LordNoah commited on
Commit
b2f6182
·
1 Parent(s): ccf9058
added_tokens.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|assistant|>": 32001,
3
+ "<|endoftext|>": 32000,
4
+ "<|end|>": 32007,
5
+ "<|placeholder1|>": 32002,
6
+ "<|placeholder2|>": 32003,
7
+ "<|placeholder3|>": 32004,
8
+ "<|placeholder4|>": 32005,
9
+ "<|placeholder5|>": 32008,
10
+ "<|placeholder6|>": 32009,
11
+ "<|system|>": 32006,
12
+ "<|user|>": 32010
13
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.998027613412229,
3
+ "total_flos": 287426369617920.0,
4
+ "train_loss": 0.5032803327368017,
5
+ "train_runtime": 76434.0426,
6
+ "train_samples_per_second": 1.433,
7
+ "train_steps_per_second": 0.024
8
+ }
config.json ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "saves/phi3/sto-iter0-v2/checkpoint-1824",
3
+ "architectures": [
4
+ "Phi3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_phi3.Phi3Config",
10
+ "AutoModel": "modeling_phi3.Phi3ForCausalLM",
11
+ "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
12
+ },
13
+ "bos_token_id": 1,
14
+ "embd_pdrop": 0.0,
15
+ "eos_token_id": 32000,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 3072,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 8192,
20
+ "max_position_embeddings": 131072,
21
+ "model_type": "phi3",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 32,
25
+ "original_max_position_embeddings": 4096,
26
+ "pad_token_id": 32000,
27
+ "resid_pdrop": 0.0,
28
+ "rms_norm_eps": 1e-05,
29
+ "rope_scaling": {
30
+ "long_factor": [
31
+ 1.0800000429153442,
32
+ 1.1100000143051147,
33
+ 1.1399999856948853,
34
+ 1.340000033378601,
35
+ 1.5899999141693115,
36
+ 1.600000023841858,
37
+ 1.6200000047683716,
38
+ 2.620000123977661,
39
+ 3.2300000190734863,
40
+ 3.2300000190734863,
41
+ 4.789999961853027,
42
+ 7.400000095367432,
43
+ 7.700000286102295,
44
+ 9.09000015258789,
45
+ 12.199999809265137,
46
+ 17.670000076293945,
47
+ 24.46000099182129,
48
+ 28.57000160217285,
49
+ 30.420001983642578,
50
+ 30.840002059936523,
51
+ 32.590003967285156,
52
+ 32.93000411987305,
53
+ 42.320003509521484,
54
+ 44.96000289916992,
55
+ 50.340003967285156,
56
+ 50.45000457763672,
57
+ 57.55000305175781,
58
+ 57.93000411987305,
59
+ 58.21000289916992,
60
+ 60.1400032043457,
61
+ 62.61000442504883,
62
+ 62.62000274658203,
63
+ 62.71000289916992,
64
+ 63.1400032043457,
65
+ 63.1400032043457,
66
+ 63.77000427246094,
67
+ 63.93000411987305,
68
+ 63.96000289916992,
69
+ 63.970001220703125,
70
+ 64.02999877929688,
71
+ 64.06999969482422,
72
+ 64.08000183105469,
73
+ 64.12000274658203,
74
+ 64.41000366210938,
75
+ 64.4800033569336,
76
+ 64.51000213623047,
77
+ 64.52999877929688,
78
+ 64.83999633789062
79
+ ],
80
+ "short_factor": [
81
+ 1.0,
82
+ 1.0199999809265137,
83
+ 1.0299999713897705,
84
+ 1.0299999713897705,
85
+ 1.0499999523162842,
86
+ 1.0499999523162842,
87
+ 1.0499999523162842,
88
+ 1.0499999523162842,
89
+ 1.0499999523162842,
90
+ 1.0699999332427979,
91
+ 1.0999999046325684,
92
+ 1.1099998950958252,
93
+ 1.1599998474121094,
94
+ 1.1599998474121094,
95
+ 1.1699998378753662,
96
+ 1.2899998426437378,
97
+ 1.339999794960022,
98
+ 1.679999828338623,
99
+ 1.7899998426437378,
100
+ 1.8199998140335083,
101
+ 1.8499997854232788,
102
+ 1.8799997568130493,
103
+ 1.9099997282028198,
104
+ 1.9399996995925903,
105
+ 1.9899996519088745,
106
+ 2.0199997425079346,
107
+ 2.0199997425079346,
108
+ 2.0199997425079346,
109
+ 2.0199997425079346,
110
+ 2.0199997425079346,
111
+ 2.0199997425079346,
112
+ 2.0299997329711914,
113
+ 2.0299997329711914,
114
+ 2.0299997329711914,
115
+ 2.0299997329711914,
116
+ 2.0299997329711914,
117
+ 2.0299997329711914,
118
+ 2.0299997329711914,
119
+ 2.0299997329711914,
120
+ 2.0299997329711914,
121
+ 2.0799996852874756,
122
+ 2.0899996757507324,
123
+ 2.189999580383301,
124
+ 2.2199995517730713,
125
+ 2.5899994373321533,
126
+ 2.729999542236328,
127
+ 2.749999523162842,
128
+ 2.8399994373321533
129
+ ],
130
+ "type": "longrope"
131
+ },
132
+ "rope_theta": 10000.0,
133
+ "sliding_window": 262144,
134
+ "tie_word_embeddings": false,
135
+ "torch_dtype": "bfloat16",
136
+ "transformers_version": "4.43.1",
137
+ "use_cache": false,
138
+ "vocab_size": 32064
139
+ }
configuration_phi3.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Phi-3 model configuration"""
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
27
+ "microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
28
+ }
29
+
30
+
31
+ class Phi3Config(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the
36
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32064):
43
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`Phi3Model`].
45
+ hidden_size (`int`, *optional*, defaults to 3072):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 8192):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
62
+ Dropout probability for mlp outputs.
63
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
64
+ The dropout ratio for the embeddings.
65
+ attention_dropout (`float`, *optional*, defaults to 0.0):
66
+ The dropout ratio after computing the attention scores.
67
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
68
+ The non-linear activation function (function or string) in the decoder.
69
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model might ever be used with.
71
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
72
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
73
+ original RoPE embeddings when using long scaling.
74
+ initializer_range (`float`, *optional*, defaults to 0.02):
75
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
76
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
77
+ The epsilon value used for the RMSNorm.
78
+ use_cache (`bool`, *optional*, defaults to `True`):
79
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
80
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`dict`, *optional*):
86
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
87
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
88
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
89
+ divided by the number of attention heads divided by 2.
90
+ bos_token_id (`int`, *optional*, defaults to 1):
91
+ The id of the "beginning-of-sequence" token.
92
+ eos_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the "end-of-sequence" token.
94
+ pad_token_id (`int`, *optional*, defaults to 32000):
95
+ The id of the padding token.
96
+ sliding_window (`int`, *optional*):
97
+ Sliding window attention window size. If `None`, no sliding window is applied.
98
+
99
+ Example:
100
+
101
+ ```python
102
+ >>> from transformers import Phi3Model, Phi3Config
103
+
104
+ >>> # Initializing a Phi-3 style configuration
105
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
106
+
107
+ >>> # Initializing a model from the configuration
108
+ >>> model = Phi3Model(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "phi3"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32064,
120
+ hidden_size=3072,
121
+ intermediate_size=8192,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ resid_pdrop=0.0,
126
+ embd_pdrop=0.0,
127
+ attention_dropout=0.0,
128
+ hidden_act="silu",
129
+ max_position_embeddings=4096,
130
+ original_max_position_embeddings=4096,
131
+ initializer_range=0.02,
132
+ rms_norm_eps=1e-5,
133
+ use_cache=True,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ bos_token_id=1,
138
+ eos_token_id=32000,
139
+ pad_token_id=32000,
140
+ sliding_window=None,
141
+ **kwargs,
142
+ ):
143
+ self.vocab_size = vocab_size
144
+ self.hidden_size = hidden_size
145
+ self.intermediate_size = intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+
149
+ if num_key_value_heads is None:
150
+ num_key_value_heads = num_attention_heads
151
+
152
+ self.num_key_value_heads = num_key_value_heads
153
+ self.resid_pdrop = resid_pdrop
154
+ self.embd_pdrop = embd_pdrop
155
+ self.attention_dropout = attention_dropout
156
+ self.hidden_act = hidden_act
157
+ self.max_position_embeddings = max_position_embeddings
158
+ self.original_max_position_embeddings = original_max_position_embeddings
159
+ self.initializer_range = initializer_range
160
+ self.rms_norm_eps = rms_norm_eps
161
+ self.use_cache = use_cache
162
+ self.rope_theta = rope_theta
163
+ self.rope_scaling = rope_scaling
164
+ self._rope_scaling_adjustment()
165
+ self._rope_scaling_validation()
166
+ self.sliding_window = sliding_window
167
+
168
+ super().__init__(
169
+ bos_token_id=bos_token_id,
170
+ eos_token_id=eos_token_id,
171
+ pad_token_id=pad_token_id,
172
+ tie_word_embeddings=tie_word_embeddings,
173
+ **kwargs,
174
+ )
175
+
176
+ def _rope_scaling_adjustment(self):
177
+ """
178
+ Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
179
+ """
180
+ if self.rope_scaling is None:
181
+ return
182
+
183
+ rope_scaling_type = self.rope_scaling.get("type", None)
184
+
185
+ # For backward compatibility if previous version used "su" or "yarn"
186
+ if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
187
+ self.rope_scaling["type"] = "longrope"
188
+
189
+ def _rope_scaling_validation(self):
190
+ """
191
+ Validate the `rope_scaling` configuration.
192
+ """
193
+ if self.rope_scaling is None:
194
+ return
195
+
196
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
197
+ raise ValueError(
198
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
199
+ f"got {self.rope_scaling}"
200
+ )
201
+ rope_scaling_type = self.rope_scaling.get("type", None)
202
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
203
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
204
+ if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
205
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
206
+ if not (
207
+ isinstance(rope_scaling_short_factor, list)
208
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
209
+ ):
210
+ raise ValueError(
211
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
212
+ )
213
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
214
+ raise ValueError(
215
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
216
+ )
217
+ if not (
218
+ isinstance(rope_scaling_long_factor, list)
219
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
220
+ ):
221
+ raise ValueError(
222
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
223
+ )
224
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
225
+ raise ValueError(
226
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
227
+ )
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": [
5
+ 32007,
6
+ 32001,
7
+ 32000
8
+ ],
9
+ "pad_token_id": 32000,
10
+ "transformers_version": "4.43.1"
11
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01c84eeb3bdd6514eaf54f6d9bdbe390b0ad9837656b6703149e93bea863ad6b
3
+ size 4972489328
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5353815e08f408f3cf1b2325a97609677e433b2c0483d9637fd97c325218686c
3
+ size 2669692552
model.safetensors.index.json ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7642159104
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.10.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.10.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.11.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.11.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.12.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.12.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.13.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.13.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.14.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.14.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.15.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.15.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.16.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.16.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.17.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.17.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.18.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.18.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.19.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.19.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.20.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.20.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
93
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
94
+ "model.layers.21.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
95
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
96
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
98
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
99
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
100
+ "model.layers.22.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
101
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
102
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
103
+ "model.layers.22.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
104
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
105
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
106
+ "model.layers.23.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
107
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
108
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
109
+ "model.layers.23.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
110
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
111
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
112
+ "model.layers.24.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
113
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
114
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
115
+ "model.layers.24.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
116
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
117
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
118
+ "model.layers.25.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
119
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
120
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
121
+ "model.layers.25.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
122
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
123
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
124
+ "model.layers.26.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
125
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.26.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.27.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.27.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.28.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.28.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.29.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.29.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.30.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.30.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.31.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.31.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.6.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.7.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.8.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.9.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.norm.weight": "model-00002-of-00002.safetensors"
201
+ }
202
+ }
modeling_phi3.py ADDED
@@ -0,0 +1,1570 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch Phi-3 model."""
