|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import Any, List, Optional, Tuple, Union |
|
|
|
import torch.utils.checkpoint |
|
from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM |
|
from peft import LoraConfig, get_peft_model |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, |
|
LlamaTokenizer) |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ModelOutput, logging |
|
|
|
from .configuration_internvl_chat import InternVLChatConfig |
|
from .modeling_intern_vit import InternVisionModel |
|
import pdb |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class InternVLChatModel(PreTrainedModel): |
|
config_class = InternVLChatConfig |
|
main_input_name = 'pixel_values' |
|
_no_split_modules = ['InternVisionEncoderLayer', 'LlamaDecoderLayer'] |
|
|
|
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None): |
|
super().__init__(config) |
|
|
|
image_size = config.force_image_size or config.vision_config.image_size |
|
patch_size = config.vision_config.patch_size |
|
self.patch_size = patch_size |
|
self.select_layer = config.select_layer |
|
self.template = config.template |
|
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) |
|
self.downsample_ratio = config.downsample_ratio |
|
self.ps_version = config.ps_version |
|
|
|
logger.info(f'num_image_token: {self.num_image_token}') |
|
logger.info(f'ps_version: {self.ps_version}') |
|
if vision_model is not None: |
|
self.vision_model = vision_model |
|
else: |
|
self.vision_model = InternVisionModel(config.vision_config) |
|
if language_model is not None: |
|
self.language_model = language_model |
|
else: |
|
if config.llm_config.architectures[0] == 'LlamaForCausalLM': |
|
self.language_model = LlamaForCausalLM(config.llm_config) |
|
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': |
|
self.language_model = InternLM2ForCausalLM(config.llm_config) |
|
else: |
|
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') |
|
|
|
vit_hidden_size = config.vision_config.hidden_size |
|
llm_hidden_size = config.llm_config.hidden_size |
|
|
|
self.mlp1 = nn.Sequential( |
|
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), |
|
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), |
|
nn.GELU(), |
|
nn.Linear(llm_hidden_size, llm_hidden_size) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.img_context_token_id = None |
|
self.neftune_alpha = None |
|
|
|
if config.use_backbone_lora: |
|
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora) |
|
|
|
if config.use_llm_lora: |
|
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora) |
|
|
|
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): |
|
lora_config = LoraConfig( |
|
r=r, |
|
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'], |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
) |
|
self.vision_model = get_peft_model(self.vision_model, lora_config) |
|
self.vision_model.print_trainable_parameters() |
|
|
|
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05): |
|
lora_config = LoraConfig( |
|
r=r, |
|
target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj', |
|
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'], |
|
lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
task_type='CAUSAL_LM' |
|
) |
|
self.language_model = get_peft_model(self.language_model, lora_config) |
|
self.language_model.enable_input_require_grads() |
|
self.language_model.print_trainable_parameters() |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
image_flags: Optional[torch.LongTensor] = None, |
|
loss_reweight: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
image_flags = image_flags.squeeze(-1) |
|
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() |
|
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
vit_embeds = vit_embeds[image_flags == 1] |
|
vit_batch_size = pixel_values.shape[0] |
|
|
|
B, N, C = input_embeds.shape |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
|
|
|
|
|
|
input_ids = input_ids.reshape(B * N) |
|
selected = (input_ids == self.img_context_token_id) |
|
|
|
try: |
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) |
|
except Exception as e: |
|
vit_embeds = vit_embeds.reshape(-1, C) |
|
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' |
|
f'vit_embeds.shape={vit_embeds.shape}') |
|
n_token = selected.sum() |
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
|
outputs = self.language_model( |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
logits = outputs.logits |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
|
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def pixel_shuffle(self, x, scale_factor=0.5): |
|
n, w, h, c = x.size() |
|
|
|
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) |
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
x = x.view(n, int(h * scale_factor), int(w * scale_factor), |
|
int(c / (scale_factor * scale_factor))) |
|
if self.ps_version == 'v1': |
|
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " |
|
'which results in a transposed image.') |
|
else: |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
return x |
|
|
|
def noised_embed(self, vit_embeds, noise_alpha=5): |
|
dims = torch.tensor(vit_embeds.size(1) * vit_embeds.size(2)) |
|
mag_norm = noise_alpha / torch.sqrt(dims) |
|
noise = torch.zeros_like(vit_embeds).uniform_(-mag_norm, mag_norm) |
