8vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpr6v8AJb/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprvweeWfLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpr2TKT0QLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpr7FMyrPudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpsNHmq5skdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpsCTYVZcLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpsJec6NlzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpsOm16Vt5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpspSrgflqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpse+pGWledX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpsnBSLqD9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpssWmpEQYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptDUwSJ0odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cps5ACW/rTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptB4msvIwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptHdyDIzWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpthCYsunNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptWB5ooNNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptcxuTA32dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpthiIDYAbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptyL5IpYtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptnMC9ytFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cptt889wFUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptyviT+vRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuCY8dPtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpt3VBlcyFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpt9/SQYDUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuC+I/JNkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuS+LWI43dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuH7o0Q9SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuOrFwT/RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuTr+5vtMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpukJ+DvmYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuZNShrWRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpugYf4h2XdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpugvVd5Y6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpulN96TnrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpu1W7nPmgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuqY+jdpJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpuxews5GSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpu1/l6qsEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvFCT+vQodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpu6CbDuSfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvBctXgccdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvF7vXsgMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvXLqdH2AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvMRpL26DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvTnDiwSrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvYOJUHY6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpvpadtl7MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvecPWhAXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvlK+ajN7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpvpp3HJcPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv5L6ciGGdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cpv5fJvHcUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvuGu1WsBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv05ZB9kSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cpv1L1/Ue/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv5WYnfEXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwKcjAzpHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv/IfKZDzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwGrPUrkKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwK5r56+ndWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b473c1e503a352549473a7353e70b859be2371b237acc35b322554fe78849a9
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22a7bbfe2137752457202c648347d0191203aec155944b43b9c9fba3785a328f
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.0
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7acb427a77f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7acb4279af00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692361126055315892, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4cONP/mBw75lrAs+FmsPP2OIFT64qws+JYhlv9ngLT/1pws+M2epv+dzm78GqAs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfXM5P3Vzab967AU/e4vhve1n1T4StYO/3b1jv9I1gD6BWr0+zmQdP3ASGL8XPGI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAfX5C8dYWHvxQ4bL2QNJ+/A7IMwJwfoj/+FZo/4cONP/mBw75lrAs+w5i1vHZ7hLxkCoq8GpNBPYbeiTxBZXI9WBIdvLIyjbztTYW8ojbrvyADAUDR37Q/oeevPN4c0z7w1zO+LoaWPxZrDz9jiBU+uKsLPhXLtbzrvoK8BaJ1vOBgQz2EToo8CaRxPYROBrx2cXe8ynmBvNb7Yr9OMec/EsRvP/tbXj+v7yq+0rmdvwOSYb8liGW/2eAtP/WnCz5WbLO8NPOCvI8PiLyS4kE9+/6HPAmkcT2VTga8hXF3vD2DhLwbEEI+PszevyqAnD0zvIs95l4UvxrdQL+49ia/M2epv+dzm78GqAs+UHGzvFrygrxpjaC+hgxCPaYwiDwJpHE9mE4GvIRxd7yjHoW8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.1075402 -0.381851 0.13639982]\n [ 0.56022775 0.14602809 0.13639724]\n [-0.89660865 0.67921215 0.1363829 ]\n [-1.3234619 -1.2144746 0.13638315]]", "desired_goal": "[[ 0.72441846 -0.911918 0.5231396 ]\n [-0.11012932 0.41680852 -1.0289633 ]\n [-0.88961583 0.25041062 0.36983112]\n [ 0.6148194 -0.59403133 0.8837294 ]]", "observation": "[[-0.01762348 -1.0587603 -0.05767067 -1.2437916 -2.198365 1.2665896\n 1.2037961 1.1075402 -0.381851 0.13639982 -0.02216757 -0.01617215\n -0.01685066 0.04725943 0.01682974 0.05917859 -0.00958689 -0.01723609\n -0.01627251]\n [-1.8376048 2.0158157 1.4130803 0.02147275 0.4123296 -0.17562842\n 1.1759698 0.56022775 0.14602809 0.13639724 -0.02219156 -0.01596018\n -0.01499224 0.04769981 0.01688314 0.05899433 -0.00819743 -0.01510273\n -0.01580514]\n [-0.8866552 1.8061922 0.93658555 0.868591 -0.16692995 -1.2322333\n -0.8811342 -0.89660865 0.67921215 0.1363829 -0.02190224 -0.01598511\n -0.01660898 0.04733521 0.01660108 0.05899433 -0.00819745 -0.01510275\n -0.01617586]\n [ 0.18951456 -1.740608 0.07641633 0.06823006 -0.57957304 -0.75337374\n -0.6522021 -1.3234619 -1.2144746 0.13638315 -0.02190462 -0.0159847\n -0.31357887 0.04737522 0.01662476 0.05899433 -0.00819745 -0.01510275\n -0.01624996]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5tadvPPs1DsK16M87gO5vf0P8bwK16M8p3mAPQ4YrLwK16M8siegvYC2ULwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAv/3ou01mwD21x4U99ZeWPQoNFjxtf5M9wI0OPioAdT0LUBM+T1yaPdVN3rwfoIM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA5tadvPPs1DsK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAO4Dub39D/G8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACneYA9DhisvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAsiegvYC2ULwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.01926751 0.00649797 0.02 ]\n [-0.09033953 -0.02942657 0.02 ]\n [ 0.06273203 -0.02100756 0.02 ]\n [-0.07820071 -0.01273882 