17
+
18
+ import inspect
19
+ import math
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache
31
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.utils import (
40
+ add_code_sample_docstrings,
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ is_flash_attn_2_available,
44
+ is_flash_attn_greater_or_equal_2_10,
45
+ logging,
46
+ replace_return_docstrings,
47
+ )
48
+ from .configuration_phi3 import Phi3Config
49
+
50
+
51
+ logger = logging.get_logger(__name__)
52
+
53
+ # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
54
+ # if is_flash_attn_2_available():
55
+ _flash_supports_window_size = False
56
+ try:
57
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
58
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
59
+
60
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
61
+ except ImportError as error:
62
+ logger.warning(
63
+ f"`flash-attention` package not found, consider installing for better performance: {error}."
64
+ )
65
+ if not _flash_supports_window_size:
66
+ logger.warning(
67
+ "Current `flash-attention` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
68
+ )
69
+
70
+ _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
71
+ _CONFIG_FOR_DOC = "Phi3Config"
72
+
73
+ PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
74
+ "microsoft/Phi-3-mini-4k-instruct",
75
+ "microsoft/Phi-3-mini-128k-instruct",
76
+ # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
77
+ ]
78
+
79
+
80
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
81
+ class Phi3RMSNorm(nn.Module):
82
+ def __init__(self, hidden_size, eps=1e-6):
83
+ """
84
+ Phi3RMSNorm is equivalent to T5LayerNorm
85
+ """
86
+ super().__init__()
87
+ self.weight = nn.Parameter(torch.ones(hidden_size))
88
+ self.variance_epsilon = eps
89
+
90
+ def forward(self, hidden_states):
91
+ input_dtype = hidden_states.dtype
92
+ hidden_states = hidden_states.to(torch.float32)
93
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
94
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
95
+ return self.weight * hidden_states.to(input_dtype)
96
+
97
+
98
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
99
+ def _get_unpad_data(attention_mask):
100
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
101
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
102
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
103
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
104
+ return (
105
+ indices,
106
+ cu_seqlens,
107
+ max_seqlen_in_batch,
108
+ )
109
+
110
+
111
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
112
+ class Phi3RotaryEmbedding(nn.Module):
113
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
114
+ super().__init__()
115
+
116
+ self.dim = dim
117
+ self.max_position_embeddings = max_position_embeddings
118
+ self.base = base
119
+ self.register_buffer("inv_freq", None, persistent=False)
120
+
121
+ @torch.no_grad()
122
+ def forward(self, x, position_ids, seq_len=None):
123
+ # x: [bs, num_attention_heads, seq_len, head_size]
124
+ if self.inv_freq is None:
125
+ self.inv_freq = 1.0 / (
126
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
127
+ )
128
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
129
+ position_ids_expanded = position_ids[:, None, :].float()
130
+ # Force float32 since bfloat16 loses precision on long contexts
131
+ # See https://github.com/huggingface/transformers/pull/29285
132
+ device_type = x.device.type
133
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
134
+ with torch.autocast(device_type=device_type, enabled=False):
135
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
136
+ emb = torch.cat((freqs, freqs), dim=-1)
137
+ cos = emb.cos()
138
+ sin = emb.sin()
139
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
140
+
141
+
142
+ class Phi3LongRoPEScaledRotaryEmbedding(Phi3RotaryEmbedding):
143
+ def __init__(self, dim, config, device=None):
144
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
145
+
146
+ self.short_factor = config.rope_scaling["short_factor"]
147
+ self.long_factor = config.rope_scaling["long_factor"]
148
+ self.original_max_position_embeddings = config.original_max_position_embeddings
149
+
150
+ @torch.no_grad()
151
+ def forward(self, x, position_ids, seq_len=None):
152
+ seq_len = seq_len or torch.max(position_ids) + 1
153
+ if seq_len > self.original_max_position_embeddings:
154
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
155
+ else:
156
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
157
+
158
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
159
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
160
+
161
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
162
+ position_ids_expanded = position_ids[:, None, :].float()
163
+
164
+ # Force float32 since bfloat16 loses precision on long contexts
165
+ # See https://github.com/huggingface/transformers/pull/29285
166
+ device_type = x.device.type
167
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
168
+ with torch.autocast(device_type=device_type, enabled=False):
169
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
170
+ emb = torch.cat((freqs, freqs), dim=-1)
171
+
172
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
173
+ if scale <= 1.0:
174
+ scaling_factor = 1.0
175
+ else:
176
+ scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
177
+
178
+ cos = emb.cos() * scaling_factor
179
+ sin = emb.sin() * scaling_factor
180
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
181
+
182
+
183
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
184
+ def rotate_half(x):
185
+ """Rotates half the hidden dims of the input."""
186
+ x1 = x[..., : x.shape[-1] // 2]
187
+ x2 = x[..., x.shape[-1] // 2 :]
188
+ return torch.cat((-x2, x1), dim=-1)
189
+
190
+
191
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
192
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
193
+ """Applies Rotary Position Embedding to the query and key tensors.
194
+
195
+ Args:
196
+ q (`torch.Tensor`): The query tensor.
197
+ k (`torch.Tensor`): The key tensor.
198
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
199
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
200
+ position_ids (`torch.Tensor`, *optional*):
201
+ Deprecated and unused.
202
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
203
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
204
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
205
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
206
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
207
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
208
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
209
+ Returns:
210
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
211
+ """
212
+ cos = cos.unsqueeze(unsqueeze_dim)
213
+ sin = sin.unsqueeze(unsqueeze_dim)
214
+ q_embed = (q * cos) + (rotate_half(q) * sin)
215
+ k_embed = (k * cos) + (rotate_half(k) * sin)
216
+ return q_embed, k_embed
217
+
218
+
219
+ class Phi3MLP(nn.Module):
220
+ def __init__(self, config):
221
+ super().__init__()
222
+
223
+ self.config = config
224
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
225
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
226
+
227
+ self.activation_fn = ACT2FN[config.hidden_act]
228
+
229
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
230
+ up_states = self.gate_up_proj(hidden_states)
231
+
232
+ gate, up_states = up_states.chunk(2, dim=-1)
233
+ up_states = up_states * self.activation_fn(gate)
234
+
235
+ return self.down_proj(up_states)
236
+
237
+
238
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
239
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
240
+ """
241
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
242
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
243
+ """
244
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
245
+ if n_rep == 1:
246
+ return hidden_states
247
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
248
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
249
+
250
+
251
+ class Phi3Attention(nn.Module):
252
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
253
+
254
+ def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
255
+ super().__init__()
256
+ self.config = config
257
+ self.layer_idx = layer_idx
258
+ if layer_idx is None:
259
+ logger.warning_once(
260
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
261
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
262
+ "when creating this class."
263
+ )
264
+
265
+ self.attention_dropout = config.attention_dropout
266
+ self.hidden_size = config.hidden_size
267
+ self.num_heads = config.num_attention_heads
268
+ self.head_dim = self.hidden_size // self.num_heads
269
+ self.num_key_value_heads = config.num_key_value_heads
270
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
271
+ self.max_position_embeddings = config.max_position_embeddings
272
+ self.original_max_position_embeddings = config.original_max_position_embeddings
273
+ self.rope_theta = config.rope_theta
274
+ self.rope_scaling = config.rope_scaling
275
+ self.is_causal = True
276
+
277
+ if (self.head_dim * self.num_heads) != self.hidden_size:
278
+ raise ValueError(
279
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
280
+ f" and `num_heads`: {self.num_heads})."
281
+ )
282
+
283
+ op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
284
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
285
+ self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
286
+ self._init_rope()
287
+
288
+ def _init_rope(self):
289
+ if self.rope_scaling is None:
290
+ self.rotary_emb = Phi3RotaryEmbedding(
291
+ self.head_dim,
292
+ max_position_embeddings=self.max_position_embeddings,
293
+ base=self.rope_theta,
294
+ )
295
+ else:
296
+ scaling_type = self.config.rope_scaling["type"]
297
+ if scaling_type == "longrope":
298
+ self.rotary_emb = Phi3LongRoPEScaledRotaryEmbedding(self.head_dim, self.config)
299
+ else:
300
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
301
+
302
+ def forward(
303
+ self,
304
+ hidden_states: torch.Tensor,
305
+ attention_mask: Optional[torch.Tensor] = None,
306
+ position_ids: Optional[torch.LongTensor] = None,
307
+ past_key_value: Optional[Cache] = None,
308
+ output_attentions: bool = False,
309
+ use_cache: bool = False,
310
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
311
+ logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")
312
+
313
+ bsz, q_len, _ = hidden_states.size()
314
+
315
+ qkv = self.qkv_proj(hidden_states)
316
+ query_pos = self.num_heads * self.head_dim
317
+ query_states = qkv[..., :query_pos]
318
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
319
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
320
+
321
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
322
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
323
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
324
+
325
+ kv_seq_len = key_states.shape[-2]
326
+ if past_key_value is not None:
327
+ if self.layer_idx is None:
328
+ raise ValueError(
329
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
330
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
331
+ "with a layer index."
332
+ )
333
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
334
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
335
+
336
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
337
+
338
+ if past_key_value is not None:
339
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
340
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
341
+
342
+ # repeat k/v heads if n_kv_heads < n_heads
343
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
344
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
345
+
346
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
347
+
348
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
349
+ raise ValueError(
350
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
351
+ f" {attn_weights.size()}"
352
+ )
353
+
354
+ if attention_mask is not None:
355
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
356
+ raise ValueError(
357
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
358
+ )
359
+ attn_weights = attn_weights + attention_mask
360
+
361
+ # upcast attention to fp32
362
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
363
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
364
+
365
+ attn_output = torch.matmul(attn_weights, value_states)
366
+
367
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
368
+ raise ValueError(
369
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
370
+ f" {attn_output.size()}"
371
+ )
372
+
373
+ attn_output = attn_output.transpose(1, 2).contiguous()
374
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
375
+
376
+ attn_output = self.o_proj(attn_output)
377
+
378
+ if not output_attentions:
379
+ attn_weights = None
380
+
381
+ return attn_output, attn_weights, past_key_value
382
+
383
+
384
+ class Phi3FlashAttention2(Phi3Attention):
385
+ """
386
+ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
387
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
388
+ flash attention and deal with padding tokens in case the input contains any of them.
389
+ """
390
+
391
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
392
+ def __init__(self, *args, **kwargs):
393
+ super().__init__(*args, **kwargs)
394
+
395
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
396
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
397
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
398
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
399
+
400
+ def forward(
401
+ self,
402
+ hidden_states: torch.Tensor,
403
+ attention_mask: Optional[torch.LongTensor] = None,
404
+ position_ids: Optional[torch.LongTensor] = None,
405
+ past_key_value: Optional[Cache] = None,
406
+ output_attentions: bool = False,
407
+ use_cache: bool = False,
408
+ **kwargs,
409
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
410
+ # Phi3FlashAttention2 attention does not support output_attentions
411
+
412
+ if not _flash_supports_window_size:
413
+ logger.warning_once(
414
+ "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
415
+ )
416
+ raise ValueError("The current flash attention version does not support sliding window attention.")
417
+
418
+ output_attentions = False
419
+
420
+ if "padding_mask" in kwargs:
421
+ warnings.warn(
422
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
423
+ )
424
+
425
+ # overwrite attention_mask with padding_mask
426
+ attention_mask = kwargs.pop("padding_mask")
427
+
428
+ bsz, q_len, _ = hidden_states.size()
429
+
430
+ qkv = self.qkv_proj(hidden_states)
431
+ query_pos = self.num_heads * self.head_dim
432
+ query_states = qkv[..., :query_pos]
433
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
434
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
435
+
436
+ # Flash attention requires the input to have the shape
437
+ # batch_size x seq_length x head_dim x hidden_dim
438
+ # therefore we just need to keep the original shape
439
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
440
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
441
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
442
+
443
+ kv_seq_len = key_states.shape[-2]
444
+ if past_key_value is not None:
445
+ if self.layer_idx is None:
446
+ raise ValueError(
447
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
448
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
449
+ "with a layer index."
