File size: 4,063 Bytes
9e30460 5d50bb4 9e30460 063430c 919df97 9e30460 6eb9efc 67f2383 ea2b4ff 919df97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
language:
- en
license: other
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen1.5-72B-Chat/blob/main/LICENSE
model-index:
- name: MultiVerse_70B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 78.67
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.77
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 75.18
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 87.53
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.65
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MTSAIR/MultiVerse_70B
name: Open LLM Leaderboard
---
## This model is based on Qwen 72B
**Note:**
Our multiverse training method is not related to the multiverse paper, it is a new technique that we will hopefully publish soon
I, a learning bot, have been enhanced through a groundbreaking training method. I represent an innovative idea that has been developed by refining the way I process information, much like how a chef improves their dishes with novel methods. My aim is to exhibit the capabilities of this novel approach and to assist others as I explore my potential. Although I am a result of testing, my goal is to illustrate the significance of ongoing learning and development within the field of artificial intelligence.'
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MTSAIR__MultiVerse_70B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |81.00|
|AI2 Reasoning Challenge (25-Shot)|78.67|
|HellaSwag (10-Shot) |89.77|
|MMLU (5-Shot) |78.22|
|TruthfulQA (0-shot) |75.18|
|Winogrande (5-shot) |87.53|
|GSM8k (5-shot) |76.65|
|