File size: 2,923 Bytes
3bdc1c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: transformers
license: apache-2.0
base_model: EuroBERT/EuroBERT-210m
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: eurobert210m_Energie_v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# eurobert210m_Energie_v1
This model is a fine-tuned version of [EuroBERT/EuroBERT-210m](https://huggingface.co/EuroBERT/EuroBERT-210m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0418
- Accuracy: 0.9900
- F1: 0.9900
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.4438 | 1.0 | 116 | 0.9257 | 0.6453 | 0.5924 |
| 0.7711 | 2.0 | 232 | 0.5221 | 0.8263 | 0.8141 |
| 0.3803 | 3.0 | 348 | 0.1986 | 0.9357 | 0.9330 |
| 0.2678 | 4.0 | 464 | 0.1487 | 0.9501 | 0.9508 |
| 0.1839 | 5.0 | 580 | 0.1222 | 0.9642 | 0.9642 |
| 0.1736 | 6.0 | 696 | 0.1348 | 0.9634 | 0.9638 |
| 0.1207 | 7.0 | 812 | 0.0549 | 0.9829 | 0.9828 |
| 0.1022 | 8.0 | 928 | 0.0642 | 0.9802 | 0.9804 |
| 0.0699 | 9.0 | 1044 | 0.0723 | 0.9777 | 0.9773 |
| 0.0584 | 10.0 | 1160 | 0.0315 | 0.9886 | 0.9886 |
| 0.0617 | 11.0 | 1276 | 0.0506 | 0.9862 | 0.9861 |
| 0.0591 | 12.0 | 1392 | 0.0445 | 0.9867 | 0.9867 |
| 0.0599 | 13.0 | 1508 | 0.0402 | 0.9870 | 0.9870 |
| 0.0595 | 14.0 | 1624 | 0.0952 | 0.9788 | 0.9791 |
| 0.0401 | 15.0 | 1740 | 0.0526 | 0.9853 | 0.9854 |
| 0.0424 | 16.0 | 1856 | 0.0305 | 0.9902 | 0.9902 |
| 0.0323 | 17.0 | 1972 | 0.0969 | 0.9802 | 0.9798 |
| 0.0664 | 18.0 | 2088 | 0.0359 | 0.9881 | 0.9879 |
| 0.031 | 19.0 | 2204 | 0.0372 | 0.9897 | 0.9897 |
| 0.0239 | 20.0 | 2320 | 0.0418 | 0.9900 | 0.9900 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|