450
+ )
451
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
452
+
453
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
454
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item() + 1)
455
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
456
+
457
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
458
+
459
+ use_sliding_windows = (
460
+ _flash_supports_window_size
461
+ and getattr(self.config, "sliding_window", None) is not None
462
+ and kv_seq_len > self.config.sliding_window
463
+ )
464
+
465
+ if past_key_value is not None:
466
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
467
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
468
+ if (
469
+ getattr(self.config, "sliding_window", None) is not None
470
+ and kv_seq_len > self.config.sliding_window
471
+ and cache_has_contents
472
+ ):
473
+ slicing_tokens = 1 - self.config.sliding_window
474
+
475
+ past_key = past_key_value[self.layer_idx][0]
476
+ past_value = past_key_value[self.layer_idx][1]
477
+
478
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
479
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
480
+
481
+ if past_key.shape[-2] != self.config.sliding_window - 1:
482
+ raise ValueError(
483
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
484
+ f" {past_key.shape}"
485
+ )
486
+
487
+ if attention_mask is not None:
488
+ attention_mask = attention_mask[:, slicing_tokens:]
489
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
490
+
491
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
492
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
493
+
494
+ # repeat k/v heads if n_kv_heads < n_heads
495
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
496
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
497
+
498
+ attn_dropout = self.attention_dropout if self.training else 0.0
499
+
500
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
501
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
502
+ # cast them back in the correct dtype just to be sure everything works as expected.
503
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
504
+ # in fp32.
505
+
506
+ if query_states.dtype == torch.float32:
507
+ if torch.is_autocast_enabled():
508
+ target_dtype = torch.get_autocast_gpu_dtype()
509
+ # Handle the case where the model is quantized
510
+ elif hasattr(self.config, "_pre_quantization_dtype"):
511
+ target_dtype = self.config._pre_quantization_dtype
512
+ else:
513
+ target_dtype = self.qkv_proj.weight.dtype
514
+
515
+ logger.warning_once(
516
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
517
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
518
+ f" {target_dtype}."
519
+ )
520
+
521
+ query_states = query_states.to(target_dtype)
522
+ key_states = key_states.to(target_dtype)
523
+ value_states = value_states.to(target_dtype)
524
+
525
+ # Reashape to the expected shape for Flash Attention
526
+ query_states = query_states.transpose(1, 2)
527
+ key_states = key_states.transpose(1, 2)
528
+ value_states = value_states.transpose(1, 2)
529
+
530
+ attn_output = self._flash_attention_forward(
531
+ query_states,
532
+ key_states,
533
+ value_states,
534
+ attention_mask,
535
+ q_len,
536
+ dropout=attn_dropout,
537
+ use_sliding_windows=use_sliding_windows,
538
+ )
539
+
540
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
541
+ attn_output = self.o_proj(attn_output)
542
+
543
+ if not output_attentions:
544
+ attn_weights = None
545
+
546
+ return attn_output, attn_weights, past_key_value
547
+
548
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
549
+ def _flash_attention_forward(
550
+ self,
551
+ query_states,
552
+ key_states,
553
+ value_states,
554
+ attention_mask,
555
+ query_length,
556
+ dropout=0.0,
557
+ softmax_scale=None,
558
+ use_sliding_windows=False,
559
+ ):
560
+ """
561
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
562
+ first unpad the input, then computes the attention scores and pad the final attention scores.
563
+
564
+ Args:
565
+ query_states (`torch.Tensor`):
566
+ Input query states to be passed to Flash Attention API
567
+ key_states (`torch.Tensor`):
568
+ Input key states to be passed to Flash Attention API
569
+ value_states (`torch.Tensor`):
570
+ Input value states to be passed to Flash Attention API
571
+ attention_mask (`torch.Tensor`):
572
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
573
+ position of padding tokens and 1 for the position of non-padding tokens.
574
+ dropout (`float`):
575
+ Attention dropout
576
+ softmax_scale (`float`, *optional*):
577
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
578
+ use_sliding_windows (`bool`, *optional*):
579
+ Whether to activate sliding window attention.
580
+ """
581
+ if not self._flash_attn_uses_top_left_mask:
582
+ causal = self.is_causal
583
+ else:
584
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
585
+ causal = self.is_causal and query_length != 1
586
+
587
+ # Contains at least one padding token in the sequence
588
+ if attention_mask is not None:
589
+ batch_size = query_states.shape[0]
590
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
591
+ query_states, key_states, value_states, attention_mask, query_length
592
+ )
593
+
594
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
595
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
596
+
597
+ if not use_sliding_windows:
598
+ attn_output_unpad = flash_attn_varlen_func(
599
+ query_states,
600
+ key_states,
601
+ value_states,
602
+ cu_seqlens_q=cu_seqlens_q,
603
+ cu_seqlens_k=cu_seqlens_k,
604
+ max_seqlen_q=max_seqlen_in_batch_q,
605
+ max_seqlen_k=max_seqlen_in_batch_k,
606
+ dropout_p=dropout,
607
+ softmax_scale=softmax_scale,
608
+ causal=causal,
609
+ )
610
+ else:
611
+ attn_output_unpad = flash_attn_varlen_func(
612
+ query_states,
613
+ key_states,
614
+ value_states,
615
+ cu_seqlens_q=cu_seqlens_q,
616
+ cu_seqlens_k=cu_seqlens_k,
617
+ max_seqlen_q=max_seqlen_in_batch_q,
618
+ max_seqlen_k=max_seqlen_in_batch_k,
619
+ dropout_p=dropout,
620
+ softmax_scale=softmax_scale,
621
+ causal=causal,
622
+ window_size=(self.config.sliding_window, self.config.sliding_window),
623
+ )
624
+
625
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
626
+ else:
627
+ if not use_sliding_windows:
628
+ attn_output = flash_attn_func(
629
+ query_states,
630
+ key_states,
631
+ value_states,
632
+ dropout,
633
+ softmax_scale=softmax_scale,
634
+ causal=causal,
635
+ )
636
+ else:
637
+ attn_output = flash_attn_func(
638
+ query_states,
639
+ key_states,
640
+ value_states,
641
+ dropout,
642
+ softmax_scale=softmax_scale,
643
+ causal=causal,
644
+ window_size=(self.config.sliding_window, self.config.sliding_window),
645
+ )
646
+
647
+ return attn_output
648
+
649
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
650
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
651
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
652
+
653
+ # On the first iteration we need to properly re-create the padding mask
654
+ # by slicing it on the proper place
655
+ if kv_seq_len != attention_mask.shape[-1]:
656
+ attention_mask_num_tokens = attention_mask.shape[-1]
657
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
658
+
659
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
660
+
661
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
662
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
663
+
664
+ if query_length == kv_seq_len:
665
+ query_layer = index_first_axis(
666
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
667
+ )
668
+ cu_seqlens_q = cu_seqlens_k
669
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
670
+ indices_q = indices_k
671
+ elif query_length == 1:
672
+ max_seqlen_in_batch_q = 1
673
+ cu_seqlens_q = torch.arange(
674
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
675
+ ) # There is a memcpy here, that is very bad.
676
+ indices_q = cu_seqlens_q[:-1]
677
+ query_layer = query_layer.squeeze(1)
678
+ else:
679
+ # The -q_len: slice assumes left padding.
680
+ attention_mask = attention_mask[:, -query_length:]
681
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
682
+
683
+ return (
684
+ query_layer,
685
+ key_layer,
686
+ value_layer,
687
+ indices_q,
688
+ (cu_seqlens_q, cu_seqlens_k),
689
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
690
+ )
691
+
692
+
693
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
694
+ # TODO @Arthur no longer copied from LLama after static cache
695
+ class Phi3SdpaAttention(Phi3Attention):
696
+ """
697
+ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
698
+ `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
699
+ SDPA API.
700
+ """
701
+
702
+ # Adapted from Phi3Attention.forward
703
+ def forward(
704
+ self,
705
+ hidden_states: torch.Tensor,
706
+ attention_mask: Optional[torch.Tensor] = None,
707
+ position_ids: Optional[torch.LongTensor] = None,
708
+ past_key_value: Optional[Cache] = None,
709
+ output_attentions: bool = False,
710
+ use_cache: bool = False,
711
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
712
+ if output_attentions:
713
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
714
+ logger.warning_once(
715
+ "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
716
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
717
+ )
718
+ return super().forward(
719
+ hidden_states=hidden_states,
720
+ attention_mask=attention_mask,
721
+ position_ids=position_ids,
722
+ past_key_value=past_key_value,
723
+ output_attentions=output_attentions,
724
+ use_cache=use_cache,
725
+ )
726
+
727
+ bsz, q_len, _ = hidden_states.size()
728
+
729
+ qkv = self.qkv_proj(hidden_states)
730
+ query_pos = self.num_heads * self.head_dim
731
+ query_states = qkv[..., :query_pos]
732
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
733
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
734
+
735
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
736
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
737
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
738
+
739
+ kv_seq_len = key_states.shape[-2]
740
+ if past_key_value is not None:
741
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
742
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
743
+
744
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
745
+
746
+ if past_key_value is not None:
747
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
748
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
749
+
750
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
751
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
752
+
753
+ if attention_mask is not None:
754
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
755
+ raise ValueError(
756
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
757
+ )
758
+
759
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
760
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
761
+ if query_states.device.type == "cuda" and attention_mask is not None:
762
+ query_states = query_states.contiguous()
763
+ key_states = key_states.contiguous()
764
+ value_states = value_states.contiguous()
765
+
766
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
767
+ query_states,
768
+ key_states,
769
+ value_states,
770
+ attn_mask=attention_mask,
771
+ dropout_p=self.attention_dropout if self.training else 0.0,
772
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
773
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
774
+ )
775
+
776
+ attn_output = attn_output.transpose(1, 2).contiguous()
777
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
778
+
779
+ attn_output = self.o_proj(attn_output)
780
+
781
+ return attn_output, None, past_key_value
782
+
783
+
784
+ PHI3_ATTENTION_CLASSES = {
785
+ "eager": Phi3Attention,
786
+ "flash_attention_2": Phi3FlashAttention2,
787
+ "sdpa": Phi3SdpaAttention,
788
+ }
789
+
790
+
791
+ class Phi3DecoderLayer(nn.Module):
792
+ def __init__(self, config: Phi3Config, layer_idx: int):
793
+ super().__init__()
794
+
795
+ self.config = config
796
+ self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
797
+
798
+ self.mlp = Phi3MLP(config)
799
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
800
+
801
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
802
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
803
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
804
+
805
+ def forward(
806
+ self,
807
+ hidden_states: torch.Tensor,
808
+ attention_mask: Optional[torch.Tensor] = None,
809
+ position_ids: Optional[torch.LongTensor] = None,
810
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
811
+ output_attentions: Optional[bool] = False,
812
+ use_cache: Optional[bool] = False,
813
+ **kwargs,
814
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
815
+ if "padding_mask" in kwargs:
816
+ warnings.warn(
817
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
818
+ )
819
+ """
820
+ Args:
821
+ hidden_states (`torch.FloatTensor`):
822
+ input to the layer of shape `(batch, seq_len, embed_dim)`
823
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
824
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
825
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
826
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
827
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
828
+ output_attentions (`bool`, *optional*):
829
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
830
+ returned tensors for more detail.
831
+ use_cache (`bool`, *optional*):
832
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
833
+ (see `past_key_values`).
834
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
835
+ """
836
+
837
+ residual = hidden_states
838
+
839
+ hidden_states = self.input_layernorm(hidden_states)
840
+
841
+ # Self Attention
842
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
843
+ hidden_states=hidden_states,
844
+ attention_mask=attention_mask,
845
+ position_ids=position_ids,
846
+ past_key_value=past_key_value,
847
+ output_attentions=output_attentions,
848
+ use_cache=use_cache,
849
+ )
850
+
851
+ hidden_states = residual + self.resid_attn_dropout(attn_outputs)
852
+
853
+ residual = hidden_states
854
+ hidden_states = self.post_attention_layernorm(hidden_states)
855
+ hidden_states = self.mlp(hidden_states)
856
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states)
857
+
858
+ outputs = (hidden_states,)
859
+
860
+ if output_attentions:
861
+ outputs += (self_attn_weights,)
862
+
863
+ if use_cache:
864
+ outputs += (present_key_value,)
865
+
866
+ return outputs
867
+
868
+
869
+ PHI3_START_DOCSTRING = r"""
870
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
871
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
872
+ etc.)
873
+
874
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
875
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
876
+ and behavior.
