|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from typing import TYPE_CHECKING, Any, Callable, Iterable, Sequence |
|
|
|
import numpy as np |
|
import torch |
|
from monai.apps.vista3d.sampler import sample_prompt_pairs |
|
from monai.engines.trainer import Trainer |
|
from monai.engines.utils import IterationEvents, default_metric_cmp_fn, default_prepare_batch |
|
from monai.inferers import Inferer, SimpleInferer |
|
from monai.transforms import Transform |
|
from monai.utils import IgniteInfo, RankFilter, min_version, optional_import |
|
from monai.utils.enums import CommonKeys as Keys |
|
from torch.optim.optimizer import Optimizer |
|
from torch.utils.data import DataLoader |
|
|
|
if TYPE_CHECKING: |
|
from ignite.engine import Engine, EventEnum |
|
from ignite.metrics import Metric |
|
else: |
|
Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine") |
|
Metric, _ = optional_import("ignite.metrics", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Metric") |
|
EventEnum, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum") |
|
|
|
__all__ = ["Vista3dTrainer"] |
|
|
|
|
|
class Vista3dTrainer(Trainer): |
|
""" |
|
Supervised detection training method with image and label, inherits from ``Trainer`` and ``Workflow``. |
|
Args: |
|
device: an object representing the device on which to run. |
|
max_epochs: the total epoch number for trainer to run. |
|
train_data_loader: Ignite engine use data_loader to run, must be Iterable or torch.DataLoader. |
|
detector: detector to train in the trainer, should be regular PyTorch `torch.nn.Module`. |
|
optimizer: the optimizer associated to the detector, should be regular PyTorch optimizer from `torch.optim` |
|
or its subclass. |
|
epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`. |
|
non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously |
|
with respect to the host. For other cases, this argument has no effect. |
|
prepare_batch: function to parse expected data (usually `image`,`box`, `label` and other detector args) |
|
from `engine.state.batch` for every iteration, for more details please refer to: |
|
https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html. |
|
iteration_update: the callable function for every iteration, expect to accept `engine` |
|
and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`. |
|
if not provided, use `self._iteration()` instead. for more details please refer to: |
|
https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html. |
|
inferer: inference method that execute model forward on input data, like: SlidingWindow, etc. |
|
postprocessing: execute additional transformation for the model output data. |
|
Typically, several Tensor based transforms composed by `Compose`. |
|
key_train_metric: compute metric when every iteration completed, and save average value to |
|
engine.state.metrics when epoch completlabel_set = np.arange(output_classes).tolist(). |
|
key_train_metric is the main metric to compare and save the checkpoint into files. |
|
additional_metrics: more Ignite metrics that also attach to Ignite Engine. |
|
metric_cmp_fn: function to compare current key metric with previous best key metric value, |
|
it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update |
|
`best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`. |
|
train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like: |
|
CheckpointHandler, StatsHandler, etc. |
|
amp: whether to enable auto-mixed-precision training, default is False. |
|
event_names: additional custom ignite events that will register to the engine. |
|
new events can be a list of str or `ignite.engine.events.EventEnum`. |
|
event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`. |
|
for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html |
|
#ignite.engine.engine.Engine.register_events. |
|
decollate: whether to decollate the batch-first data to a list of data after model computation, |
|
recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`. |
|
default to `True`. |
|
optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None. |
|
more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html. |
|
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for |
|
`device`, `non_blocking`. |
|
amp_kwargs: dict of the args for `torch.amp.autocast()` API, for more details: |
|
https://pytorch.org/docs/stable/amp.html#torch.amp.autocast. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
device: torch.device, |
|
max_epochs: int, |
|
train_data_loader: Iterable | DataLoader, |
|
network: torch.nn.Module, |
