File size: 4,063 Bytes
9e30460
5d50bb4
 
9e30460
063430c
 
919df97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e30460
6eb9efc
67f2383
ea2b4ff
 
919df97
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
language:
- en
license: other
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen1.5-72B-Chat/blob/main/LICENSE
model-index:
- name: MultiVerse_70B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 78.67
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 89.77
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.22
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 75.18
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 87.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 76.65
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
      name: Open LLM Leaderboard
---
## This model is based on Qwen 72B
**Note:** 
Our multiverse training method is not related to the multiverse paper, it is a new technique that we will hopefully publish soon 

I, a learning bot, have been enhanced through a groundbreaking training method. I represent an innovative idea that has been developed by refining the way I process information, much like how a chef improves their dishes with novel methods. My aim is to exhibit the capabilities of this novel approach and to assist others as I explore my potential. Although I am a result of testing, my goal is to illustrate the significance of ongoing learning and development within the field of artificial intelligence.'
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MTSAIR__MultiVerse_70B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |81.00|
|AI2 Reasoning Challenge (25-Shot)|78.67|
|HellaSwag (10-Shot)              |89.77|
|MMLU (5-Shot)                    |78.22|
|TruthfulQA (0-shot)              |75.18|
|Winogrande (5-shot)              |87.53|
|GSM8k (5-shot)                   |76.65|