|
return vit_embeds + noise |
|
|
|
def extract_feature(self, pixel_values): |
|
if self.select_layer == -1: |
|
vit_embeds = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_hidden_states=False, |
|
return_dict=True).last_hidden_state |
|
else: |
|
vit_embeds = self.vision_model( |
|
pixel_values=pixel_values, |
|
output_hidden_states=True, |
|
return_dict=True).hidden_states[self.select_layer] |
|
vit_embeds = vit_embeds[:, 1:, :] |
|
|
|
if self.training and self.neftune_alpha is not None: |
|
vit_embeds = self.noised_embed(vit_embeds, self.neftune_alpha) |
|
|
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) |
|
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) |
|
vit_embeds = self.mlp1(vit_embeds) |
|
return vit_embeds |
|
|
|
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, |
|
IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'): |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
self.img_context_token_id = img_context_token_id |
|
if tokenizer.convert_tokens_to_ids('<|im_end|>') != 0: |
|
eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>') |
|
else: |
|
eos_token_id = tokenizer.eos_token_id |
|
from internvl.conversation import get_conv_template |
|
template = get_conv_template(self.template) |
|
if pixel_values is not None: |
|
image_bs = pixel_values.shape[0] |
|
print(f'dynamic ViT batch size: {image_bs}') |
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_bs + IMG_END_TOKEN |
|
|
|
question = question.replace('<image>', image_tokens) |
|
|
|
if history is None: |
|
history = [] |
|
else: |
|
for (old_question, old_answer) in history: |
|
template.append_message(template.roles[0], old_question) |
|
template.append_message(template.roles[1], old_answer) |
|
|
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
model_inputs = tokenizer(query, return_tensors='pt') |
|
input_ids = model_inputs['input_ids'].cuda() |
|
attention_mask = model_inputs['attention_mask'].cuda() |
|
generation_config['eos_token_id'] = eos_token_id |
|
generation_output = self.generate( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_config |
|
) |
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] |
|
response = response.split('<|im_end|>')[0].strip() |
|
history.append((question, response)) |
|
if return_history: |
|
return response, history |
|
else: |
|
|
|
|
|
return response |
|
return response |
|
|
|
def multi_image_chat(self, tokenizer, pixel_values, image_counts, question, generation_config, history=None, |
|
return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'): |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
self.img_context_token_id = img_context_token_id |
|
if tokenizer.convert_tokens_to_ids('<|im_end|>') != 0: |
|
eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>') |
|
else: |
|
eos_token_id = tokenizer.eos_token_id |
|
|
|
from internvl.conversation import get_conv_template |
|
|
|
template = get_conv_template(self.template) |
|
|
|
if history is None: |
|
history = [] |
|
image_tokens = '' |
|
image_bs = pixel_values.shape[0] |
|
print(f'dynamic ViT batch size: {image_bs}, image_counts: {image_counts}') |
|
for idx, image_count in enumerate(image_counts): |
|
image_tokens += f'<image {idx+1}> (图{idx+1}):' + IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_count + IMG_END_TOKEN |
|
question = image_tokens + '\n' + question |
|
else: |
|
for (old_question, old_answer) in history: |
|
template.append_message(template.roles[0], old_question) |
|
template.append_message(template.roles[1], old_answer) |
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
model_inputs = tokenizer(query, return_tensors='pt') |
|
input_ids = model_inputs['input_ids'].cuda() |
|
attention_mask = model_inputs['attention_mask'].cuda() |
|
generation_config['eos_token_id'] = eos_token_id |
|
|
|
generation_output = self.generate( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_config |
|
) |
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] |
|
response = response.split('<|im_end|>')[0].strip() |
|
history.append((question, response)) |
|
if return_history: |
|
return response, history |
|
else: |
|
query_to_print = query.replace(image_tokens, '<image>') |
|
print(query_to_print, response) |
|
return response |
|
return response |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
input_ids: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
visual_features: Optional[torch.FloatTensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**generate_kwargs, |
|
) -> torch.LongTensor: |
|
|
|
assert self.img_context_token_id is not None |
|
if pixel_values is not None: |
|
if visual_features is not None: |
|
vit_embeds = visual_features |
|
else: |
|
vit_embeds = self.extract_feature(pixel_values) |
|
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
B, N, C = input_embeds.shape |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
input_ids = input_ids.reshape(B * N) |
|
selected = (input_ids == self.img_context_token_id) |
|
assert selected.sum() != 0 |
|
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
else: |
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
|
outputs = self.language_model.generate( |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
use_cache=True, |
|
**generate_kwargs, |
|
) |
|
|
|
return outputs |
|
|