LuniLand commited on
Commit
0408c85
·
1 Parent(s): e593e04

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 1957.61 +/- 137.71
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -2.63 +/- 0.73
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:85cad24880f57a0a3466964c627bbbb5c10c6eb2443ef783d107ffb46516b63c
3
- size 129265
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c59be0c4bae6dd116f857b5da4d13fb860775bdd7272bdd8eac18ba6afee15cb
3
+ size 108028
a2c-PandaReachDense-v2/data CHANGED
@@ -1,30 +1,17 @@
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
- ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f248de990d0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f248de99160>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f248de991f0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f248de99280>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f248de99310>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f248de993a0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f248de99430>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f248de994c0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f248de99550>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f248de995e0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f248de99670>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f248de99700>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f248de96e00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
24
  ":type:": "<class 'dict'>",
25
- ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
- "log_std_init": -2,
27
- "ortho_init": false,
28
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
  "optimizer_kwargs": {
30
  "alpha": 0.99,
@@ -33,74 +20,75 @@
33
  }
34
  },
35
  "observation_space": {
36
- ":type:": "<class 'gym.spaces.box.Box'>",
37
- ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
- "dtype": "float32",
39
- "_shape": [
40
- 28
41
- ],
42
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
- "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
- "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
- "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
  "_np_random": null
47
  },
48
  "action_space": {
49
  ":type:": "<class 'gym.spaces.box.Box'>",
50
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
  "dtype": "float32",
52
  "_shape": [
53
- 8
54
  ],
55
- "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
- "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
- "bounded_below": "[ True True True True True True True True]",
58
- "bounded_above": "[ True True True True True True True True]",
59
  "_np_random": null
60
  },
61
  "n_envs": 4,
62
- "num_timesteps": 2000000,
63
- "_total_timesteps": 2000000,
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
- "start_time": 1679221200266316867,
68
- "learning_rate": 0.00096,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
71
  ":type:": "<class 'function'>",
72
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
  },
74
  "_last_obs": {
75
- ":type:": "<class 'numpy.ndarray'>",
76
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACLDgj+dV4U+j7dhPubRmz+ImEE/uIWBvzOR0j5ogk2/mUfhvtyunb8sooC/9az3Pkqhcj+4SZW/G02yPmmisb+xTBY9Ll+5PI4wVD5XHKQ9sxebv/WwsT6MfEu8kZ40wMTcLr+1ubW/o4eNPiPwvL+2Nwc/cshEvhakFj88Z+0+fA4cPx1Y879BDQw/cflmvncjfr1aYD6+Uvpfvhb12j+FLDw/vI+Tv+64Xz7NOxk+zJVqvscb3T7Z2iw+ss8JPtk8rb9ws7U+cAFOvx9QEMDE3C6/tbm1v6OHjT65bi0/lKZxPr7Trj6lkww+dudDP65Jdz8pzXk/ESWSPcTXZb5TJkq/54FMP4Z+Lj9DOvi/M5dePszBaj+pemy+PgyYPoqUrz7PMx0+DOBdPrlApLuRFxs/FPkjv2XqZz8p4aY+xNwuv+RQND+jh40+uW4tP9NHJT9aioM+VEZlPjsMt77JHq2+pw1gPhH0nr48vcw/sWInv6sYhT/XnJY/Yg1vv5ljgb7jXApAC4gjv6+WOT/+/oi+oclIwIAUCMDyZ66/ag1lPy6ADb/T2Y69MXOIP6Fkuz+1ubW/o4eNPrluLT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
 
 
 
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
80
- ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
  },
82
  "_last_original_obs": {
83
- ":type:": "<class 'numpy.ndarray'>",
84
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABETxM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmhAUvQAAAADjiNu/AAAAAKg9br0AAAAA4IbkPwAAAAAOTBE+AAAAAOgO7z8AAAAAQQ2kPAAAAAAFl9q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7uBNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBv6q70AAAAAvoj5vwAAAAAz93m8AAAAAFkp2j8AAAAAW6NjuwAAAADh/vs/AAAAAPO3zr0AAAAAOlDlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAj98A8AAAAAPzE2r8AAAAAOyyKvAAAAADB/+U/AAAAAKyBOb0AAAAAkoP0PwAAAABzdYO9AAAAAL4k6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiKIM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALxJkPQAAAAAgx+W/AAAAALFcSDwAAAAArmTaPwAAAAAxn7Y9AAAAAA/26T8AAAAAIjcDvgAAAAA6c+a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
 
 
 
