File size: 2,076 Bytes
c69cbf9 8b1de85 aa69bc7 8b1de85 8003a1d 8b1de85 cb30d4c be55a12 8b1de85 cb30d4c c69cbf9 8b1de85 be55a12 5e75e69 8b1de85 8003a1d 8b1de85 e3a2843 8b1de85 e3a2843 8b1de85 e3a2843 8b1de85 31103f9 8b1de85 7873802 31103f9 8b1de85 5af9d05 8b1de85 31103f9 8b1de85 ba79310 8b1de85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: peft
tags:
- PyTorch
- Transformers
- trl
- sft
- BitsAndBytes
- PEFT
- QLoRA
datasets:
- databricks/databricks-dolly-15k
base_model: meta-llama/Llama-2-7b-chat
model-index:
- name: llama2-7-dolly-answer
results: []
license: mit
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama2-7-dolly-answer
This model is a fine-tuned version of [Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat) on the dolly dataset.
Can be used in conjunction with [LukeOLuck/llama2-7-dolly-query](https://huggingface.co/LukeOLuck/llama2-7-dolly-query)
## Model description
A Fine-Tuned PEFT Adapter for the llama2 7b chat hf model
Leverages [FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness](https://arxiv.org/abs/2205.14135), [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314), and [PEFT](https://huggingface.co/blog/peft)
## Intended uses & limitations
Generate a safe answer based on context and a request
## Training and evaluation data
Used SFTTrainer, [checkout the code](https://colab.research.google.com/drive/1WYlE1fTKb0WmNx0tS1hdgtcJfZ2wdOH6?usp=sharing)
## Training procedure
[Checkout the code here](https://colab.research.google.com/drive/1WYlE1fTKb0WmNx0tS1hdgtcJfZ2wdOH6?usp=sharing)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65388a56a5ab055cf2d73676/Q7PoYTON3E25lSIraJKdM.png)
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 |