|
optimizer: Optimizer, |
|
loss_function: Callable, |
|
epoch_length: int | None = None, |
|
non_blocking: bool = False, |
|
prepare_batch: Callable = default_prepare_batch, |
|
iteration_update: Callable[[Engine, Any], Any] | None = None, |
|
inferer: Inferer | None = None, |
|
postprocessing: Transform | None = None, |
|
key_train_metric: dict[str, Metric] | None = None, |
|
additional_metrics: dict[str, Metric] | None = None, |
|
metric_cmp_fn: Callable = default_metric_cmp_fn, |
|
train_handlers: Sequence | None = None, |
|
amp: bool = False, |
|
event_names: list[str | EventEnum] | None = None, |
|
event_to_attr: dict | None = None, |
|
decollate: bool = True, |
|
optim_set_to_none: bool = False, |
|
to_kwargs: dict | None = None, |
|
amp_kwargs: dict | None = None, |
|
hyper_kwargs: dict | None = None, |
|
) -> None: |
|
super().__init__( |
|
device=device, |
|
max_epochs=max_epochs, |
|
data_loader=train_data_loader, |
|
epoch_length=epoch_length, |
|
non_blocking=non_blocking, |
|
prepare_batch=prepare_batch, |
|
iteration_update=iteration_update, |
|
postprocessing=postprocessing, |
|
key_metric=key_train_metric, |
|
additional_metrics=additional_metrics, |
|
metric_cmp_fn=metric_cmp_fn, |
|
handlers=train_handlers, |
|
amp=amp, |
|
event_names=event_names, |
|
event_to_attr=event_to_attr, |
|
decollate=decollate, |
|
to_kwargs=to_kwargs, |
|
amp_kwargs=amp_kwargs, |
|
) |
|
|
|
self.network = network |
|
self.optimizer = optimizer |
|
self.loss_function = loss_function |
|
self.inferer = SimpleInferer() if inferer is None else inferer |
|
self.optim_set_to_none = optim_set_to_none |
|
self.hyper_kwargs = hyper_kwargs |
|
self.logger.addFilter(RankFilter()) |
|
|
|
def _iteration(self, engine, batchdata: dict[str, torch.Tensor]): |
|
""" |
|
Callback function for the Supervised Training processing logic of 1 iteration in Ignite Engine. |
|
Return below items in a dictionary: |
|
- IMAGE: image Tensor data for model input, already moved to device. |
|
Args: |
|
engine: `Vista3DTrainer` to execute operation for an iteration. |
|
batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data. |
|
Raises: |
|
ValueError: When ``batchdata`` is None. |
|
""" |
|
|
|
if batchdata is None: |
|
raise ValueError("Must provide batch data for current iteration.") |
|
|
|
inputs, labels = engine.prepare_batch(batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs) |
|
engine.state.output = {Keys.IMAGE: inputs, Keys.LABEL: labels} |
|
|
|
label_set = engine.hyper_kwargs["label_set"] |
|
output_classes = engine.hyper_kwargs["output_classes"] |
|
if label_set is None: |
|
label_set = np.arange(output_classes).tolist() |
|
label_prompt, point, point_label, prompt_class = sample_prompt_pairs( |
|
labels, |
|
label_set, |
|
image_size=engine.hyper_kwargs["patch_size"], |
|
max_point=engine.hyper_kwargs["max_point"], |
|
max_prompt=engine.hyper_kwargs["max_prompt"], |
|
max_backprompt=engine.hyper_kwargs["max_backprompt"], |
|
max_foreprompt=engine.hyper_kwargs["max_foreprompt"], |
|
drop_label_prob=engine.hyper_kwargs["drop_label_prob"], |
|
drop_point_prob=engine.hyper_kwargs["drop_point_prob"], |
|
include_background=not engine.hyper_kwargs["exclude_background"], |
|
) |
|
|
|
def _compute_pred_loss(): |
|
outputs = engine.network( |
|
input_images=inputs, point_coords=point, point_labels=point_label, class_vector=label_prompt |
|
) |
|
|
|
engine.fire_event(IterationEvents.FORWARD_COMPLETED) |
|
loss, loss_n = torch.tensor(0.0, device=engine.state.device), torch.tensor(0.0, device=engine.state.device) |
|
for id in range(len(prompt_class)): |
|
loss += engine.loss_function(outputs[[id]].float(), labels == prompt_class[id]) |
|
loss_n += 1.0 |
|
loss /= max(loss_n, 1.0) |
|
engine.state.output[Keys.LOSS] = loss |
|
outputs = None |
|
torch.cuda.empty_cache() |
|
engine.fire_event(IterationEvents.LOSS_COMPLETED) |
|
|
|
engine.network.train() |
|
engine.optimizer.zero_grad(set_to_none=engine.optim_set_to_none) |
|
|
|
if engine.amp and engine.scaler is not None: |
|
with torch.amp.autocast("cuda", **engine.amp_kwargs): |
|
_compute_pred_loss() |
|
engine.scaler.scale(engine.state.output[Keys.LOSS]).backward() |
|
engine.fire_event(IterationEvents.BACKWARD_COMPLETED) |
|
engine.scaler.step(engine.optimizer) |
|
engine.scaler.update() |
|
else: |
|
_compute_pred_loss() |
|
engine.state.output[Keys.LOSS].backward() |
|
engine.fire_event(IterationEvents.BACKWARD_COMPLETED) |
|
engine.optimizer.step() |
|
engine.fire_event(IterationEvents.MODEL_COMPLETED) |
|
return engine.state.output |
|
|