877
+
878
+ Parameters:
879
+ config ([`Phi3Config`]):
880
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
881
+ load the weights associated with the model, only the configuration. Check out the
882
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
883
+ """
884
+
885
+
886
+ @add_start_docstrings(
887
+ "The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
888
+ PHI3_START_DOCSTRING,
889
+ )
890
+ class Phi3PreTrainedModel(PreTrainedModel):
891
+ config_class = Phi3Config
892
+ base_model_prefix = "model"
893
+ supports_gradient_checkpointing = True
894
+ _no_split_modules = ["Phi3DecoderLayer"]
895
+ _skip_keys_device_placement = "past_key_values"
896
+ _supports_flash_attn_2 = True
897
+ _supports_sdpa = False
898
+ _supports_cache_class = True
899
+
900
+ _version = "0.0.5"
901
+
902
+ def _init_weights(self, module):
903
+ std = self.config.initializer_range
904
+ if isinstance(module, nn.Linear):
905
+ module.weight.data.normal_(mean=0.0, std=std)
906
+ if module.bias is not None:
907
+ module.bias.data.zero_()
908
+ elif isinstance(module, nn.Embedding):
909
+ module.weight.data.normal_(mean=0.0, std=std)
910
+ if module.padding_idx is not None:
911
+ module.weight.data[module.padding_idx].zero_()
912
+
913
+
914
+ PHI3_INPUTS_DOCSTRING = r"""
915
+ Args:
916
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
917
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
918
+ it.
919
+
920
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
921
+ [`PreTrainedTokenizer.__call__`] for details.
922
+
923
+ [What are input IDs?](../glossary#input-ids)
924
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
925
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
926
+
927
+ - 1 for tokens that are **not masked**,
928
+ - 0 for tokens that are **masked**.
929
+
930
+ [What are attention masks?](../glossary#attention-mask)
931
+
932
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
933
+ [`PreTrainedTokenizer.__call__`] for details.
934
+
935
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
936
+ `past_key_values`).
937
+
938
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
939
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
940
+ information on the default strategy.
941
+
942
+ - 1 indicates the head is **not masked**,
943
+ - 0 indicates the head is **masked**.
944
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
945
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
946
+ config.n_positions - 1]`.
947
+
948
+ [What are position IDs?](../glossary#position-ids)
949
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
950
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
951
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
952
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
953
+
954
+ Two formats are allowed:
955
+ - a [`~cache_utils.Cache`] instance;
956
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
957
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
958
+ cache format.
959
+
960
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
961
+ legacy cache format will be returned.
962
+
963
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
964
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
965
+ of shape `(batch_size, sequence_length)`.
966
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
967
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
968
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
969
+ model's internal embedding lookup matrix.
970
+ use_cache (`bool`, *optional*):
971
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
972
+ `past_key_values`).
973
+ output_attentions (`bool`, *optional*):
974
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
975
+ tensors for more detail.
976
+ output_hidden_states (`bool`, *optional*):
977
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
978
+ more detail.
979
+ return_dict (`bool`, *optional*):
980
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
981
+ """
982
+
983
+
984
+ @add_start_docstrings(
985
+ "The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
986
+ PHI3_START_DOCSTRING,
987
+ )
988
+ class Phi3Model(Phi3PreTrainedModel):
989
+ """
990
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
991
+
992
+ Args:
993
+ config: Phi3Config
994
+ """
995
+
996
+ def __init__(self, config: Phi3Config):
997
+ super().__init__(config)
998
+ self.padding_idx = config.pad_token_id
999
+ self.vocab_size = config.vocab_size
1000
+
1001
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1002
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
1003
+ self.layers = nn.ModuleList(
1004
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1005
+ )
1006
+ self._attn_implementation = config._attn_implementation
1007
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1008
+
1009
+ self.gradient_checkpointing = False
1010
+ # Initialize weights and apply final processing
1011
+ self.post_init()
1012
+
1013
+ def get_input_embeddings(self):
1014
+ return self.embed_tokens
1015
+
1016
+ def set_input_embeddings(self, value):
1017
+ self.embed_tokens = value
1018
+
1019
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1020
+ def forward(
1021
+ self,
1022
+ input_ids: torch.LongTensor = None,
1023
+ attention_mask: Optional[torch.Tensor] = None,
1024
+ position_ids: Optional[torch.LongTensor] = None,
1025
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1026
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1027
+ use_cache: Optional[bool] = None,
1028
+ output_attentions: Optional[bool] = None,
1029
+ output_hidden_states: Optional[bool] = None,
1030
+ return_dict: Optional[bool] = None,
1031
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1032
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1033
+ output_hidden_states = (
1034
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1035
+ )
1036
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1037
+
1038
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1039
+
1040
+ # retrieve input_ids and inputs_embeds
1041
+ if input_ids is not None and inputs_embeds is not None:
1042
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1043
+ elif input_ids is not None:
1044
+ batch_size, seq_length = input_ids.shape[:2]
1045
+ elif inputs_embeds is not None:
1046
+ batch_size, seq_length = inputs_embeds.shape[:2]
1047
+ else:
1048
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1049
+
1050
+ past_key_values_length = 0
1051
+
1052
+ if self.gradient_checkpointing and self.training:
1053
+ if use_cache:
1054
+ logger.warning_once(
1055
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1056
+ )
1057
+ use_cache = False
1058
+
1059
+ if use_cache:
1060
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1061
+ if use_legacy_cache:
1062
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1063
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1064
+
1065
+ if position_ids is None:
1066
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1067
+ position_ids = torch.arange(
1068
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1069
+ )
1070
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1071
+ else:
1072
+ position_ids = position_ids.view(-1, seq_length).long()
1073
+
1074
+ if inputs_embeds is None:
1075
+ inputs_embeds = self.embed_tokens(input_ids)
1076
+
1077
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1078
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1079
+ if is_padding_right:
1080
+ raise ValueError(
1081
+ "You are attempting to perform batched generation with padding_side='right'"
1082
+ " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
1083
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1084
+ )
1085
+
1086
+ if self._attn_implementation == "flash_attention_2":
1087
+ # 2d mask is passed through the layers
1088
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1089
+ else:
1090
+ # 4d mask is passed through the layers
1091
+ attention_mask = _prepare_4d_causal_attention_mask(
1092
+ attention_mask,
1093
+ (batch_size, seq_length),
1094
+ inputs_embeds,
1095
+ past_key_values_length,
1096
+ sliding_window=self.config.sliding_window,
1097
+ )
1098
+
1099
+ hidden_states = inputs_embeds
1100
+
1101
+ # decoder layers
1102
+ all_hidden_states = () if output_hidden_states else None
1103
+ all_self_attns = () if output_attentions else None
1104
+ next_decoder_cache = None
1105
+
1106
+ for decoder_layer in self.layers:
1107
+ if output_hidden_states:
1108
+ all_hidden_states += (hidden_states,)
1109
+
1110
+ if self.gradient_checkpointing and self.training:
1111
+ layer_outputs = self._gradient_checkpointing_func(
1112
+ decoder_layer.__call__,
1113
+ hidden_states,
1114
+ attention_mask,
1115
+ position_ids,
1116
+ past_key_values,
1117
+ output_attentions,
1118
+ use_cache,
1119
+ )
1120
+ else:
1121
+ layer_outputs = decoder_layer(
1122
+ hidden_states,
1123
+ attention_mask=attention_mask,
1124
+ position_ids=position_ids,
1125
+ past_key_value=past_key_values,
1126
+ output_attentions=output_attentions,
1127
+ use_cache=use_cache,
1128
+ )
1129
+
1130
+ hidden_states = layer_outputs[0]
1131
+
1132
+ if use_cache:
1133
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1134
+
1135
+ if output_attentions:
1136
+ all_self_attns += (layer_outputs[1],)
1137
+
1138
+ hidden_states = self.norm(hidden_states)
1139
+
1140
+ # add hidden states from the last decoder layer
1141
+ if output_hidden_states:
1142
+ all_hidden_states += (hidden_states,)
1143
+
1144
+ next_cache = None
1145
+ if use_cache:
1146
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1147
+ if not return_dict:
1148
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1149
+ return BaseModelOutputWithPast(
1150
+ last_hidden_state=hidden_states,
1151
+ past_key_values=next_cache,
1152
+ hidden_states=all_hidden_states,
1153
+ attentions=all_self_attns,
1154
+ )
1155
+
1156
+
1157
+ class Phi3ForCausalLM(Phi3PreTrainedModel):
1158
+ _tied_weights_keys = ["lm_head.weight"]
1159
+
1160
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1161
+ def __init__(self, config):
1162
+ super().__init__(config)
1163
+ self.model = Phi3Model(config)
1164
+ self.vocab_size = config.vocab_size
1165
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1166
+
1167
+ # Initialize weights and apply final processing
1168
+ self.post_init()
1169
+
1170
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1171
+ def get_input_embeddings(self):
1172
+ return self.model.embed_tokens
1173
+
1174
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1175
+ def set_input_embeddings(self, value):
1176
+ self.model.embed_tokens = value
1177
+
1178
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1179
+ def get_output_embeddings(self):
1180
+ return self.lm_head
1181
+
1182
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1183
+ def set_output_embeddings(self, new_embeddings):
1184
+ self.lm_head = new_embeddings
1185
+
1186
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1187
+ def set_decoder(self, decoder):
1188
+ self.model = decoder
1189
+
1190
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1191
+ def get_decoder(self):
1192
+ return self.model
1193
+
1194
+ # Ignore copy
1195
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1196
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1197
+ def forward(
1198
+ self,
1199
+ input_ids: torch.LongTensor = None,
1200
+ attention_mask: Optional[torch.Tensor] = None,
1201
+ position_ids: Optional[torch.LongTensor] = None,
1202
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1203
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1204
+ labels: Optional[torch.LongTensor] = None,
1205
+ use_cache: Optional[bool] = None,
1206
+ output_attentions: Optional[bool] = None,
1207
+ output_hidden_states: Optional[bool] = None,
1208
+ return_dict: Optional[bool] = None,
1209
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1210
+ r"""
1211
+ Args:
1212
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1213
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1214
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1215
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1216
+
1217
+ Returns:
1218
+
1219
+ Example:
1220
+
1221
+ ```python
1222
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1223
+
1224
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1225
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1226
+
1227
+ >>> prompt = "This is an example script ."
1228
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1229
+
1230
+ >>> # Generate
1231
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1232
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1233
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1234
+ ```"""
1235
+
1236
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1237
+ output_hidden_states = (
1238
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1239
+ )
1240
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1241
+
1242
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1243
+ outputs = self.model(
1244
+ input_ids=input_ids,
1245
+ attention_mask=attention_mask,
1246
+ position_ids=position_ids,
1247
+ past_key_values=past_key_values,
1248
+ inputs_embeds=inputs_embeds,
1249
+ use_cache=use_cache,
1250
+ output_attentions=output_attentions,
1251
+ output_hidden_states=output_hidden_states,
1252
+ return_dict=return_dict,
1253
+ )
1254
+
1255
+ hidden_states = outputs[0]
1256
+ logits = self.lm_head(hidden_states)
1257
+ logits = logits.float()
1258
+
1259
+ loss = None
1260
+ if labels is not None:
1261
+ # Shift so that tokens < n predict n
1262
+ shift_logits = logits[..., :-1, :].contiguous()
1263
+ shift_labels = labels[..., 1:].contiguous()
1264
+ # Flatten the tokens
1265
+ loss_fct = CrossEntropyLoss()
1266
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1267
+ shift_labels = shift_labels.view(-1)
1268
+ # Enable model parallelism
1269
+ shift_labels = shift_labels.to(shift_logits.device)
1270
+ loss = loss_fct(shift_logits, shift_labels)
1271
+
1272
+ if not return_dict:
1273
+ output = (logits,) + outputs[1:]
1274
+ return (loss,) + output if loss is not None else output
1275
+
1276
+ return CausalLMOutputWithPast(
1277
+ loss=loss,
1278
+ logits=logits,
1279
+ past_key_values=outputs.past_key_values,
1280
+ hidden_states=outputs.hidden_states,
1281
+ attentions=outputs.attentions,
1282
+ )
1283
+
1284
+ # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1285
+ def prepare_inputs_for_generation(
1286
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1287
+ ):
1288
+ # When the first time input length reached long and short factor switching point, enforce re-compute cache
1289
+ # It will cause downside of slower at this single token position, however, better than current failure.