85
  },
86
  "_episode_num": 0,
87
- "use_sde": true,
88
  "sde_sample_freq": -1,
89
  "_current_progress_remaining": 0.0,
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJzQxqwhW5qMAWyUTegDjAF0lEdAs1PNoexOcnV9lChoBkdAnBD3o5ggHWgHTegDaAhHQLNUibzbvgF1fZQoaAZHQJO5YjUutfZoB03oA2gIR0CzVrNE9dNWdX2UKGgGR0CXkSgOjIq9aAdN6ANoCEdAs1c2qioKlnV9lChoBkdAl7a57HAAQ2gHTegDaAhHQLNciAI6bON1fZQoaAZHQJiCVS3solVoB03oA2gIR0CzXQk9ECvHdX2UKGgGR0CWvgavA44qaAdN6ANoCEdAs15pQKrq+3V9lChoBkdAhsyVMdtEX2gHTegDaAhHQLNetzgdfb91fZQoaAZHQIUCEgZCOWBoB03oA2gIR0CzY5WmxdIHdX2UKGgGR0CS4Ihx5s0paAdN6ANoCEdAs2RWRr8BMnV9lChoBkdAlu9Kgh8pkWgHTegDaAhHQLNmZG7z06J1fZQoaAZHQJi6jd/J/5NoB03oA2gIR0CzZuKrq+rVdX2UKGgGR0CXV9FQ2uPnaAdN6ANoCEdAs2xARvm5lXV9lChoBkdAmSVFSKm8/WgHTegDaAhHQLNsupLEk0J1fZQoaAZHQJs7Qv8IiTtoB03oA2gIR0CzbhLlq8DkdX2UKGgGR0CY5zRh+fAcaAdN6ANoCEdAs25gpSaVlnV9lChoBkdAlteRzmwJPmgHTegDaAhHQLNy7Ip6QeV1fZQoaAZHQJH80Cgbp/xoB03oA2gIR0Czc5kknkT6dX2UKGgGR0CbPAM3IdU9aAdN6ANoCEdAs3WPxusLfHV9lChoBkdAl7W6AavRq2gHTegDaAhHQLN2DOearm11fZQoaAZHQJnD1z+3pfRoB03oA2gIR0Cze82YfGModX2UKGgGR0CZq75wwTM8aAdN6ANoCEdAs3xEyO7xu3V9lChoBkdAmh5vwd8zAWgHTegDaAhHQLN9mblijL11fZQoaAZHQJvNEpH7P6doB03oA2gIR0CzfelbNbC8dX2UKGgGR0CVF22L5ylvaAdN6ANoCEdAs4Js4WDYiHV9lChoBkdAmtcVlbu+iGgHTegDaAhHQLOC6bkfcN91fZQoaAZHQIk2TNnoPkJoB03oA2gIR0CzhLz0g8r7dX2UKGgGR0CXrH9tdiUgaAdN6ANoCEdAs4UwwL3K0XV9lChoBkdAmtvVUVBUrGgHTegDaAhHQLOLZwfyPMl1fZQoaAZHQJm4CeWfK6poB03oA2gIR0Czi+cVLzwudX2UKGgGR0CXabhwVCXyaAdN6ANoCEdAs41L8vVVgnV9lChoBkdAmmAhRMvh62gHTegDaAhHQLONlqJdjXp1fZQoaAZHQJx3J2hZha1oB03oA2gIR0CzkkUbgjyGdX2UKGgGR0CaaeLq2SdOaAdN6ANoCEdAs5LFfG+9J3V9lChoBkdAnCtKyv9tM2gHTegDaAhHQLOUhy+HrQh1fZQoaAZHQJqItfXwsoVoB03oA2gIR0CzlP6ab4JvdX2UKGgGR0CYyu+lj3EiaAdN6ANoCEdAs5twE4ecQXV9lChoBkdAm/wuaz/p+2gHTegDaAhHQLOb65sj3VV1fZQoaAZHQJs5W32EkB1oB03oA2gIR0CznUNGmUGFdX2UKGgGR0CZokW0JF9baAdN6ANoCEdAs52Q+nqFAXV9lChoBkdAmnERW912aGgHTegDaAhHQLOiL/pMYdh1fZQoaAZHQJqbGE9Mbm5oB03oA2gIR0Czoqv9LpRodX2UKGgGR0CcOvcT8HfNaAdN6ANoCEdAs6Qtx5s0pHV9lChoBkdAnMfveHi3omgHTegDaAhHQLOkn8vmHQB1fZQoaAZHQJn3WdlNDdBoB03oA2gIR0CzqzN3jdYXdX2UKGgGR0CWYARNATqTaAdN6ANoCEdAs6uvYSQHRnV9lChoBkdAmpYxfKISDmgHTegDaAhHQLOtAmelKsd1fZQoaAZHQJoV/ovBacJoB03oA2gIR0CzrVEfkmx/dX2UKGgGR0CbQyEXcgyNaAdN6ANoCEdAs7Hvh73PA3V9lChoBkdAmu5SAYpDu2gHTegDaAhHQLOybeOXE611fZQoaAZHQJuAD0mMOwxoB03oA2gIR0Czs88v24/edX2UKGgGR0Cb6Te54GD+aAdN6ANoCEdAs7Q9MURFqnV9lChoBkdAleh6unuRcWgHTegDaAhHQLO7HsPrfLt1fZQoaAZHQJsh+xKQJX1oB03oA2gIR0Czu6C2phnbdX2UKGgGR0CUNEqvvBrOaAdN6ANoCEdAs70BZcLSeHV9lChoBkdAi1XzINmUW2gHTegDaAhHQLO9Tc3VCol1fZQoaAZHQJHle2y9mHxoB03oA2gIR0Czwedj5KvndX2UKGgGR0CXHUwIt16maAdN6ANoCEdAs8JlEBsAN3V9lChoBkdAmcAreZXuE2gHTegDaAhHQLPDx78ejmF1fZQoaAZHQJOaymsNlRRoB03oA2gIR0CzxBQnhKlIdX2UKGgGR0CX+pwi7kGSaAdN6ANoCEdAs8ygZbY9PnV9lChoBkdAmFP7lNlAeWgHTegDaAhHQLPNI5hScb11fZQoaAZHQJMjveCTUy5oB03oA2gIR0CzznykKu0UdX2UKGgGR0Ca7ursByS3aAdN6ANoCEdAs87L1kDp1XV9lChoBkdAmJOWRFI/aGgHTegDaAhHQLPTZ8ujASF1fZQoaAZHQJnT7tKIznBoB03oA2gIR0Cz0+MJ2MbWdX2UKGgGR0CYXdUjLSuyaAdN6ANoCEdAs9Vi0x/NJXV9lChoBkdAmrvrRWtEHGgHTegDaAhHQLPV0zu4PPN1fZQoaAZHQJmORhUipvRoB03oA2gIR0Cz3GqUeMhpdX2UKGgGR0CcIzkHlfZ3aAdN6ANoCEdAs9zijafzz3V9lChoBkdAncVw/1QIlmgHTegDaAhHQLPeOFA3T/h1fZQoaAZHQJyivbYbsGBoB03oA2gIR0Cz3ok+X7cgdX2UKGgGR0Ce1jj8k2P1aAdN6ANoCEdAs+McUmD15HV9lChoBkdAm08NZq20A2gHTegDaAhHQLPjlpu/Dcd1fZQoaAZHQJ7A9mDlHSZoB03oA2gIR0Cz5OdmpVCHdX2UKGgGR0CfCLTZg5R1aAdN6ANoCEdAs+VKjL0SRXV9lChoBkdAnndlea8Yh2gHTegDaAhHQLPsCrS3LFJ1fZQoaAZHQJ6R5J+UhV5oB03oA2gIR0Cz7IUngHeKdX2UKGgGR0CdTzgow22oaAdN6ANoCEdAs+3kfzSThnV9lChoBkdAnbKCJ9AoomgHTegDaAhHQLPuM/zJ6pp1fZQoaAZHQJ23bX+VC5VoB03oA2gIR0Cz8sBkmQbNdX2UKGgGR0CdyOzV+Zw5aAdN6ANoCEdAs/NBpVS4v3V9lChoBkdAndPs3dbgTGgHTegDaAhHQLP0mMfRu0l1fZQoaAZHQJ0dXlS0jTtoB03oA2gIR0Cz9OuX/o7ndX2UKGgGR0CdHMhYeT3ZaAdN6ANoCEdAs/vlQ3xWk3V9lChoBkdAnCesGs3hoGgHTegDaAhHQLP8Y4p+c6N1fZQoaAZHQJ6F2ACnxaxoB03oA2gIR0Cz/bmoNutPdX2UKGgGR0CdoJjQAuIzaAdN6ANoCEdAs/4IpnYg73V9lChoBkdAnO69CJGe+WgHTegDaAhHQLQDPz4k/r11fZQoaAZHQJyz8xJul41oB03oA2gIR0C0A8DCLuQZdX2UKGgGR0CaW/DoyKvWaAdN6ANoCEdAtAUcDV6NVHV9lChoBkdAnIc32/SH/WgHTegDaAhHQLQFaRAbADd1fZQoaAZHQJzZFQCSzPdoB03oA2gIR0C0DD8S5AhTdX2UKGgGR0Ccet1YQrc1aAdN6ANoCEdAtAy5ZpztC3V9lChoBkdAlo2nzg/C7GgHTegDaAhHQLQOF30PH1h1fZQoaAZHQJbceXpnpStoB03oA2gIR0C0Dmk163RYdX2UKGgGR0CNKfQWN3nqaAdN6ANoCEdAtBMAfMfRu3V9lChoBkdAnI1qKxcE/2gHTegDaAhHQLQTe7QLNOd1fZQoaAZHQJdMQgV45cVoB03oA2gIR0C0FM1yJbdKdX2UKGgGR0Cb4WyZ8a4uaAdN6ANoCEdAtBUdQemvXHVlLg=="
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
96
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
  },
98
- "_n_updates": 62500,
99
- "n_steps": 8,
100
  "gamma": 0.99,
101
- "gae_lambda": 0.9,
102
  "ent_coef": 0.0,
103
- "vf_coef": 0.4,
104
  "max_grad_norm": 0.5,
105
  "normalize_advantage": false
106
  }
 
