MKgoud commited on
Commit
afc8888
1 Parent(s): 3bc20d9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -1
README.md CHANGED
@@ -11,4 +11,108 @@ tags:
11
  - ocr
12
  - YOLOv8m
13
  pipeline_tag: object-detection
14
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  - ocr
12
  - YOLOv8m
13
  pipeline_tag: object-detection
14
+ ---
15
+
16
+ # License Plate Character Detection Model
17
+
18
+ This repository contains a YOLOv8-based model for detecting characters in license plates. The model is trained to identify and localize individual characters on vehicle license plates, which can be useful for various applications such as automated parking systems, traffic monitoring, and vehicle identification.
19
+
20
+ ## Model Details
21
+
22
+ - **Model Architecture**: YOLOv8
23
+ - **Task**: Character detection in license plates
24
+ - **Performance Metrics**: Accuracy, Precision, Recall
25
+
26
+ ## Visual Demonstration
27
+
28
+ ![val_batch2_labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/3IJuAynR7Mg3bHISgeCgZ.jpeg)
29
+
30
+ This image demonstrates the model's ability to detect and localize individual characters on a license plate. The bounding boxes show the detected characters.
31
+
32
+ ## Installation
33
+
34
+ To use this model, you'll need to have Python installed along with the following dependencies:
35
+
36
+ ```
37
+ pip install ultralytics
38
+ pip install torch
39
+ pip install huggingface_hub
40
+ ```
41
+
42
+ ## Usage
43
+
44
+ Here's a basic example of how to use the model:
45
+
46
+ ```python
47
+ from ultralytics import YOLO
48
+ import cv2
49
+ import numpy as np
50
+
51
+ # Load the YOLOv8 model
52
+ model = YOLO('path/to/your/best.pt') # Load your trained model
53
+
54
+ # Read the image
55
+ image = cv2.imread('path/to/your/image.jpg')
56
+
57
+ # Run inference on the image
58
+ results = model(image)
59
+
60
+ # Process the results
61
+ for result in results:
62
+ boxes = result.boxes.cpu().numpy() # Get bounding boxes
63
+ for box in boxes:
64
+ # Get box coordinates
65
+ x1, y1, x2, y2 = box.xyxy[0]
66
+ x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
67
+
68
+ # Draw bounding box
69
+ cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
70
+
71
+ # If you have class names, you can add them to the image
72
+ if box.cls is not None:
73
+ label = f"{result.names[int(box.cls[0])]} {box.conf[0]:.2f}"
74
+ cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
75
+
76
+ # Save or display the result
77
+ cv2.imwrite('output_image.jpg', image)
78
+ # Or to display (if running in an environment with GUI):
79
+ # cv2.imshow('Result', image)
80
+ # cv2.waitKey(0)
81
+ # cv2.destroyAllWindows()
82
+ ```
83
+
84
+ ## Training
85
+
86
+ If you want to train the model on your own dataset:
87
+
88
+ 1. Prepare your dataset in the appropriate format for YOLOv8.
89
+ 2. Use the YOLOv8 training script with your custom configuration.
90
+
91
+ ## Model Performance
92
+
93
+ ### Accuracy
94
+
95
+ Our model achieves an overall accuracy of [97.12]% on the test set. Here's a breakdown of accuracy for each character:
96
+ ![labels.jpg](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/EegpnQl3Fn9UO48Z242Gq.jpeg)
97
+
98
+ ### Confusion Matrix
99
+
100
+ Below is the confusion matrix for our model, showing its performance across all characters:
101
+
102
+ ![confusion_matrix.png](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/_IyyLB2_9W8drXRi5UZ_h.png)
103
+
104
+ This matrix provides insights into which characters are most often confused with each other, helping to identify areas for potential improvement.
105
+
106
+ ### Additional Metrics
107
+
108
+ ![results.png](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/YLmzwlKgSN_qZ5Ix_SvgP.png)
109
+ - Precision: [99.3]%
110
+ - Recall: [93.45]%
111
+ - mAP (mean Average Precision): [97.544]%
112
+
113
+
114
+
115
+
116
+
117
+ For any questions or feedback, please open an issue in this repository.
118
+