1290
+ if past_key_values and self.config.rope_scaling and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1:
1291
+ past_length = past_key_values.seen_tokens if isinstance(past_key_values, Cache) else past_key_values[0][0].shape[2]
1292
+ if past_length <= self.config.original_max_position_embeddings:
1293
+ past_key_values = None
1294
+
1295
+ if past_key_values is not None:
1296
+ if isinstance(past_key_values, Cache):
1297
+ cache_length = past_key_values.get_seq_length()
1298
+ past_length = past_key_values.seen_tokens
1299
+ max_cache_length = past_key_values.get_max_length()
1300
+ else:
1301
+ cache_length = past_length = past_key_values[0][0].shape[2]
1302
+ max_cache_length = None
1303
+
1304
+ # Keep only the unprocessed tokens:
1305
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1306
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1307
+ # input)
1308
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1309
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1310
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1311
+ # input_ids based on the past_length.
1312
+ elif past_length < input_ids.shape[1]:
1313
+ input_ids = input_ids[:, past_length:]
1314
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1315
+
1316
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1317
+ if (
1318
+ max_cache_length is not None
1319
+ and attention_mask is not None
1320
+ and cache_length + input_ids.shape[1] > max_cache_length
1321
+ ):
1322
+ attention_mask = attention_mask[:, -max_cache_length:]
1323
+
1324
+ position_ids = kwargs.get("position_ids", None)
1325
+ if attention_mask is not None and position_ids is None:
1326
+ # create position_ids on the fly for batch generation
1327
+ position_ids = attention_mask.long().cumsum(-1) - 1
1328
+ position_ids.masked_fill_(attention_mask == 0, 1)
1329
+ if past_key_values:
1330
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1331
+
1332
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1333
+ if inputs_embeds is not None and past_key_values is None:
1334
+ model_inputs = {"inputs_embeds": inputs_embeds}
1335
+ else:
1336
+ model_inputs = {"input_ids": input_ids}
1337
+
1338
+ model_inputs.update(
1339
+ {
1340
+ "position_ids": position_ids,
1341
+ "past_key_values": past_key_values,
1342
+ "use_cache": kwargs.get("use_cache"),
1343
+ "attention_mask": attention_mask,
1344
+ }
1345
+ )
1346
+ return model_inputs
1347
+
1348
+ @staticmethod
1349
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1350
+ def _reorder_cache(past_key_values, beam_idx):
1351
+ reordered_past = ()
1352
+ for layer_past in past_key_values:
1353
+ reordered_past += (
1354
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1355
+ )
1356
+ return reordered_past
1357
+
1358
+
1359
+ @add_start_docstrings(
1360
+ """
1361
+ The [`Phi3Model`] with a sequence classification head on top (linear layer).
1362
+
1363
+ [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1364
+ (e.g. GPT-2) do.
1365
+
1366
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1367
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1368
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1369
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1370
+ each row of the batch).
1371
+ """,
1372
+ PHI3_START_DOCSTRING,
1373
+ )
1374
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1375
+ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1376
+ def __init__(self, config):
1377
+ super().__init__(config)
1378
+ self.num_labels = config.num_labels
1379
+ self.model = Phi3Model(config)
1380
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1381
+
1382
+ # Initialize weights and apply final processing
1383
+ self.post_init()
1384
+
1385
+ def get_input_embeddings(self):
1386
+ return self.model.embed_tokens
1387
+
1388
+ def set_input_embeddings(self, value):
1389
+ self.model.embed_tokens = value
1390
+
1391
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1392
+ def forward(
1393
+ self,
1394
+ input_ids: torch.LongTensor = None,
1395
+ attention_mask: Optional[torch.Tensor] = None,
1396
+ position_ids: Optional[torch.LongTensor] = None,
1397
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1398
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1399
+ labels: Optional[torch.LongTensor] = None,
1400
+ use_cache: Optional[bool] = None,
1401
+ output_attentions: Optional[bool] = None,
1402
+ output_hidden_states: Optional[bool] = None,
1403
+ return_dict: Optional[bool] = None,
1404
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1405
+ r"""
1406
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1407
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1408
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1409
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1410
+ """
1411
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1412
+
1413
+ model_outputs = self.model(
1414
+ input_ids,
1415
+ attention_mask=attention_mask,
1416
+ position_ids=position_ids,
1417
+ past_key_values=past_key_values,
1418
+ inputs_embeds=inputs_embeds,
1419
+ use_cache=use_cache,
1420
+ output_attentions=output_attentions,
1421
+ output_hidden_states=output_hidden_states,
1422
+ return_dict=return_dict,
1423
+ )
1424
+ hidden_states = model_outputs[0]
1425
+ logits = self.score(hidden_states)
1426
+
1427
+ if input_ids is not None:
1428
+ batch_size = input_ids.shape[0]
1429
+ else:
1430
+ batch_size = inputs_embeds.shape[0]
1431
+
1432
+ if self.config.pad_token_id is None and batch_size != 1:
1433
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1434
+ if self.config.pad_token_id is None:
1435
+ sequence_lengths = -1
1436
+ else:
1437
+ if input_ids is not None:
1438
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1439
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1440
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1441
+ sequence_lengths = sequence_lengths.to(logits.device)
1442
+ else:
1443
+ sequence_lengths = -1
1444
+
1445
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1446
+
1447
+ loss = None
1448
+ if labels is not None:
1449
+ labels = labels.to(logits.device)
1450
+ if self.config.problem_type is None:
1451
+ if self.num_labels == 1:
1452
+ self.config.problem_type = "regression"
1453
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1454
+ self.config.problem_type = "single_label_classification"
1455
+ else:
1456
+ self.config.problem_type = "multi_label_classification"
1457
+
1458
+ if self.config.problem_type == "regression":
1459
+ loss_fct = MSELoss()
1460
+ if self.num_labels == 1:
1461
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1462
+ else:
1463
+ loss = loss_fct(pooled_logits, labels)
1464
+ elif self.config.problem_type == "single_label_classification":
1465
+ loss_fct = CrossEntropyLoss()
1466
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1467
+ elif self.config.problem_type == "multi_label_classification":
1468
+ loss_fct = BCEWithLogitsLoss()
1469
+ loss = loss_fct(pooled_logits, labels)
1470
+ if not return_dict:
1471
+ output = (pooled_logits,) + model_outputs[1:]
1472
+ return ((loss,) + output) if loss is not None else output
1473
+
1474
+ return SequenceClassifierOutputWithPast(
1475
+ loss=loss,
1476
+ logits=pooled_logits,
1477
+ past_key_values=model_outputs.past_key_values,
1478
+ hidden_states=model_outputs.hidden_states,
1479
+ attentions=model_outputs.attentions,
1480
+ )
1481
+
1482
+
1483
+ @add_start_docstrings(
1484
+ """
1485
+ [`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1486
+ Named-Entity-Recognition (NER) tasks.
1487
+ """,
1488
+ PHI3_START_DOCSTRING,
1489
+ )
1490
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1491
+ class Phi3ForTokenClassification(Phi3PreTrainedModel):
1492
+ def __init__(self, config: Phi3Config):
1493
+ super().__init__(config)
1494
+ self.num_labels = config.num_labels
1495
+
1496
+ self.model = Phi3Model(config)
1497
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1498
+ classifier_dropout = config.classifier_dropout
1499
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1500
+ classifier_dropout = config.hidden_dropout
1501
+ else:
1502
+ classifier_dropout = 0.1
1503
+ self.dropout = nn.Dropout(classifier_dropout)
1504
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1505
+
1506
+ # Initialize weights and apply final processing
1507
+ self.post_init()
1508
+
1509
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1510
+ @add_code_sample_docstrings(
1511
+ checkpoint=_CHECKPOINT_FOR_DOC,
1512
+ output_type=TokenClassifierOutput,
1513
+ config_class=_CONFIG_FOR_DOC,
1514
+ )
1515
+ def forward(
1516
+ self,
1517
+ input_ids: Optional[torch.LongTensor] = None,
1518
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1519
+ attention_mask: Optional[torch.Tensor] = None,
1520
+ inputs_embeds: Optional[torch.Tensor] = None,
1521
+ labels: Optional[torch.Tensor] = None,
1522
+ use_cache: Optional[bool] = None,
1523
+ output_attentions: Optional[bool] = None,
1524
+ output_hidden_states: Optional[bool] = None,
1525
+ return_dict: Optional[bool] = None,
1526
+ **deprecated_arguments,
1527
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1528
+ r"""
1529
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1530
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1531
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1532
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1533
+ """
1534
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1535
+
1536
+ model_outputs = self.model(
1537
+ input_ids,
1538
+ past_key_values=past_key_values,
1539
+ attention_mask=attention_mask,
1540
+ inputs_embeds=inputs_embeds,
1541
+ use_cache=use_cache,
1542
+ output_attentions=output_attentions,
1543
+ output_hidden_states=output_hidden_states,
1544
+ return_dict=return_dict,
1545
+ )
1546
+
1547
+ hidden_states = model_outputs[0]
1548
+ hidden_states = self.dropout(hidden_states)
1549
+ logits = self.classifier(hidden_states)
1550
+
1551
+ loss = None
1552
+ if labels is not None:
1553
+ # move labels to correct device to enable model parallelism
1554
+ labels = labels.to(logits.device)
1555
+ batch_size, seq_length = labels.shape
1556
+ loss_fct = CrossEntropyLoss()
1557
+ loss = loss_fct(
1558
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1559
+ )
1560
+
1561
+ if not return_dict:
1562
+ output = (logits,) + model_outputs[2:]
1563
+ return ((loss,) + output) if loss is not None else output