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f248de99820>",
 
 
 
 
 
 
 
 
 
 
 
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f248de96fc0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
13
  ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
 
 
15
  "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
  "optimizer_kwargs": {
17
  "alpha": 0.99,
 
20
  }
21
  },
22
  "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
 
 
 
 
 
28
  "_np_random": null
29
  },
30
  "action_space": {
31
  ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
  "dtype": "float32",
34
  "_shape": [
35
+ 3
36
  ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1679225446843376909,
50
+ "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
53
  ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
  "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXxrsPgo/jb2oUgk/XxrsPgo/jb2oUgk/XxrsPgo/jb2oUgk/XxrsPgo/jb2oUgk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqiblvl9ioD8izQO/3/TQP7kKML+cSti+5DCHviXKmj8z/0u/66xePzIrKr+2LsO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABfGuw+Cj+NvahSCT+OAZe8ZbavuyvysztfGuw+Cj+NvahSCT+OAZe8ZbavuyvysztfGuw+Cj+NvahSCT+OAZe8ZbavuyvysztfGuw+Cj+NvahSCT+OAZe8ZbavuyvyszuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4611387 -0.06896789 0.5364175 ]\n [ 0.4611387 -0.06896789 0.5364175 ]\n [ 0.4611387 -0.06896789 0.5364175 ]\n [ 0.4611387 -0.06896789 0.5364175 ]]",
60
+ "desired_goal": "[[-0.4475606 1.253002 -0.5148488 ]\n [ 1.6324729 -0.6876636 -0.42244422]\n [-0.26404488 1.209294 -0.7968628 ]\n [ 0.869826 -0.6647216 -0.38121575]]",
61
+ "observation": "[[ 0.4611387 -0.06896789 0.5364175 -0.01843336 -0.00536232 0.00549152]\n [ 0.4611387 -0.06896789 0.5364175 -0.01843336 -0.00536232 0.00549152]\n [ 0.4611387 -0.06896789 0.5364175 -0.01843336 -0.00536232 0.00549152]\n [ 0.4611387 -0.06896789 0.5364175 -0.01843336 -0.00536232 0.00549152]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
  },
67
  "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALSFfvP2g4z2vmTg9zwjBvdSNqTvGHP09EJ63ve1f6DydAyU+MNJ6vXfC5L02/kI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.01361875 0.1111469 0.04506844]\n [-0.09425508 0.00517438 0.12359004]\n [-0.08965695 0.02836605 0.1611466 ]\n [-0.06123561 -0.11169904 0.19042286]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
75
+ "use_sde": false,
76
  "sde_sample_freq": -1,
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/WmjOh0oD8CUhpRSlIwBbJRLMowBdJRHQKjU8R6nivR1fZQoaAZoCWgPQwgSE9TwLSwDwJSGlFKUaBVLMmgWR0Co1LBd+ocadX2UKGgGaAloD0MIURa+vtYl/r+UhpRSlGgVSzJoFkdAqNRspgCwKXV9lChoBmgJaA9DCB9q2zAKogXAlIaUUpRoFUsyaBZHQKjUKERradt1fZQoaAZoCWgPQwhSLLe0GnIHwJSGlFKUaBVLMmgWR0Co1ogHeJpGdX2UKGgGaAloD0MI7rJfd7pzBcCUhpRSlGgVSzJoFkdAqNZHWJ79h3V9lChoBmgJaA9DCG3n+6nxsgzAlIaUUpRoFUsyaBZHQKjWA0F8ohJ1fZQoaAZoCWgPQwjHoBNCB30LwJSGlFKUaBVLMmgWR0Co1b68Hv+gdX2UKGgGaAloD0MIKZXwhF5/CcCUhpRSlGgVSzJoFkdAqNgVaQmu1XV9lChoBmgJaA9DCOFASBYwQQ3AlIaUUpRoFUsyaBZHQKjX1TnaFmF1fZQoaAZoCWgPQwjn5EUm4LcGwJSGlFKUaBVLMmgWR0Co15E/bCaadX2UKGgGaAloD0MISN45lKFKCMCUhpRSlGgVSzJoFkdAqNdMtuk1uXV9lChoBmgJaA9DCHS1FfvLTgXAlIaUUpRoFUsyaBZHQKjZr9S/CZZ1fZQoaAZoCWgPQwi0lCwnodQFwJSGlFKUaBVLMmgWR0Co2W9IPK+0dX2UKGgGaAloD0MIF7zoK0jTAMCUhpRSlGgVSzJoFkdAqNkrP0I1L3V9lChoBmgJaA9DCMl3KXXJWAzAlIaUUpRoFUsyaBZHQKjY5oQnQY11fZQoaAZoCWgPQwh3SZwVUZMAwJSGlFKUaBVLMmgWR0Co22EJKJ2udX2UKGgGaAloD0MIcr9DUaBPAMCUhpRSlGgVSzJoFkdAqNsgsmOU+3V9lChoBmgJaA9DCCv4bYjxmgDAlIaUUpRoFUsyaBZHQKja3OUt7KJ1fZQoaAZoCWgPQwgxeQPMfEcEwJSGlFKUaBVLMmgWR0Co2pha9sabdX2UKGgGaAloD0MIvkupS8ax/b+UhpRSlGgVSzJoFkdAqN0sbtJFs3V9lChoBmgJaA9DCCob1lQWxQHAlIaUUpRoFUsyaBZHQKjc6+fywwF1fZQoaAZoCWgPQwiOWmH6XsMHwJSGlFKUaBVLMmgWR0Co3KhVENONdX2UKGgGaAloD0MIWp2cobiDBsCUhpRSlGgVSzJoFkdAqNxj39JjD3V9lChoBmgJaA9DCAnAP6VKdADAlIaUUpRoFUsyaBZHQKje5ZxJd0J1fZQoaAZoCWgPQwhD44