0.02 ]]", "desired_goal": "[[-0.00711033 0.09394512 0.06532232]\n [ 0.07353202 0.00915838 0.07202039]\n [ 0.13921261 0.05981461 0.14386003]\n [ 0.07537138 -0.02713672 0.06427025]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.9267511e-02\n 6.4979731e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -9.0339527e-02\n -2.9426569e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 6.2732033e-02\n -2.1007564e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -7.8200713e-02\n -1.2738824e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CppWY/NZ/1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CppbkRzzVddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpprJZW7vodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CppgTg/C66dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cppm93Sro4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CppsH5JsfrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpp7ntF8XvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CppwyLIgeSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpp3gYxcmjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpp8+ee4CqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqNL/bTMJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqCSh8IAwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqI47zTWodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqOWattALdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqfWRigCfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqUdp7CzkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqbWOQyRCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqggYP5HmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqxnvUjLTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpqm/HPu5SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpquDdP+GXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpqzX3Hq/udX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprEZZSvTxdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CprE3cxj8UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpq5nCO3lTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprAN+so2GdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CprAq/VRUFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprFfj81n/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprV6FuejEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprKl4TsY3dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CprK6ufVZtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprRoHcDbKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprWWhysCDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpro/cFhXsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpreL1uivgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprlsKTjebdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprqrXDm8vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpr6v8AJb/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CprvweeWfLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpr2TKT0QLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpr7FMyrPudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpsNHmq5skdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpsCTYVZcLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpsJec6NlzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpsOm16Vt5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpspSrgflqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpse+pGWledX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpsnBSLqD9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpssWmpEQYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptDUwSJ0odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cps5ACW/rTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptB4msvIwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptHdyDIzWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpthCYsunNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptWB5ooNNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptcxuTA32dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpthiIDYAbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptyL5IpYtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptnMC9ytFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cptt889wFUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CptyviT+vRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuCY8dPtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpt3VBlcyFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpt9/SQYDUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuC+I/JNkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuS+LWI43dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuH7o0Q9SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuOrFwT/RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuTr+5vtMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpukJ+DvmYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuZNShrWRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpugYf4h2XdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpugvVd5Y6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpulN96TnrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpu1W7nPmgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpuqY+jdpJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpuxews5GSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpu1/l6qsEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvFCT+vQodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpu6CbDuSfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvBctXgccdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvF7vXsgMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvXLqdH2AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvMRpL26DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvTnDiwSrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvYOJUHY6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpvpadtl7MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvecPWhAXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvlK+ajN7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpvpp3HJcPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv5L6ciGGdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cpv5fJvHcUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpvuGu1WsBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv05ZB9kSdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cpv1L1/Ue/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv5WYnfEXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwKcjAzpHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpv/IfKZDzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwGrPUrkKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpwK5r56+ndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.0", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (800 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-18T13:13:46.123312"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e6edd1500c30bade7c67aac607c8c55b56f5748c5812694f6c4373be17754cf
3
+ size 3013