1564
+
1565
+ return TokenClassifierOutput(
1566
+ loss=loss,
1567
+ logits=logits,
1568
+ hidden_states=model_outputs.hidden_states,
1569
+ attentions=model_outputs.attentions,
1570
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{{ '<s>' }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "legacy": false,
124
+ "model_max_length": 131072,
125
+ "pad_token": "<|endoftext|>",
126
+ "padding_side": "right",
127
+ "sp_model_kwargs": {},
128
+ "split_special_tokens": false,
129
+ "tokenizer_class": "LlamaTokenizer",
130
+ "unk_token": "<unk>",
131
+ "use_default_system_prompt": false
132
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.998027613412229,
3
+ "total_flos": 287426369617920.0,
4
+ "train_loss": 0.5032803327368017,
5
+ "train_runtime": 76434.0426,
6
+ "train_samples_per_second": 1.433,
7
+ "train_steps_per_second": 0.024
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 5, "total_steps": 1824, "loss": 1.79, "accuracy": 0.2800000011920929, "learning_rate": 1.358695652173913e-08, "epoch": 0.00821827744904668, "percentage": 0.27, "elapsed_time": "0:03:33", "remaining_time": "21:32:03"}
2
+ {"current_steps": 10, "total_steps": 1824, "loss": 1.7672, "accuracy": 0.6100000143051147, "learning_rate": 2.717391304347826e-08, "epoch": 0.01643655489809336, "percentage": 0.55, "elapsed_time": "0:07:01", "remaining_time": "21:13:01"}
3
+ {"current_steps": 15, "total_steps": 1824, "loss": 1.6603, "accuracy": 0.8799999952316284, "learning_rate": 4.076086956521739e-08, "epoch": 0.02465483234714004, "percentage": 0.82, "elapsed_time": "0:10:30", "remaining_time": "21:07:02"}
4
+ {"current_steps": 20, "total_steps": 1824, "loss": 1.5519, "accuracy": 0.9300000071525574, "learning_rate": 5.434782608695652e-08, "epoch": 0.03287310979618672, "percentage": 1.1, "elapsed_time": "0:13:58", "remaining_time": "21:00:24"}
5
+ {"current_steps": 25, "total_steps": 1824, "loss": 1.4535, "accuracy": 0.9300000071525574, "learning_rate": 6.793478260869565e-08, "epoch": 0.041091387245233396, "percentage": 1.37, "elapsed_time": "0:17:26", "remaining_time": "20:55:29"}
6
+ {"current_steps": 30, "total_steps": 1824, "loss": 1.3598, "accuracy": 0.9399999976158142, "learning_rate": 8.152173913043478e-08, "epoch": 0.04930966469428008, "percentage": 1.64, "elapsed_time": "0:20:56", "remaining_time": "20:52:25"}
7
+ {"current_steps": 35, "total_steps": 1824, "loss": 1.2944, "accuracy": 0.9200000166893005, "learning_rate": 9.510869565217392e-08, "epoch": 0.05752794214332676, "percentage": 1.92, "elapsed_time": "0:24:26", "remaining_time": "20:49:00"}
8
+ {"current_steps": 40, "total_steps": 1824, "loss": 1.2027, "accuracy": 0.9599999785423279, "learning_rate": 1.0869565217391303e-07, "epoch": 0.06574621959237344, "percentage": 2.19, "elapsed_time": "0:27:54", "remaining_time": "20:44:32"}
9
+ {"current_steps": 45, "total_steps": 1824, "loss": 1.1328, "accuracy": 0.949999988079071, "learning_rate": 1.2228260869565216e-07, "epoch": 0.07396449704142012, "percentage": 2.47, "elapsed_time": "0:31:22", "remaining_time": "20:40:31"}
10
+ {"current_steps": 50, "total_steps": 1824, "loss": 1.0599, "accuracy": 0.9900000095367432, "learning_rate": 1.358695652173913e-07, "epoch": 0.08218277449046679, "percentage": 2.74, "elapsed_time": "0:34:51", "remaining_time": "20:36:57"}
11
+ {"current_steps": 55, "total_steps": 1824, "loss": 1.0223, "accuracy": 0.9599999785423279, "learning_rate": 1.4945652173913042e-07, "epoch": 0.09040105193951348, "percentage": 3.02, "elapsed_time": "0:38:19", "remaining_time": "20:32:34"}
12
+ {"current_steps": 60, "total_steps": 1824, "loss": 1.0046, "accuracy": 0.9599999785423279, "learning_rate": 1.6304347826086955e-07, "epoch": 0.09861932938856016, "percentage": 3.29, "elapsed_time": "0:41:49", "remaining_time": "20:29:24"}
13
+ {"current_steps": 65, "total_steps": 1824, "loss": 0.9338, "accuracy": 0.949999988079071, "learning_rate": 1.766304347826087e-07, "epoch": 0.10683760683760683, "percentage": 3.56, "elapsed_time": "0:45:20", "remaining_time": "20:26:53"}
14
+ {"current_steps": 70, "total_steps": 1824, "loss": 0.8671, "accuracy": 0.9599999785423279, "learning_rate": 1.9021739130434784e-07, "epoch": 0.11505588428665352, "percentage": 3.84, "elapsed_time": "0:48:47", "remaining_time": "20:22:41"}
15
+ {"current_steps": 75, "total_steps": 1824, "loss": 0.8076, "accuracy": 0.9800000190734863, "learning_rate": 2.0380434782608694e-07, "epoch": 0.1232741617357002, "percentage": 4.11, "elapsed_time": "0:52:18", "remaining_time": "20:19:59"}
16
+ {"current_steps": 80, "total_steps": 1824, "loss": 0.842, "accuracy": 0.9399999976158142, "learning_rate": 2.1739130434782607e-07, "epoch": 0.13149243918474687, "percentage": 4.39, "elapsed_time": "0:55:49", "remaining_time": "20:16:49"}
17
+ {"current_steps": 85, "total_steps": 1824, "loss": 0.7489, "accuracy": 0.9700000286102295, "learning_rate": 2.309782608695652e-07, "epoch": 0.13971071663379356, "percentage": 4.66, "elapsed_time": "0:59:17", "remaining_time": "20:13:04"}
18
+ {"current_steps": 90, "total_steps": 1824, "loss": 0.8269, "accuracy": 0.9700000286102295, "learning_rate": 2.445652173913043e-07, "epoch": 0.14792899408284024, "percentage": 4.93, "elapsed_time": "1:02:46", "remaining_time": "20:09:19"}
19
+ {"current_steps": 95, "total_steps": 1824, "loss": 0.8771, "accuracy": 0.9100000262260437, "learning_rate": 2.499981493451693e-07, "epoch": 0.15614727153188693, "percentage": 5.21, "elapsed_time": "1:06:13", "remaining_time": "20:05:17"}
20
+ {"current_steps": 100, "total_steps": 1824, "loss": 0.7676, "accuracy": 0.9200000166893005, "learning_rate": 2.499868399863186e-07, "epoch": 0.16436554898093358, "percentage": 5.48, "elapsed_time": "1:09:41", "remaining_time": "20:01:27"}
21
+ {"current_steps": 105, "total_steps": 1824, "loss": 0.7133, "accuracy": 0.9300000071525574, "learning_rate": 2.4996525033926786e-07, "epoch": 0.17258382642998027, "percentage": 5.76, "elapsed_time": "1:13:10", "remaining_time": "19:58:04"}
22
+ {"current_steps": 110, "total_steps": 1824, "loss": 0.7642, "accuracy": 0.9399999976158142, "learning_rate": 2.499333821797864e-07, "epoch": 0.18080210387902695, "percentage": 6.03, "elapsed_time": "1:16:39", "remaining_time": "19:54:22"}
23
+ {"current_steps": 115, "total_steps": 1824, "loss": 0.7483, "accuracy": 0.949999988079071, "learning_rate": 2.4989123812906105e-07, "epoch": 0.18902038132807364, "percentage": 6.3, "elapsed_time": "1:20:06", "remaining_time": "19:50:33"}
24
+ {"current_steps": 120, "total_steps": 1824, "loss": 0.7063, "accuracy": 0.8799999952316284, "learning_rate": 2.498388216534807e-07, "epoch": 0.19723865877712032, "percentage": 6.58, "elapsed_time": "1:23:35", "remaining_time": "19:46:58"}
25
+ {"current_steps": 125, "total_steps": 1824, "loss": 0.7148, "accuracy": 0.949999988079071, "learning_rate": 2.49776137064351e-07, "epoch": 0.205456936226167, "percentage": 6.85, "elapsed_time": "1:27:04", "remaining_time": "19:43:24"}
26
+ {"current_steps": 130, "total_steps": 1824, "loss": 0.6619, "accuracy": 0.9800000190734863, "learning_rate": 2.4970318951754e-07, "epoch": 0.21367521367521367, "percentage": 7.13, "elapsed_time": "1:30:32", "remaining_time": "19:39:51"}
27
+ {"current_steps": 135, "total_steps": 1824, "loss": 0.7109, "accuracy": 0.9700000286102295, "learning_rate": 2.496199850130537e-07, "epoch": 0.22189349112426035, "percentage": 7.4, "elapsed_time": "1:34:01", "remaining_time": "19:36:20"}
28
+ {"current_steps": 140, "total_steps": 1824, "loss": 0.703, "accuracy": 0.9300000071525574, "learning_rate": 2.4952653039454297e-07, "epoch": 0.23011176857330704, "percentage": 7.68, "elapsed_time": "1:37:30", "remaining_time": "19:32:50"}
29
+ {"current_steps": 145, "total_steps": 1824, "loss": 0.6182, "accuracy": 0.949999988079071, "learning_rate": 2.494228333487403e-07, "epoch": 0.23833004602235372, "percentage": 7.95, "elapsed_time": "1:40:58", "remaining_time": "19:29:08"}
30
+ {"current_steps": 150, "total_steps": 1824, "loss": 0.671, "accuracy": 0.949999988079071, "learning_rate": 2.4930890240482784e-07, "epoch": 0.2465483234714004, "percentage": 8.22, "elapsed_time": "1:44:27", "remaining_time": "19:25:39"}
31
+ {"current_steps": 155, "total_steps": 1824, "loss": 0.6461, "accuracy": 0.9200000166893005, "learning_rate": 2.491847469337356e-07, "epoch": 0.25476660092044706, "percentage": 8.5, "elapsed_time": "1:47:56", "remaining_time": "19:22:20"}
32
+ {"current_steps": 160, "total_steps": 1824, "loss": 0.7398, "accuracy": 0.9700000286102295, "learning_rate": 2.4905037714737094e-07, "epoch": 0.26298487836949375, "percentage": 8.77, "elapsed_time": "1:51:25", "remaining_time": "19:18:44"}
33
+ {"current_steps": 165, "total_steps": 1824, "loss": 0.6633, "accuracy": 0.949999988079071, "learning_rate": 2.489058040977784e-07, "epoch": 0.27120315581854043, "percentage": 9.05, "elapsed_time": "1:54:53", "remaining_time": "19:15:10"}
34
+ {"current_steps": 170, "total_steps": 1824, "loss": 0.6512, "accuracy": 0.9700000286102295, "learning_rate": 2.487510396762309e-07, "epoch": 0.2794214332675871, "percentage": 9.32, "elapsed_time": "1:58:21", "remaining_time": "19:11:37"}
35
+ {"current_steps": 175, "total_steps": 1824, "loss": 0.6218, "accuracy": 0.9700000286102295, "learning_rate": 2.485860966122514e-07, "epoch": 0.2876397107166338, "percentage": 9.59, "elapsed_time": "2:01:50", "remaining_time": "19:08:03"}
36
+ {"current_steps": 180, "total_steps": 1824, "loss": 0.6908, "accuracy": 0.949999988079071, "learning_rate": 2.484109884725661e-07, "epoch": 0.2958579881656805, "percentage": 9.87, "elapsed_time": "2:05:20", "remaining_time": "19:04:43"}
37
+ {"current_steps": 185, "total_steps": 1824, "loss": 0.6008, "accuracy": 0.9599999785423279, "learning_rate": 2.4822572965998844e-07, "epoch": 0.30407626561472717, "percentage": 10.14, "elapsed_time": "2:08:48", "remaining_time": "19:01:11"}
38
+ {"current_steps": 190, "total_steps": 1824, "loss": 0.6281, "accuracy": 0.9599999785423279, "learning_rate": 2.4803033541223455e-07, "epoch": 0.31229454306377386, "percentage": 10.42, "elapsed_time": "2:12:16", "remaining_time": "18:57:37"}
39
+ {"current_steps": 195, "total_steps": 1824, "loss": 0.6158, "accuracy": 0.9700000286102295, "learning_rate": 2.478248218006699e-07, "epoch": 0.32051282051282054, "percentage": 10.69, "elapsed_time": "2:15:46", "remaining_time": "18:54:13"}
40