kgzmMBwJSGlFKUaBVLMmgWR0Co3qUS7GvPdX2UKGgGaAloD0MIg79fzJYsAMCUhpRSlGgVSzJoFkdAqN5hOJtSAHV9lChoBmgJaA9DCC6sG++OrAzAlIaUUpRoFUsyaBZHQKjeHNr0rbx1fZQoaAZoCWgPQwh+GvfmN0wDwJSGlFKUaBVLMmgWR0Co4JtNzr/sdX2UKGgGaAloD0MIsaNxqN8FBcCUhpRSlGgVSzJoFkdAqOBbH4oJA3V9lChoBmgJaA9DCIknu5nRbwnAlIaUUpRoFUsyaBZHQKjgF0knkT91fZQoaAZoCWgPQwgP0H05sx0HwJSGlFKUaBVLMmgWR0Co39Ln9vS/dX2UKGgGaAloD0MI83LYfccwC8CUhpRSlGgVSzJoFkdAqOHELpiZv3V9lChoBmgJaA9DCE1LrIxGPgLAlIaUUpRoFUsyaBZHQKjhgtlI3BJ1fZQoaAZoCWgPQwjRWtHmOJcHwJSGlFKUaBVLMmgWR0Co4T4lQdjodX2UKGgGaAloD0MIP+Hs1jJZCMCUhpRSlGgVSzJoFkdAqOD42606YHV9lChoBmgJaA9DCFg4SfPHlALAlIaUUpRoFUsyaBZHQKjiu1LJ0XB1fZQoaAZoCWgPQwjeH+9VK1P/v5SGlFKUaBVLMmgWR0Co4nnkLhJidX2UKGgGaAloD0MIgXaHFAOk+7+UhpRSlGgVSzJoFkdAqOI1OuaF23V9lChoBmgJaA9DCMmvH2KDxfm/lIaUUpRoFUsyaBZHQKjh7+o99tx1fZQoaAZoCWgPQwhk6xnCMQsDwJSGlFKUaBVLMmgWR0Co47A8B+4LdX2UKGgGaAloD0MIZcIv9fNmD8CUhpRSlGgVSzJoFkdAqONvCl7+k3V9lChoBmgJaA9DCDpZar3fiAPAlIaUUpRoFUsyaBZHQKjjKnndO7B1fZQoaAZoCWgPQwgpWrkXmHUCwJSGlFKUaBVLMmgWR0Co4uUzsQd0dX2UKGgGaAloD0MIGCKnr+eLBsCUhpRSlGgVSzJoFkdAqOSoKF7D23V9lChoBmgJaA9DCJJe1O5Xgf6/lIaUUpRoFUsyaBZHQKjkZwqAjIJ1fZQoaAZoCWgPQwiloNtLGuMBwJSGlFKUaBVLMmgWR0Co5CJbMX7+dX2UKGgGaAloD0MIqfkq+djdCcCUhpRSlGgVSzJoFkdAqOPdMbm2cHV9lChoBmgJaA9DCGBY/nxbsPy/lIaUUpRoFUsyaBZHQKjln+5OJtV1fZQoaAZoCWgPQwi0y7c+rDcGwJSGlFKUaBVLMmgWR0Co5V6NMoMKdX2UKGgGaAloD0MIbVhTWRQ2BcCUhpRSlGgVSzJoFkdAqOUZ1Ng0CXV9lChoBmgJaA9DCDYdAdws3gTAlIaUUpRoFUsyaBZHQKjk1MaCL/F1fZQoaAZoCWgPQwhWKNL9nEL8v5SGlFKUaBVLMmgWR0Co5p+Q+2VndX2UKGgGaAloD0MIN8R4zat6/7+UhpRSlGgVSzJoFkdAqOZeVHFxXHV9lChoBmgJaA9DCI5AvK5fkALAlIaUUpRoFUsyaBZHQKjmGc7yQPt1fZQoaAZoCWgPQwjejQWFQbkCwJSGlFKUaBVLMmgWR0Co5dS9ugpSdX2UKGgGaAloD0MIyHiUSnhCDMCUhpRSlGgVSzJoFkdAqOeWloDgZXV9lChoBmgJaA9DCEOR7ucUZP+/lIaUUpRoFUsyaBZHQKjnVXPqs2h1fZQoaAZoCWgPQwj11yssuJ8EwJSGlFKUaBVLMmgWR0Co5xDIBBAwdX2UKGgGaAloD0MIHCPZI9SMCsCUhpRSlGgVSzJoFkdAqObLsOXmeXV9lChoBmgJaA9DCNP3GoLjkgfAlIaUUpRoFUsyaBZHQKjok08/2TR1fZQoaAZoCWgPQwiJ6q2BrbIAwJSGlFKUaBVLMmgWR0Co6FISteUqdX2UKGgGaAloD0MIsdtnlZlyCcCUhpRSlGgVSzJoFkdAqOgNeyAxz3V9lChoBmgJaA9DCOONzCN/QBDAlIaUUpRoFUsyaBZHQKjnyF5fMOh1fZQoaAZoCWgPQwiTVRFuMmoDwJSGlFKUaBVLMmgWR0Co6ZstsenydX2UKGgGaAloD0MI8gnZeRt7AMCUhpRSlGgVSzJoFkdAqOlaEHt4RnV9lChoBmgJaA9DCF+YTBWMygrAlIaUUpRoFUsyaBZHQKjpFXq7iAF1fZQoaAZoCWgPQwi7fVaZKU0NwJSGlFKUaBVLMmgWR0Co6NBA4XGfdX2UKGgGaAloD0MI/dmPFJEhCMCUhpRSlGgVSzJoFkdAqOqlYU34sXV9lChoBmgJaA9DCPbtJCL8C/6/lIaUUpRoFUsyaBZHQKjqZBcAzYV1fZQoaAZoCWgPQwgu/rYnSCwJwJSGlFKUaBVLMmgWR0Co6h+enQ6ZdX2UKGgGaAloD0MIPzp15bOcAsCUhpRSlGgVSzJoFkdAqOnaP+4smXV9lChoBmgJaA9DCHEfuTXp9gLAlIaUUpRoFUsyaBZHQKjrpR4yGi51fZQoaAZoCWgPQwjfbkkO2FUMwJSGlFKUaBVLMmgWR0Co62PP1L8KdX2UKGgGaAloD0MIzcmLTMAvAMCUhpRSlGgVSzJoFkdAqOsfK0UoKHV9lChoBmgJaA9DCNUjDW5ri/+/lIaUUpRoFUsyaBZHQKjq2eqaPS51fZQoaAZoCWgPQwgR5QtaSOAEwJSGlFKUaBVLMmgWR0Co7KNga3qidX2UKGgGaAloD0MIiBBXzt7ZBcCUhpRSlGgVSzJoFkdAqOxiDwpe/3V9lChoBmgJaA9DCG75SEp6WP+/lIaUUpRoFUsyaBZHQKjsHUfgaWJ1fZQoaAZoCWgPQwhkz57L1IQKwJSGlFKUaBVLMmgWR0Co69fZM+NcdX2UKGgGaAloD0MILnHkgcjSEMCUhpRSlGgVSzJoFkdAqO2dRR/EwXV9lChoBmgJaA9DCFBz8iITEAjAlIaUUpRoFUsyaBZHQKjtW/keZG91fZQoaAZoCWgPQwiTcYxkj9D+v5SGlFKUaBVLMmgWR0Co7RdHlOoHdX2UKGgGaAloD0MIHClbJO0mB8CUhpRSlGgVSzJoFkdAqOzR9qk/KXV9lChoBmgJaA9DCKMgeHx7twLAlIaUUpRoFUsyaBZHQKjuntk4FRp1fZQoaAZoCWgPQwh0m3CvzHsCwJSGlFKUaBVLMmgWR0Co7l2HUMG5dX2UKGgGaAloD0MIcR+5NemWAcCUhpRSlGgVSzJoFkdAqO4ZCjUNKHV9lChoBmgJaA9DCARXeQJhRwPAlIaUUpRoFUsyaBZHQKjt09h7Vrh1fZQoaAZoCWgPQwiY3Ciy1jACwJSGlFKUaBVLMmgWR0Co75z+vQnhdX2UKGgGaAloD0MISkT4F0EDA8CUhpRSlGgVSzJoFkdAqO9cCA+Y+nV9lChoBmgJaA9DCARUOIJUyv6/lIaUUpRoFUsyaBZHQKjvF0Eovzx1fZQoaAZoCWgPQwiIZp5cU8AJwJSGlFKUaBVLMmgWR0Co7tIEr5IpdX2UKGgGaAloD0MIy6Kwi6KnA8CUhpRSlGgVSzJoFkdAqPCnHtF8X3V9lChoBmgJaA9DCPktOllqXQXAlIaUUpRoFUsyaBZHQKjwZeJpFkR1fZQoaAZoCWgPQwhtH/KWqz8KwJSGlFKUaBVLMmgWR0Co8CEupS75dX2UKGgGaAloD0MIHHxhMlWQA8CUhpRSlGgVSzJoFkdAqO/b+kxh2HV9lChoBmgJaA9DCAvVzcXf9hDAlIaUUpRoFUsyaBZHQKjxs2sJY1Z1fZQoaAZoCWgPQwgXZqGd04wCwJSGlFKUaBVLMmgWR0Co8XLw4KhMdX2UKGgGaAloD0MInUzcKojhDMCUhpRSlGgVSzJoFkdAqPEu2CuloHV9lChoBmgJaA9DCP36ITZYuAPAlIaUUpRoFUsyaBZHQKjw6bYsd1d1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
