update model card README.md
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -43,9 +43,9 @@ More information needed
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
-
- learning_rate:
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
|
69 |
|
70 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8836
|
24 |
+
- Precision: 0.8262
|
25 |
+
- Recall: 0.8258
|
26 |
+
- F1: 0.8249
|
27 |
+
- Accuracy: 0.8724
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 1.047 | 1.0 | 510 | 0.6171 | 0.7493 | 0.8057 | 0.7716 | 0.8336 |
|
59 |
+
| 0.4348 | 2.0 | 1020 | 0.4954 | 0.8056 | 0.8646 | 0.8296 | 0.8714 |
|
60 |
+
| 0.2818 | 3.0 | 1530 | 0.6252 | 0.8181 | 0.8323 | 0.8212 | 0.8660 |
|
61 |
+
| 0.1793 | 4.0 | 2040 | 0.7381 | 0.8216 | 0.8258 | 0.8227 | 0.8733 |
|
62 |
+
| 0.1356 | 5.0 | 2550 | 0.8601 | 0.8161 | 0.8219 | 0.8165 | 0.8660 |
|
63 |
+
| 0.1023 | 6.0 | 3060 | 0.8526 | 0.8363 | 0.8299 | 0.8307 | 0.8758 |
|
64 |
+
| 0.0944 | 7.0 | 3570 | 0.8459 | 0.8234 | 0.8298 | 0.8251 | 0.8729 |
|
65 |
+
| 0.0631 | 8.0 | 4080 | 0.8519 | 0.8212 | 0.8325 | 0.8252 | 0.8714 |
|
66 |
+
| 0.0602 | 9.0 | 4590 | 0.8756 | 0.8200 | 0.8267 | 0.8226 | 0.8719 |
|
67 |
+
| 0.0532 | 10.0 | 5100 | 0.8836 | 0.8262 | 0.8258 | 0.8249 | 0.8724 |
|
68 |
|
69 |
|
70 |
### Framework versions
|