+ {"current_steps": 200, "total_steps": 1824, "loss": 0.6044, "accuracy": 0.9700000286102295, "learning_rate": 2.476092057289873e-07, "epoch": 0.32873109796186717, "percentage": 10.96, "elapsed_time": "2:19:14", "remaining_time": "18:50:39"}
41
+ {"current_steps": 205, "total_steps": 1824, "loss": 0.6532, "accuracy": 0.9599999785423279, "learning_rate": 2.473835049318167e-07, "epoch": 0.33694937541091385, "percentage": 11.24, "elapsed_time": "2:22:44", "remaining_time": "18:47:16"}
42
+ {"current_steps": 210, "total_steps": 1824, "loss": 0.6183, "accuracy": 0.9700000286102295, "learning_rate": 2.4714773797326657e-07, "epoch": 0.34516765285996054, "percentage": 11.51, "elapsed_time": "2:26:12", "remaining_time": "18:43:42"}
43
+ {"current_steps": 215, "total_steps": 1824, "loss": 0.6071, "accuracy": 0.9900000095367432, "learning_rate": 2.4690192424539663e-07, "epoch": 0.3533859303090072, "percentage": 11.79, "elapsed_time": "2:29:40", "remaining_time": "18:40:05"}
44
+ {"current_steps": 220, "total_steps": 1824, "loss": 0.562, "accuracy": 0.9700000286102295, "learning_rate": 2.466460839666233e-07, "epoch": 0.3616042077580539, "percentage": 12.06, "elapsed_time": "2:33:09", "remaining_time": "18:36:42"}
45
+ {"current_steps": 225, "total_steps": 1824, "loss": 0.6343, "accuracy": 0.9900000095367432, "learning_rate": 2.463802381800563e-07, "epoch": 0.3698224852071006, "percentage": 12.34, "elapsed_time": "2:36:37", "remaining_time": "18:33:03"}
46
+ {"current_steps": 230, "total_steps": 1824, "loss": 0.59, "accuracy": 0.9700000286102295, "learning_rate": 2.461044087517682e-07, "epoch": 0.3780407626561473, "percentage": 12.61, "elapsed_time": "2:40:05", "remaining_time": "18:29:30"}
47
+ {"current_steps": 235, "total_steps": 1824, "loss": 0.6427, "accuracy": 0.9200000166893005, "learning_rate": 2.458186183689957e-07, "epoch": 0.38625904010519396, "percentage": 12.88, "elapsed_time": "2:43:34", "remaining_time": "18:26:01"}
48
+ {"current_steps": 240, "total_steps": 1824, "loss": 0.5599, "accuracy": 0.9399999976158142, "learning_rate": 2.4552289053827344e-07, "epoch": 0.39447731755424065, "percentage": 13.16, "elapsed_time": "2:47:02", "remaining_time": "18:22:28"}
49
+ {"current_steps": 245, "total_steps": 1824, "loss": 0.6344, "accuracy": 0.9200000166893005, "learning_rate": 2.4521724958350093e-07, "epoch": 0.40269559500328733, "percentage": 13.43, "elapsed_time": "2:50:30", "remaining_time": "18:18:54"}
50
+ {"current_steps": 250, "total_steps": 1824, "loss": 0.5475, "accuracy": 0.9900000095367432, "learning_rate": 2.449017206439417e-07, "epoch": 0.410913872452334, "percentage": 13.71, "elapsed_time": "2:53:59", "remaining_time": "18:15:24"}
51
+ {"current_steps": 255, "total_steps": 1824, "loss": 0.6424, "accuracy": 0.9700000286102295, "learning_rate": 2.445763296721554e-07, "epoch": 0.41913214990138065, "percentage": 13.98, "elapsed_time": "2:57:26", "remaining_time": "18:11:47"}
52
+ {"current_steps": 260, "total_steps": 1824, "loss": 0.6183, "accuracy": 0.9300000071525574, "learning_rate": 2.4424110343186345e-07, "epoch": 0.42735042735042733, "percentage": 14.25, "elapsed_time": "3:00:55", "remaining_time": "18:08:19"}
53
+ {"current_steps": 265, "total_steps": 1824, "loss": 0.5961, "accuracy": 0.9800000190734863, "learning_rate": 2.4389606949574767e-07, "epoch": 0.435568704799474, "percentage": 14.53, "elapsed_time": "3:04:26", "remaining_time": "18:05:07"}
54
+ {"current_steps": 270, "total_steps": 1824, "loss": 0.547, "accuracy": 0.9200000166893005, "learning_rate": 2.435412562431823e-07, "epoch": 0.4437869822485207, "percentage": 14.8, "elapsed_time": "3:07:55", "remaining_time": "18:01:37"}
55
+ {"current_steps": 275, "total_steps": 1824, "loss": 0.5759, "accuracy": 0.9200000166893005, "learning_rate": 2.4317669285789964e-07, "epoch": 0.4520052596975674, "percentage": 15.08, "elapsed_time": "3:11:23", "remaining_time": "17:58:05"}
56
+ {"current_steps": 280, "total_steps": 1824, "loss": 0.6028, "accuracy": 0.9599999785423279, "learning_rate": 2.428024093255901e-07, "epoch": 0.46022353714661407, "percentage": 15.35, "elapsed_time": "3:14:55", "remaining_time": "17:54:52"}
57
+ {"current_steps": 285, "total_steps": 1824, "loss": 0.5687, "accuracy": 0.949999988079071, "learning_rate": 2.424184364314352e-07, "epoch": 0.46844181459566075, "percentage": 15.62, "elapsed_time": "3:18:24", "remaining_time": "17:51:24"}
58
+ {"current_steps": 290, "total_steps": 1824, "loss": 0.5783, "accuracy": 0.9700000286102295, "learning_rate": 2.420248057575761e-07, "epoch": 0.47666009204470744, "percentage": 15.9, "elapsed_time": "3:21:53", "remaining_time": "17:47:53"}
59
+ {"current_steps": 295, "total_steps": 1824, "loss": 0.5665, "accuracy": 0.9700000286102295, "learning_rate": 2.416215496805156e-07, "epoch": 0.4848783694937541, "percentage": 16.17, "elapsed_time": "3:25:21", "remaining_time": "17:44:24"}
60
+ {"current_steps": 300, "total_steps": 1824, "loss": 0.6409, "accuracy": 0.9800000190734863, "learning_rate": 2.412087013684552e-07, "epoch": 0.4930966469428008, "percentage": 16.45, "elapsed_time": "3:28:50", "remaining_time": "17:40:57"}
61
+ {"current_steps": 305, "total_steps": 1824, "loss": 0.487, "accuracy": 0.9800000190734863, "learning_rate": 2.407862947785669e-07, "epoch": 0.5013149243918474, "percentage": 16.72, "elapsed_time": "3:32:19", "remaining_time": "17:37:24"}
62
+ {"current_steps": 310, "total_steps": 1824, "loss": 0.6388, "accuracy": 0.9700000286102295, "learning_rate": 2.403543646542003e-07, "epoch": 0.5095332018408941, "percentage": 17.0, "elapsed_time": "3:35:48", "remaining_time": "17:33:58"}
63
+ {"current_steps": 315, "total_steps": 1824, "loss": 0.5741, "accuracy": 0.9700000286102295, "learning_rate": 2.39912946522025e-07, "epoch": 0.5177514792899408, "percentage": 17.27, "elapsed_time": "3:39:16", "remaining_time": "17:30:26"}
64
+ {"current_steps": 320, "total_steps": 1824, "loss": 0.5869, "accuracy": 0.9200000166893005, "learning_rate": 2.3946207668910833e-07, "epoch": 0.5259697567389875, "percentage": 17.54, "elapsed_time": "3:42:45", "remaining_time": "17:26:56"}
65
+ {"current_steps": 325, "total_steps": 1824, "loss": 0.6145, "accuracy": 0.949999988079071, "learning_rate": 2.390017922399292e-07, "epoch": 0.5341880341880342, "percentage": 17.82, "elapsed_time": "3:46:13", "remaining_time": "17:23:22"}
66
+ {"current_steps": 330, "total_steps": 1824, "loss": 0.6284, "accuracy": 0.9100000262260437, "learning_rate": 2.385321310333276e-07, "epoch": 0.5424063116370809, "percentage": 18.09, "elapsed_time": "3:49:41", "remaining_time": "17:19:54"}
67
+ {"current_steps": 335, "total_steps": 1824, "loss": 0.5688, "accuracy": 0.949999988079071, "learning_rate": 2.38053131699391e-07, "epoch": 0.5506245890861275, "percentage": 18.37, "elapsed_time": "3:53:10", "remaining_time": "17:16:24"}
68
+ {"current_steps": 340, "total_steps": 1824, "loss": 0.5981, "accuracy": 0.9700000286102295, "learning_rate": 2.3756483363627694e-07, "epoch": 0.5588428665351742, "percentage": 18.64, "elapsed_time": "3:56:38", "remaining_time": "17:12:50"}
69
+ {"current_steps": 345, "total_steps": 1824, "loss": 0.5567, "accuracy": 0.9800000190734863, "learning_rate": 2.3706727700697226e-07, "epoch": 0.5670611439842209, "percentage": 18.91, "elapsed_time": "4:00:06", "remaining_time": "17:09:20"}
70
+ {"current_steps": 350, "total_steps": 1824, "loss": 0.5363, "accuracy": 0.9599999785423279, "learning_rate": 2.3656050273598986e-07, "epoch": 0.5752794214332676, "percentage": 19.19, "elapsed_time": "4:03:35", "remaining_time": "17:05:53"}
71
+ {"current_steps": 355, "total_steps": 1824, "loss": 0.516, "accuracy": 0.949999988079071, "learning_rate": 2.3604455250600256e-07, "epoch": 0.5834976988823143, "percentage": 19.46, "elapsed_time": "4:07:03", "remaining_time": "17:02:21"}
72
+ {"current_steps": 360, "total_steps": 1824, "loss": 0.586, "accuracy": 1.0, "learning_rate": 2.3551946875441467e-07, "epoch": 0.591715976331361, "percentage": 19.74, "elapsed_time": "4:10:32", "remaining_time": "16:58:51"}
73
+ {"current_steps": 365, "total_steps": 1824, "loss": 0.6121, "accuracy": 0.9700000286102295, "learning_rate": 2.3498529466987147e-07, "epoch": 0.5999342537804077, "percentage": 20.01, "elapsed_time": "4:14:01", "remaining_time": "16:55:25"}
74
+ {"current_steps": 370, "total_steps": 1824, "loss": 0.5471, "accuracy": 0.9100000262260437, "learning_rate": 2.3444207418870688e-07, "epoch": 0.6081525312294543, "percentage": 20.29, "elapsed_time": "4:17:31", "remaining_time": "16:52:01"}
75
+ {"current_steps": 375, "total_steps": 1824, "loss": 0.5578, "accuracy": 0.949999988079071, "learning_rate": 2.3388985199132962e-07, "epoch": 0.616370808678501, "percentage": 20.56, "elapsed_time": "4:20:59", "remaining_time": "16:48:28"}
76
+ {"current_steps": 380, "total_steps": 1824, "loss": 0.6283, "accuracy": 0.949999988079071, "learning_rate": 2.3332867349854844e-07, "epoch": 0.6245890861275477, "percentage": 20.83, "elapsed_time": "4:24:29", "remaining_time": "16:45:05"}
77
+ {"current_steps": 385, "total_steps": 1824, "loss": 0.5824, "accuracy": 0.9599999785423279, "learning_rate": 2.3275858486783578e-07, "epoch": 0.6328073635765944, "percentage": 21.11, "elapsed_time": "4:27:58", "remaining_time": "16:41:34"}
78
+ {"current_steps": 390, "total_steps": 1824, "loss": 0.5813, "accuracy": 0.9700000286102295, "learning_rate": 2.321796329895317e-07, "epoch": 0.6410256410256411, "percentage": 21.38, "elapsed_time": "4:31:26", "remaining_time": "16:38:03"}
79
+ {"current_steps": 395, "total_steps": 1824, "loss": 0.5278, "accuracy": 0.949999988079071, "learning_rate": 2.3159186548298688e-07, "epoch": 0.6492439184746877, "percentage": 21.66, "elapsed_time": "4:34:54", "remaining_time": "16:34:33"}
80
+ {"current_steps": 400, "total_steps": 1824, "loss": 0.5419, "accuracy": 0.9399999976158142, "learning_rate": 2.3099533069264594e-07, "epoch": 0.6574621959237343, "percentage": 21.93, "elapsed_time": "4:38:23", "remaining_time": "16:31:03"}
81
+ {"current_steps": 405, "total_steps": 1824, "loss": 0.581, "accuracy": 0.9700000286102295, "learning_rate": 2.3039007768407098e-07, "epoch": 0.665680473372781, "percentage": 22.2, "elapsed_time": "4:41:51", "remaining_time": "16:27:33"}
82
+ {"current_steps": 410, "total_steps": 1824, "loss": 0.555, "accuracy": 0.9700000286102295, "learning_rate": 2.2977615623990603e-07, "epoch": 0.6738987508218277, "percentage": 22.48, "elapsed_time": "4:45:20", "remaining_time": "16:24:04"}
83