  "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
  "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
  "max_grad_norm": 0.5,
93
  "normalize_advantage": false
94
  }
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:88fd64acdb183d6caaeaf3584a15cb49f3d7f776de97eb61ebe1b21e559e5b21
3
- size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:847dbaf7192d9cf200de6cc58561097d5c4999814ae83c599b7c7f3f86d58455
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a5fbd88ea1ac6067943824ed4f00c06d9173dafd6bb130cc83f62a24163d6c97
3
- size 56958
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75b4bd330cbf9da02d1d969461779068fe51cb20b843f43d02a1dc88b3b8c675
3
+ size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f248de990d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f248de99160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f248de991f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f248de99280>", "_build": "<function ActorCriticPolicy._build at 0x7f248de99310>", "forward": "<function ActorCriticPolicy.forward at 0x7f248de993a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f248de99430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f248de994c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f248de99550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f248de995e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f248de99670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f248de99700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f248de96e00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679221200266316867, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACLDgj+dV4U+j7dhPubRmz+ImEE/uIWBvzOR0j5ogk2/mUfhvtyunb8sooC/9az3Pkqhcj+4SZW/G02yPmmisb+xTBY9Ll+5PI4wVD5XHKQ9sxebv/WwsT6MfEu8kZ40wMTcLr+1ubW/o4eNPiPwvL+2Nwc/cshEvhakFj88Z+0+fA4cPx1Y879BDQw/cflmvncjfr1aYD6+Uvpfvhb12j+FLDw/vI+Tv+64Xz7NOxk+zJVqvscb3T7Z2iw+ss8JPtk8rb9ws7U+cAFOvx9QEMDE3C6/tbm1v6OHjT65bi0/lKZxPr7Trj6lkww+dudDP65Jdz8pzXk/ESWSPcTXZb5TJkq/54FMP4Z+Lj9DOvi/M5dePszBaj+pemy+PgyYPoqUrz7PMx0+DOBdPrlApLuRFxs/FPkjv2XqZz8p4aY+xNwuv+RQND+jh40+uW4tP9NHJT9aioM+VEZlPjsMt77JHq2+pw1gPhH0nr48vcw/sWInv6sYhT/XnJY/Yg1vv5ljgb7jXApAC4gjv6+WOT/+/oi+oclIwIAUCMDyZ66/ag1lPy6ADb/T2Y69MXOIP6Fkuz+1ubW/o4eNPrluLT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABETxM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmhAUvQAAAADjiNu/AAAAAKg9br0AAAAA4IbkPwAAAAAOTBE+AAAAAOgO7z8AAAAAQQ2kPAAAAAAFl9q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg7uBNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBv6q70AAAAAvoj5vwAAAAAz93m8AAAAAFkp2j8AAAAAW6NjuwAAAADh/vs/AAAAAPO3zr0AAAAAOlDlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAj98A8AAAAAPzE2r8AAAAAOyyKvAAAAADB/+U/AAAAAKyBOb0AAAAAkoP0PwAAAABzdYO9AAAAAL4k6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiKIM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALxJkPQAAAAAgx+W/AAAAALFcSDwAAAAArmTaPwAAAAAxn7Y9AAAAAA/26T8AAAAAIjcDvgAAAAA6c+a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJzQxqwhW5qMAWyUTegDjAF0lEdAs1PNoexOcnV9lChoBkdAnBD3o5ggHWgHTegDaAhHQLNUibzbvgF1fZQoaAZHQJO5YjUutfZoB03oA2gIR0CzVrNE9dNWdX2UKGgGR0CXkSgOjIq9aAdN6ANoCEdAs1c2qioKlnV9lChoBkdAl7a57HAAQ2gHTegDaAhHQLNciAI6bON1fZQoaAZHQJiCVS3solVoB03oA2gIR0CzXQk9ECvHdX2UKGgGR0CWvgavA44qaAdN6ANoCEdAs15pQKrq+3V9lChoBkdAhsyVMdtEX2gHTegDaAhHQLNetzgdfb91fZQoaAZHQIUCEgZCOWBoB03oA2gIR0CzY5WmxdIHdX2UKGgGR0CS4Ihx5s0paAdN6ANoCEdAs2RWRr8BMnV9lChoBkdAlu9Kgh8pkWgHTegDaAhHQLNmZG7z06J1fZQoaAZHQJi6jd/J/5NoB03oA2gIR0CzZuKrq+rVdX2UKGgGR0CXV9FQ2uPnaAdN6ANoCEdAs2xARvm5lXV9lChoBkdAmSVFSKm8/WgHTegDaAhHQLNsupLEk0J1fZQoaAZHQJs7Qv8IiTtoB03oA2gIR0CzbhLlq8DkdX2UKGgGR0CY5zRh+fAcaAdN6ANoCEdAs25gpSaVlnV9lChoBkdAlteRzmwJPmgHTegDaAhHQLNy7Ip6QeV1fZQoaAZHQJH80Cgbp/xoB03oA2gIR0Czc5kknkT6dX2UKGgGR0CbPAM3IdU9aAdN6ANoCEdAs3WPxusLfHV9lChoBkdAl7W6AavRq2gHTegDaAhHQLN2DOearm11fZQoaAZHQJnD1z+3pfRoB03oA2gIR0Cze82YfGModX2UKGgGR0CZq75wwTM8aAdN6ANoCEdAs3xEyO7xu3V9lChoBkdAmh5vwd8zAWgHTegDaAhHQLN9mblijL11fZQoaAZHQJvNEpH7P6doB03oA2gIR0CzfelbNbC8dX2UKGgGR0CVF22L5ylvaAdN6ANoCEdAs4Js4WDYiHV9lChoBkdAmtcVlbu+iGgHTegDaAhHQLOC6bkfcN91fZQoaAZHQIk2TNnoPkJoB03oA2gIR0CzhLz0g8r7dX2UKGgGR0CXrH9tdiUgaAdN6ANoCEdAs4UwwL3K0XV9lChoBkdAmtvVUVBUrGgHTegDaAhHQLOLZwfyPMl1fZQoaAZHQJm4CeWfK6poB03oA2gIR0Czi+cVLzwudX2UKGgGR0CXabhwVCXyaAdN6ANoCEdAs41L8vVVgnV9lChoBkdAmmAhRMvh62gHTegDaAhHQLONlqJdjXp1fZQoaAZHQJx3J2hZha1oB03oA2gIR0CzkkUbgjyGdX2UKGgGR0CaaeLq2SdOaAdN6ANoCEdAs5LFfG+9J3V9lChoBkdAnCtKyv9tM2gHTegDaAhHQLOUhy+HrQh1fZQoaAZHQJqItfXwsoVoB03oA2gIR0CzlP6ab4JvdX2UKGgGR0CYyu+lj3EiaAdN6ANoCEdAs5twE4ecQXV9lChoBkdAm/wuaz/p+2gHTegDaAhHQLOb65sj3VV1fZQoaAZHQJs5W32EkB1oB03oA2gIR0CznUNGmUGFdX2UKGgGR0CZokW0JF9baAdN6ANoCEdAs52Q+nqFAXV9lChoBkdAmnERW912aGgHTegDaAhHQLOiL/pMYdh1fZQoaAZHQJqbGE9Mbm5oB03oA2gIR0Czoqv9LpRodX2UKGgGR0CcOvcT8HfNaAdN6ANoCEdAs6Qtx5s0pHV9lChoBkdAnMfveHi3omgHTegDaAhHQLOkn8vmHQB1fZQoaAZHQJn3WdlNDdBoB03oA2gIR0CzqzN3jdYXdX2UKGgGR0CWYARNATqTaAdN6ANoCEdAs6uvYSQHRnV9lChoBkdAmpYxfKISDmgHTegDaAhHQLOtAmelKsd1fZQoaAZHQJoV/ovBacJoB03oA2gIR0CzrVEfkmx/dX2UKGgGR0CbQyEXcgyNaAdN6ANoCEdAs7Hvh73PA3V9lChoBkdAmu5SAYpDu2gHTegDaAhHQLOybeOXE611fZQoaAZHQJuAD0mMOwxoB03oA2gIR0Czs88v24/edX2UKGgGR0Cb6Te54GD+aAdN6ANoCEdAs7Q9MURFqnV9lChoBkdAleh6unuRcWgHTegDaAhHQLO7HsPrfLt1fZQoaAZHQJsh+xKQJX1oB03oA2gIR0Czu6C2phnbdX2UKGgGR0CUNEqvvBrOaAdN6ANoCEdAs70BZcLSeHV9lChoBkdAi1XzINmUW2gHTegDaAhHQLO9Tc3VCol1fZQoaAZHQJHle2y9mHxoB03oA2gIR0Czwedj5KvndX2UKGgGR0CXHUwIt16maAdN6ANoCEdAs8JlEBsAN3V9lChoBkdAmcAreZXuE2gHTegDaAhHQLPDx78ejmF1fZQoaAZHQJOaymsNlRRoB03oA2gIR0CzxBQnhKlIdX2UKGgGR0CX+pwi7kGSaAdN6ANoCEdAs8ygZbY9PnV9lChoBkdAmFP7lNlAeWgHTegDaAhHQLPNI5hScb11fZQoaAZHQJMjveCTUy5oB03oA2gIR0CzznykKu0UdX2UKGgGR0Ca7ursByS3aAdN6ANoCEdAs87L1kDp1XV9lChoBkdAmJOWRFI/aGgHTegDaAhHQLPTZ8ujASF1fZQoaAZHQJnT7tKIznBoB03oA2gIR0Cz0+MJ2MbWdX2UKGgGR0CYXdUjLSuyaAdN6ANoCEdAs9Vi0x/NJXV9lChoBkdAmrvrRWtEHGgHTegDaAhHQLPV0zu4PPN1fZQoaAZHQJmORhUipvRoB03oA2gIR0Cz3GqUeMhpdX2UKGgGR0CcIzkHlfZ3aAdN6ANoCEdAs9zijafzz3V9lChoBkdAncVw/1QIlmgHTegDaAhHQLPeOFA3T/h1fZQoaAZHQJyivbYbsGBoB03oA2gIR0Cz3ok+X7cgdX2UKGgGR0Ce1jj8k2P1aAdN6ANoCEdAs+McUmD15HV9lChoBkdAm08NZq20A2gHTegDaAhHQLPjlpu/Dcd1fZQoaAZHQJ7A9mDlHSZoB03oA2gIR0Cz5OdmpVCHdX2UKGgGR0CfCLTZg5R1aAdN6ANoCEdAs+VKjL0SRXV9lChoBkdAnndlea8Yh2gHTegDaAhHQLPsCrS3LFJ1fZQoaAZHQJ6R5J+UhV5oB03oA2gIR0Cz7IUngHeKdX2UKGgGR0CdTzgow22oaAdN6ANoCEdAs+3kfzSThnV9lChoBkdAnbKCJ9AoomgHTegDaAhHQLPuM/zJ6pp1fZQoaAZHQJ23bX+VC5VoB03oA2gIR0Cz8sBkmQbNdX2UKGgGR0CdyOzV+Zw5aAdN6ANoCEdAs/NBpVS4v3V9lChoBkdAndPs3dbgTGgHTegDaAhHQLP0mMfRu0l1fZQoaAZHQJ0dXlS0jTtoB03oA2gIR0Cz9OuX/o7ndX2UKGgGR0CdHMhYeT3ZaAdN6ANoCEdAs/vlQ3xWk3V9lChoBkdAnCesGs3hoGgHTegDaAhHQLP8Y4p+c6N1fZQoaAZHQJ6F2ACnxaxoB03oA2gIR0Cz/bmoNutPdX2UKGgGR0CdoJjQAuIzaAdN6ANoCEdAs/4IpnYg73V9lChoBkdAnO69CJGe+WgHTegDaAhHQLQDPz4k/r11fZQoaAZHQJyz8xJul41oB03oA2gIR0C0A8DCLuQZdX2UKGgGR0CaW/DoyKvWaAdN6ANoCEdAtAUcDV6NVHV9lChoBkdAnIc32/SH/WgHTegDaAhHQLQFaRAbADd1fZQoaAZHQJzZFQCSzPdoB03oA2gIR0C0DD8S5AhTdX2UKGgGR0Ccet1YQrc1aAdN6ANoCEdAtAy5ZpztC3V9lChoBkdAlo2nzg/C7GgHTegDaAhHQLQOF30PH1h1fZQoaAZHQJbceXpnpStoB03oA2gIR0C0Dmk163RYdX2UKGgGR0CNKfQWN3nqaAdN6ANoCEdAtBMAfMfRu3V9lChoBkdAnI1qKxcE/2gHTegDaAhHQLQTe7QLNOd1fZQoaAZHQJdMQgV45cVoB03oA2gIR0C0FM1yJbdKdX2UKGgGR0Cb4WyZ8a4uaAdN6ANoCEdAtBUdQemvXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f248de99820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f248de96fc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679225446843376909, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXxrsPgo/jb2oUgk/XxrsPgo/jb2oUgk/XxrsPgo/jb2oUgk/XxrsPgo/jb2oUgk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqiblvl9ioD8izQO/3/TQP7kKML+cSti+5DCHviXKmj8z/0u/66xePzIrKr+2LsO+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABfGuw+Cj+NvahSCT+OAZe8ZbavuyvysztfGuw+Cj+NvahSCT+OAZe8ZbavuyvysztfGuw+Cj+NvahSCT+OAZe8ZbavuyvysztfGuw+Cj+NvahSCT+OAZe8ZbavuyvyszuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4611387 -0.06896789 0.5364175 ]\n [ 0.4611387 -0.06896789 0.5364175 ]\n [ 0.4611387 -0.06896789 0.5364175 ]\n [ 0.4611387 -0.06896789 0.5364175 ]]", "desired_goal": "[[-0.4475606 1.253002 -0.5148488 ]\n [ 1.6324729 -0.6876636 -0.42244422]\n [-0.26404488 1.209294 -0.7968628 ]\n [ 0.869826 -0.6647216 -0.38121575]]", "observation": "[[ 0.4611387 -0.06896789 0.5364175 -0.01843336 -0.00536232 0.00549152]\n [ 0.4611387 -0.06896789 0.5364175 -0.01843336 -0.00536232 0.00549152]\n [ 0.4611387 -0.06896789 0.5364175 -0.01843336 -0.00536232 0.00549152]\n [ 0.4611387 -0.06896789 0.5364175 -0.01843336 -0.00536232 0.00549152]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALSFfvP2g4z2vmTg9zwjBvdSNqTvGHP09EJ63ve1f6DydAyU+MNJ6vXfC5L02/kI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01361875 0.1111469 0.04506844]\n [-0.09425508 0.00517438 0.12359004]\n [-0.08965695 0.02836605 0.1611466 ]\n [-0.06123561 -0.11169904 0.19042286]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/WmjOh0oD8CUhpRSlIwBbJRLMowBdJRHQKjU8R6nivR1fZQoaAZoCWgPQwgSE9TwLSwDwJSGlFKUaBVLMmgWR0Co1LBd+ocadX2UKGgGaAloD0MIURa+vtYl/r+UhpRSlGgVSzJoFkdAqNRspgCwKXV9lChoBmgJaA9DCB9q2zAKogXAlIaUUpRoFUsyaBZHQKjUKERradt1fZQoaAZoCWgPQwhSLLe0GnIHwJSGlFKUaBVLMmgWR0Co1ogHeJpGdX2UKGgGaAloD0MI7rJfd7pzBcCUhpRSlGgVSzJoFkdAqNZHWJ79h3V9lChoBmgJaA9DCG3n+6nxsgzAlIaUUpRoFUsyaBZHQKjWA0F8ohJ1fZQoaAZoCWgPQwjHoBNCB30LwJSGlFKUaBVLMmgWR0Co1b68Hv+gdX2UKGgGaAloD0MIKZXwhF5/CcCUhpRSlGgVSzJoFkdAqNgVaQmu1XV9lChoBmgJaA9DCOFASBYwQQ3AlIaUUpRoFUsyaBZHQKjX1TnaFmF1fZQoaAZoCWgPQwjn5EUm4LcGwJSGlFKUaBVLMmgWR0Co15E/bCaadX2UKGgGaAloD0MISN45lKFKCMCUhpRSlGgVSzJoFkdAqNdMtuk1uXV9lChoBmgJaA9DCHS1FfvLTgXAlIaUUpRoFUsyaBZHQKjZr9S/CZZ1fZQoaAZoCWgPQwi0lCwnodQFwJSGlFKUaBVLMmgWR0Co2W9IPK+0dX2UKGgGaAloD0MIF7zoK0jTAMCUhpRSlGgVSzJoFkdAqNkrP0I1L3V9lChoBmgJaA9DCMl3KXXJWAzAlIaUUpRoFUsyaBZHQKjY5oQnQY11fZQoaAZoCWgPQwh3SZwVUZMAwJSGlFKUaBVLMmgWR0Co22EJKJ2udX2UKGgGaAloD0MIcr9DUaBPAMCUhpRSlGgVSzJoFkdAqNsgsmOU+3V9lChoBmgJaA9DCCv4bYjxmgDAlIaUUpRoFUsyaBZHQKja3OUt7KJ1fZQoaAZoCWgPQwgxeQPMfEcEwJSGlFKUaBVLMmgWR0Co2pha9sabdX2UKGgGaAloD0MIvkupS8ax/b+UhpRSlGgVSzJoFkdAqN0sbtJFs3V9lChoBmgJaA9DCCob1lQWxQHAlIaUUpRoFUsyaBZHQKjc6+fywwF1fZQoaAZoCWgPQwiOWmH6XsMHwJSGlFKUaBVLMmgWR0Co3KhVENONdX2UKGgGaAloD0MIWp2cobiDBsCUhpRSlGgVSzJoFkdAqNxj39JjD3V9lChoBmgJaA9DCAnAP6VKdADAlIaUUpRoFUsyaBZHQKje5ZxJd0J1fZQoaAZoCWgPQwhD44kgzmMBwJSGlFKUaBVLMmgWR0Co3qUS7GvPdX2UKGgGaAloD0MIg79fzJYsAMCUhpRSlGgVSzJoFkdAqN5hOJtSAHV9lChoBmgJaA9DCC6sG++OrAzAlIaUUpRoFUsyaBZHQKjeHNr0rbx1fZQoaAZoCWgPQwh+GvfmN0wDwJSGlFKUaBVLMmgWR0Co4JtNzr/sdX2UKGgGaAloD0MIsaNxqN8FBcCUhpRSlGgVSzJoFkdAqOBbH4oJA3V9lChoBmgJaA9DCIknu5nRbwnAlIaUUpRoFUsyaBZHQKjgF0knkT91fZQoaAZoCWgPQwgP0H05sx0HwJSGlFKUaBVLMmgWR0Co39Ln9vS/dX2UKGgGaAloD0MI83LYfccwC8CUhpRSlGgVSzJoFkdAqOHELpiZv3V9lChoBmgJaA9DCE1LrIxGPgLAlIaUUpRoFUsyaBZHQKjhgtlI3BJ1fZQoaAZoCWgPQwjRWtHmOJcHwJSGlFKUaBVLMmgWR0Co4T4lQdjodX2UKGgGaAloD0MIP+Hs1jJZCMCUhpRSlGgVSzJoFkdAqOD42606YHV9lChoBmgJaA9DCFg4SfPHlALAlIaUUpRoFUsyaBZHQKjiu1LJ0XB1fZQoaAZoCWgPQwjeH+9VK1P/v5SGlFKUaBVLMmgWR0Co4nnkLhJidX2UKGgGaAloD0MIgXaHFAOk+7+UhpRSlGgVSzJoFkdAqOI1OuaF23V9lChoBmgJaA9DCMmvH2KDxfm/lIaUUpRoFUsyaBZHQKjh7+o99tx1fZQoaAZoCWgPQwhk6xnCMQsDwJSGlFKUaBVLMmgWR0Co47A8B+4LdX2UKGgGaAloD0MIZcIv9fNmD8CUhpRSlGgVSzJoFkdAqONvCl7+k3V9lChoBmgJaA9DCDpZar3fiAPAlIaUUpRoFUsyaBZHQKjjKnndO7B1fZQoaAZoCWgPQwgpWrkXmHUCwJSGlFKUaBVLMmgWR0Co4uUzsQd0dX2UKGgGaAloD0MIGCKnr+eLBsCUhpRSlGgVSzJoFkdAqOSoKF7D23V9lChoBmgJaA9DCJJe1O5Xgf6/lIaUUpRoFUsyaBZHQKjkZwqAjIJ1fZQoaAZoCWgPQwiloNtLGuMBwJSGlFKUaBVLMmgWR0Co5CJbMX7+dX2UKGgGaAloD0MIqfkq+djdCcCUhpRSlGgVSzJoFkdAqOPdMbm2cHV9lChoBmgJaA9DCGBY/nxbsPy/lIaUUpRoFUsyaBZHQKjln+5OJtV1fZQoaAZoCWgPQwi0y7c+rDcGwJSGlFKUaBVLMmgWR0Co5V6NMoMKdX2UKGgGaAloD0MIbVhTWRQ2BcCUhpRSlGgVSzJoFkdAqOUZ1Ng0CXV9lChoBmgJaA9DCDYdAdws3gTAlIaUUpRoFUsyaBZHQKjk1MaCL/F1fZQoaAZoCWgPQwhWKNL9nEL8v5SGlFKUaBVLMmgWR0Co5p+Q+2VndX2UKGgGaAloD0MIN8R4zat6/7+UhpRSlGgVSzJoFkdAqOZeVHFxXHV9lChoBmgJaA9DCI5AvK5fkALAlIaUUpRoFUsyaBZHQKjmGc7yQPt1fZQoaAZoCWgPQwjejQWFQbkCwJSGlFKUaBVLMmgWR0Co5dS9ugpSdX2UKGgGaAloD0MIyHiUSnhCDMCUhpRSlGgVSzJoFkdAqOeWloDgZXV9lChoBmgJaA9DCEOR7ucUZP+/lIaUUpRoFUsyaBZHQKjnVXPqs2h1fZQoaAZoCWgPQwj11yssuJ8EwJSGlFKUaBVLMmgWR0Co5xDIBBAwdX2UKGgGaAloD0MIHCPZI9SMCsCUhpRSlGgVSzJoFkdAqObLsOXmeXV9lChoBmgJaA9DCNP3GoLjkgfAlIaUUpRoFUsyaBZHQKjok08/2TR1fZQoaAZoCWgPQwiJ6q2BrbIAwJSGlFKUaBVLMmgWR0Co6FISteUqdX2UKGgGaAloD0MIsdtnlZlyCcCUhpRSlGgVSzJoFkdAqOgNeyAxz3V9lChoBmgJaA9DCOONzCN/QBDAlIaUUpRoFUsyaBZHQKjnyF5fMOh1fZQoaAZoCWgPQwiTVRFuMmoDwJSGlFKUaBVLMmgWR0Co6ZstsenydX2UKGgGaAloD0MI8gnZeRt7AMCUhpRSlGgVSzJoFkdAqOlaEHt4RnV9lChoBmgJaA9DCF+YTBWMygrAlIaUUpRoFUsyaBZHQKjpFXq7iAF1fZQoaAZoCWgPQwi7fVaZKU0NwJSGlFKUaBVLMmgWR0Co6NBA4XGfdX2UKGgGaAloD0MI/dmPFJEhCMCUhpRSlGgVSzJoFkdAqOqlYU34sXV9lChoBmgJaA9DCPbtJCL8C/6/lIaUUpRoFUsyaBZHQKjqZBcAzYV1fZQoaAZoCWgPQwgu/rYnSCwJwJSGlFKUaBVLMmgWR0Co6h+enQ6ZdX2UKGgGaAloD0MIPzp15bOcAsCUhpRSlGgVSzJoFkdAqOnaP+4smXV9lChoBmgJaA9DCHEfuTXp9gLAlIaUUpRoFUsyaBZHQKjrpR4yGi51fZQoaAZoCWgPQwjfbkkO2FUMwJSGlFKUaBVLMmgWR0Co62PP1L8KdX2UKGgGaAloD0MIzcmLTMAvAMCUhpRSlGgVSzJoFkdAqOsfK0UoKHV9lChoBmgJaA9DCNUjDW5ri/+/lIaUUpRoFUsyaBZHQKjq2eqaPS51fZQoaAZoCWgPQwgR5QtaSOAEwJSGlFKUaBVLMmgWR0Co7KNga3qidX2UKGgGaAloD0MIiBBXzt7ZBcCUhpRSlGgVSzJoFkdAqOxiDwpe/3V9lChoBmgJaA9DCG75SEp6WP+/lIaUUpRoFUsyaBZHQKjsHUfgaWJ1fZQoaAZoCWgPQwhkz57L1IQKwJSGlFKUaBVLMmgWR0Co69fZM+NcdX2UKGgGaAloD0MILnHkgcjSEMCUhpRSlGgVSzJoFkdAqO2dRR/EwXV9lChoBmgJaA9DCFBz8iITEAjAlIaUUpRoFUsyaBZHQKjtW/keZG91fZQoaAZoCWgPQwiTcYxkj9D+v5SGlFKUaBVLMmgWR0Co7RdHlOoHdX2UKGgGaAloD0MIHClbJO0mB8CUhpRSlGgVSzJoFkdAqOzR9qk/KXV9lChoBmgJaA9DCKMgeHx7twLAlIaUUpRoFUsyaBZHQKjuntk4FRp1fZQoaAZoCWgPQwh0m3CvzHsCwJSGlFKUaBVLMmgWR0Co7l2HUMG5dX2UKGgGaAloD0MIcR+5NemWAcCUhpRSlGgVSzJoFkdAqO4ZCjUNKHV9lChoBmgJaA9DCARXeQJhRwPAlIaUUpRoFUsyaBZHQKjt09h7Vrh1fZQoaAZoCWgPQwiY3Ciy1jACwJSGlFKUaBVLMmgWR0Co75z+vQnhdX2UKGgGaAloD0MISkT4F0EDA8CUhpRSlGgVSzJoFkdAqO9cCA+Y+nV9lChoBmgJaA9DCARUOIJUyv6/lIaUUpRoFUsyaBZHQKjvF0Eovzx1fZQoaAZoCWgPQwiIZp5cU8AJwJSGlFKUaBVLMmgWR0Co7tIEr5IpdX2UKGgGaAloD0MIy6Kwi6KnA8CUhpRSlGgVSzJoFkdAqPCnHtF8X3V9lChoBmgJaA9DCPktOllqXQXAlIaUUpRoFUsyaBZHQKjwZeJpFkR1fZQoaAZoCWgPQwhtH/KWqz8KwJSGlFKUaBVLMmgWR0Co8CEupS75dX2UKGgGaAloD0MIHHxhMlWQA8CUhpRSlGgVSzJoFkdAqO/b+kxh2HV9lChoBmgJaA9DCAvVzcXf9hDAlIaUUpRoFUsyaBZHQKjxs2sJY1Z1fZQoaAZoCWgPQwgXZqGd04wCwJSGlFKUaBVLMmgWR0Co8XLw4KhMdX2UKGgGaAloD0MInUzcKojhDMCUhpRSlGgVSzJoFkdAqPEu2CuloHV9lChoBmgJaA9DCP36ITZYuAPAlIaUUpRoFUsyaBZHQKjw6bYsd1d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:98fbab34bf4ae9eeacc028a6f385d4f87962721a2afa4562a275c8a2d92893e0
3
- size 1236741
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d348094a24804e02dcbb93ae23e6e63d0d28c1167b474be3eac48d514a9251e3
3
+ size 827777
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1957.609409201704, "std_reward": 137.70612707179512, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T11:28:25.845459"}
 
1
+ {"mean_reward": -2.6346639032941312, "std_reward": 0.727185029238671, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T12:24:06.636544"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b52fcd17e208e0349e2300ac472fdb877105b0f4cbfa068010f57ef4e83f7808
3
- size 2136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aade31f7a79dc792781b030626c88b736be49f1f26b58f08e2ef6cdd407838ce
3
+ size 3056