add model code
Browse files- .gitattributes +1 -0
- config.json +5 -0
- model.py +0 -0
- nfqa_model.py +105 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
config.json
CHANGED
@@ -2,6 +2,10 @@
|
|
2 |
"architectures": [
|
3 |
"RobertaNFQAClassification"
|
4 |
],
|
|
|
|
|
|
|
|
|
5 |
"attention_probs_dropout_prob": 0.1,
|
6 |
"bos_token_id": 0,
|
7 |
"eos_token_id": 2,
|
@@ -40,6 +44,7 @@
|
|
40 |
"num_hidden_layers": 12,
|
41 |
"pad_token_id": 1,
|
42 |
"position_embedding_type": "absolute",
|
|
|
43 |
"transformers_version": "4.2.2",
|
44 |
"type_vocab_size": 1,
|
45 |
"use_cache": true,
|
|
|
2 |
"architectures": [
|
3 |
"RobertaNFQAClassification"
|
4 |
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "RobertaConfig",
|
7 |
+
"AutoModelForImageClassification": "nfqa_model.RobertaNFQAClassification"
|
8 |
+
},
|
9 |
"attention_probs_dropout_prob": 0.1,
|
10 |
"bos_token_id": 0,
|
11 |
"eos_token_id": 2,
|
|
|
44 |
"num_hidden_layers": 12,
|
45 |
"pad_token_id": 1,
|
46 |
"position_embedding_type": "absolute",
|
47 |
+
"problem_type": "single_label_classification",
|
48 |
"transformers_version": "4.2.2",
|
49 |
"type_vocab_size": 1,
|
50 |
"use_cache": true,
|
model.py
DELETED
File without changes
|
nfqa_model.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Sequence, Optional, Union, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional, CrossEntropyLoss
|
6 |
+
from transformers import RobertaConfig
|
7 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
8 |
+
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPreTrainedModel, RobertaPooler
|
9 |
+
|
10 |
+
|
11 |
+
class MishActivation(nn.Module):
|
12 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
13 |
+
return x * torch.tanh(torch.nn.functional.softplus(x))
|
14 |
+
|
15 |
+
|
16 |
+
class NFQAClassificationHead(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self, input_dim: int, num_labels: int, hidden_dims: Sequence[int] = (768, 512), dropout: float = 0.0,
|
19 |
+
) -> None:
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
self.linear_layers = nn.Sequential(
|
23 |
+
*(nn.Linear(input_dim, dim) for dim in hidden_dims)
|
24 |
+
)
|
25 |
+
self.classification_layer = torch.nn.Linear(hidden_dims[-1], num_labels)
|
26 |
+
self.activations = [MishActivation()] * len(hidden_dims)
|
27 |
+
self.dropouts = [torch.nn.Dropout(p=dropout)] * len(hidden_dims)
|
28 |
+
|
29 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
30 |
+
output = inputs
|
31 |
+
for layer, activation, dropout in zip(
|
32 |
+
self.linear_layers, self.activations, self.dropouts
|
33 |
+
):
|
34 |
+
output = dropout(activation(layer(output)))
|
35 |
+
return self.classification_layer(output)
|
36 |
+
|
37 |
+
|
38 |
+
class RobertaNFQAClassification(RobertaPreTrainedModel):
|
39 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
40 |
+
_DROPOUT = 0.0
|
41 |
+
|
42 |
+
def __init__(self, config: RobertaConfig):
|
43 |
+
super().__init__(config)
|
44 |
+
self.num_labels = config.num_labels
|
45 |
+
self.config = config
|
46 |
+
|
47 |
+
self.embedder = RobertaModel(config, add_pooling_layer=True)
|
48 |
+
self.pooler = RobertaPooler(config)
|
49 |
+
self.feedforward = NFQAClassificationHead(config.hidden_size, config.num_labels)
|
50 |
+
self.dropout = torch.nn.Dropout(self._DROPOUT)
|
51 |
+
|
52 |
+
self.init_weights()
|
53 |
+
|
54 |
+
|
55 |
+
def forward(
|
56 |
+
self,
|
57 |
+
input_ids: Optional[torch.LongTensor] = None,
|
58 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
59 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
60 |
+
position_ids: Optional[torch.LongTensor] = None,
|
61 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
62 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
63 |
+
labels: Optional[torch.LongTensor] = None,
|
64 |
+
output_attentions: Optional[bool] = None,
|
65 |
+
output_hidden_states: Optional[bool] = None,
|
66 |
+
return_dict: Optional[bool] = None,
|
67 |
+
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutput]:
|
68 |
+
r"""
|
69 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
70 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
71 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
72 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
73 |
+
"""
|
74 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
75 |
+
|
76 |
+
outputs = self.embedder(
|
77 |
+
input_ids,
|
78 |
+
attention_mask=attention_mask,
|
79 |
+
token_type_ids=token_type_ids,
|
80 |
+
position_ids=position_ids,
|
81 |
+
head_mask=head_mask,
|
82 |
+
inputs_embeds=inputs_embeds,
|
83 |
+
output_attentions=output_attentions,
|
84 |
+
output_hidden_states=output_hidden_states,
|
85 |
+
return_dict=return_dict,
|
86 |
+
)
|
87 |
+
sequence_output = outputs[0]
|
88 |
+
|
89 |
+
logits = self.feedforward(self.dropout(self.pooler(sequence_output)))
|
90 |
+
|
91 |
+
loss = None
|
92 |
+
if labels is not None:
|
93 |
+
loss_fct = CrossEntropyLoss()
|
94 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
95 |
+
|
96 |
+
if not return_dict:
|
97 |
+
output = (logits,) + outputs[2:]
|
98 |
+
return ((loss,) + output) if loss is not None else output
|
99 |
+
|
100 |
+
return SequenceClassifierOutput(
|
101 |
+
loss=loss,
|
102 |
+
logits=logits,
|
103 |
+
hidden_states=outputs.hidden_states,
|
104 |
+
attentions=outputs.attentions,
|
105 |
+
)
|