+ {"current_steps": 415, "total_steps": 1824, "loss": 0.5501, "accuracy": 0.9700000286102295, "learning_rate": 2.2915361685578235e-07, "epoch": 0.6821170282708744, "percentage": 22.75, "elapsed_time": "4:48:49", "remaining_time": "16:20:37"}
84
+ {"current_steps": 420, "total_steps": 1824, "loss": 0.4948, "accuracy": 0.9700000286102295, "learning_rate": 2.2852251073616503e-07, "epoch": 0.6903353057199211, "percentage": 23.03, "elapsed_time": "4:52:19", "remaining_time": "16:17:12"}
85
+ {"current_steps": 425, "total_steps": 1824, "loss": 0.5473, "accuracy": 0.9399999976158142, "learning_rate": 2.2788288979014132e-07, "epoch": 0.6985535831689678, "percentage": 23.3, "elapsed_time": "4:55:47", "remaining_time": "16:13:41"}
86
+ {"current_steps": 430, "total_steps": 1824, "loss": 0.5712, "accuracy": 0.8899999856948853, "learning_rate": 2.2723480662715134e-07, "epoch": 0.7067718606180144, "percentage": 23.57, "elapsed_time": "4:59:17", "remaining_time": "16:10:14"}
87
+ {"current_steps": 435, "total_steps": 1824, "loss": 0.6137, "accuracy": 0.9399999976158142, "learning_rate": 2.2657831455266063e-07, "epoch": 0.7149901380670611, "percentage": 23.85, "elapsed_time": "5:02:44", "remaining_time": "16:06:41"}
88
+ {"current_steps": 440, "total_steps": 1824, "loss": 0.5325, "accuracy": 0.9399999976158142, "learning_rate": 2.2591346756377588e-07, "epoch": 0.7232084155161078, "percentage": 24.12, "elapsed_time": "5:06:14", "remaining_time": "16:03:14"}
89
+ {"current_steps": 445, "total_steps": 1824, "loss": 0.5582, "accuracy": 0.9800000190734863, "learning_rate": 2.252403203448034e-07, "epoch": 0.7314266929651545, "percentage": 24.4, "elapsed_time": "5:09:42", "remaining_time": "15:59:43"}
90
+ {"current_steps": 450, "total_steps": 1824, "loss": 0.5556, "accuracy": 0.9700000286102295, "learning_rate": 2.2455892826275155e-07, "epoch": 0.7396449704142012, "percentage": 24.67, "elapsed_time": "5:13:11", "remaining_time": "15:56:15"}
91
+ {"current_steps": 455, "total_steps": 1824, "loss": 0.577, "accuracy": 0.9399999976158142, "learning_rate": 2.2386934736277666e-07, "epoch": 0.7478632478632479, "percentage": 24.95, "elapsed_time": "5:16:38", "remaining_time": "15:52:42"}
92
+ {"current_steps": 460, "total_steps": 1824, "loss": 0.5363, "accuracy": 0.9700000286102295, "learning_rate": 2.2317163436357317e-07, "epoch": 0.7560815253122946, "percentage": 25.22, "elapsed_time": "5:20:07", "remaining_time": "15:49:14"}
93
+ {"current_steps": 465, "total_steps": 1824, "loss": 0.4837, "accuracy": 0.9700000286102295, "learning_rate": 2.2246584665270855e-07, "epoch": 0.7642998027613412, "percentage": 25.49, "elapsed_time": "5:23:38", "remaining_time": "15:45:51"}
94
+ {"current_steps": 470, "total_steps": 1824, "loss": 0.6008, "accuracy": 0.9700000286102295, "learning_rate": 2.2175204228190308e-07, "epoch": 0.7725180802103879, "percentage": 25.77, "elapsed_time": "5:27:06", "remaining_time": "15:42:21"}
95
+ {"current_steps": 475, "total_steps": 1824, "loss": 0.5997, "accuracy": 0.9599999785423279, "learning_rate": 2.2103027996225512e-07, "epoch": 0.7807363576594346, "percentage": 26.04, "elapsed_time": "5:30:34", "remaining_time": "15:38:49"}
96
+ {"current_steps": 480, "total_steps": 1824, "loss": 0.5072, "accuracy": 0.9800000190734863, "learning_rate": 2.2030061905941193e-07, "epoch": 0.7889546351084813, "percentage": 26.32, "elapsed_time": "5:34:03", "remaining_time": "15:35:21"}
97
+ {"current_steps": 485, "total_steps": 1824, "loss": 0.4832, "accuracy": 0.9800000190734863, "learning_rate": 2.1956311958868684e-07, "epoch": 0.797172912557528, "percentage": 26.59, "elapsed_time": "5:37:31", "remaining_time": "15:31:50"}
98
+ {"current_steps": 490, "total_steps": 1824, "loss": 0.5522, "accuracy": 0.9100000262260437, "learning_rate": 2.1881784221012307e-07, "epoch": 0.8053911900065747, "percentage": 26.86, "elapsed_time": "5:41:00", "remaining_time": "15:28:22"}
99
+ {"current_steps": 495, "total_steps": 1824, "loss": 0.511, "accuracy": 0.9599999785423279, "learning_rate": 2.1806484822350417e-07, "epoch": 0.8136094674556213, "percentage": 27.14, "elapsed_time": "5:44:29", "remaining_time": "15:24:53"}
100
+ {"current_steps": 500, "total_steps": 1824, "loss": 0.4967, "accuracy": 0.9800000190734863, "learning_rate": 2.1730419956331215e-07, "epoch": 0.821827744904668, "percentage": 27.41, "elapsed_time": "5:47:57", "remaining_time": "15:21:24"}
101
+ {"current_steps": 505, "total_steps": 1824, "loss": 0.5762, "accuracy": 0.9800000190734863, "learning_rate": 2.1653595879363335e-07, "epoch": 0.8300460223537146, "percentage": 27.69, "elapsed_time": "5:51:24", "remaining_time": "15:17:51"}
102
+ {"current_steps": 510, "total_steps": 1824, "loss": 0.5308, "accuracy": 0.949999988079071, "learning_rate": 2.1576018910301238e-07, "epoch": 0.8382642998027613, "percentage": 27.96, "elapsed_time": "5:54:53", "remaining_time": "15:14:21"}
103
+ {"current_steps": 515, "total_steps": 1824, "loss": 0.5127, "accuracy": 0.9700000286102295, "learning_rate": 2.1497695429925497e-07, "epoch": 0.846482577251808, "percentage": 28.23, "elapsed_time": "5:58:23", "remaining_time": "15:10:57"}
104
+ {"current_steps": 520, "total_steps": 1824, "loss": 0.5705, "accuracy": 0.9700000286102295, "learning_rate": 2.1418631880417954e-07, "epoch": 0.8547008547008547, "percentage": 28.51, "elapsed_time": "6:01:52", "remaining_time": "15:07:27"}
105
+ {"current_steps": 525, "total_steps": 1824, "loss": 0.5076, "accuracy": 0.9800000190734863, "learning_rate": 2.1338834764831843e-07, "epoch": 0.8629191321499013, "percentage": 28.78, "elapsed_time": "6:05:20", "remaining_time": "15:03:57"}
106
+ {"current_steps": 530, "total_steps": 1824, "loss": 0.4869, "accuracy": 0.9599999785423279, "learning_rate": 2.125831064655693e-07, "epoch": 0.871137409598948, "percentage": 29.06, "elapsed_time": "6:08:48", "remaining_time": "15:00:27"}
107
+ {"current_steps": 535, "total_steps": 1824, "loss": 0.5328, "accuracy": 0.9800000190734863, "learning_rate": 2.1177066148779655e-07, "epoch": 0.8793556870479947, "percentage": 29.33, "elapsed_time": "6:12:17", "remaining_time": "14:56:59"}
108
+ {"current_steps": 540, "total_steps": 1824, "loss": 0.491, "accuracy": 0.9599999785423279, "learning_rate": 2.1095107953938348e-07, "epoch": 0.8875739644970414, "percentage": 29.61, "elapsed_time": "6:15:45", "remaining_time": "14:53:28"}
109
+ {"current_steps": 545, "total_steps": 1824, "loss": 0.452, "accuracy": 0.9700000286102295, "learning_rate": 2.1012442803173634e-07, "epoch": 0.8957922419460881, "percentage": 29.88, "elapsed_time": "6:19:14", "remaining_time": "14:50:00"}
110
+ {"current_steps": 550, "total_steps": 1824, "loss": 0.5177, "accuracy": 0.9599999785423279, "learning_rate": 2.0929077495773927e-07, "epoch": 0.9040105193951348, "percentage": 30.15, "elapsed_time": "6:22:44", "remaining_time": "14:46:33"}
111
+ {"current_steps": 555, "total_steps": 1824, "loss": 0.4794, "accuracy": 0.9800000190734863, "learning_rate": 2.0845018888616212e-07, "epoch": 0.9122287968441815, "percentage": 30.43, "elapsed_time": "6:26:11", "remaining_time": "14:43:02"}
112
+ {"current_steps": 560, "total_steps": 1824, "loss": 0.5335, "accuracy": 0.949999988079071, "learning_rate": 2.0760273895602037e-07, "epoch": 0.9204470742932281, "percentage": 30.7, "elapsed_time": "6:29:40", "remaining_time": "14:39:33"}
113
+ {"current_steps": 565, "total_steps": 1824, "loss": 0.5958, "accuracy": 0.949999988079071, "learning_rate": 2.0674849487088864e-07, "epoch": 0.9286653517422748, "percentage": 30.98, "elapsed_time": "6:33:10", "remaining_time": "14:36:07"}
114
+ {"current_steps": 570, "total_steps": 1824, "loss": 0.5319, "accuracy": 0.949999988079071, "learning_rate": 2.0588752689316723e-07, "epoch": 0.9368836291913215, "percentage": 31.25, "elapsed_time": "6:36:39", "remaining_time": "14:32:39"}
115
+ {"current_steps": 575, "total_steps": 1824, "loss": 0.4981, "accuracy": 0.9599999785423279, "learning_rate": 2.0501990583830315e-07, "epoch": 0.9451019066403682, "percentage": 31.52, "elapsed_time": "6:40:07", "remaining_time": "14:29:08"}
116
+ {"current_steps": 580, "total_steps": 1824, "loss": 0.5512, "accuracy": 0.9399999976158142, "learning_rate": 2.0414570306896536e-07, "epoch": 0.9533201840894149, "percentage": 31.8, "elapsed_time": "6:43:35", "remaining_time": "14:25:38"}
117
+ {"current_steps": 585, "total_steps": 1824, "loss": 0.5755, "accuracy": 0.9599999785423279, "learning_rate": 2.0326499048917527e-07, "epoch": 0.9615384615384616, "percentage": 32.07, "elapsed_time": "6:47:04", "remaining_time": "14:22:10"}
118
+ {"current_steps": 590, "total_steps": 1824, "loss": 0.4418, "accuracy": 0.9599999785423279, "learning_rate": 2.023778405383925e-07, "epoch": 0.9697567389875082, "percentage": 32.35, "elapsed_time": "6:50:32", "remaining_time": "14:18:38"}
119
+ {"current_steps": 595, "total_steps": 1824, "loss": 0.5262, "accuracy": 0.9599999785423279, "learning_rate": 2.0148432618555651e-07, "epoch": 0.9779750164365549, "percentage": 32.62, "elapsed_time": "6:54:00", "remaining_time": "14:15:08"}
120
+ {"current_steps": 600, "total_steps": 1824, "loss": 0.5167, "accuracy": 0.9599999785423279, "learning_rate": 2.005845209230851e-07, "epoch": 0.9861932938856016, "percentage": 32.89, "elapsed_time": "6:57:29", "remaining_time": "14:11:41"}
121
+ {"current_steps": 605, "total_steps": 1824, "loss": 0.5367, "accuracy": 0.949999988079071, "learning_rate": 1.9967849876082937e-07, "epoch": 0.9944115713346483, "percentage": 33.17, "elapsed_time": "7:00:57", "remaining_time": "14:08:11"}
122
+ {"current_steps": 610, "total_steps": 1824, "loss": 0.4734, "accuracy": 0.9800000190734863, "learning_rate": 1.9876633421998652e-07, "epoch": 1.0026298487836949, "percentage": 33.44, "elapsed_time": "7:04:50", "remaining_time": "14:05:29"}
123
+ {"current_steps": 615, "total_steps": 1824, "loss": 0.4473, "accuracy": 0.9700000286102295, "learning_rate": 1.9784810232697024e-07, "epoch": 1.0108481262327416, "percentage": 33.72, "elapsed_time": "7:08:18", "remaining_time": "14:01:59"}
124
+ {"current_steps": 620, "total_steps": 1824, "loss": 0.423, "accuracy": 1.0, "learning_rate": 1.969238786072398e-07, "epoch": 1.0190664036817882, "percentage": 33.99, "elapsed_time": "7:11:48", "remaining_time": "13:58:32"}
125
+ {"current_steps": 625, "total_steps": 1824, "loss": 0.4746, "accuracy": 0.9700000286102295, "learning_rate": 1.9599373907908803e-07, "epoch": 1.027284681130835, "percentage": 34.27, "elapsed_time": "7:15:16", "remaining_time": "13:55:01"}
126
+ {"current_steps": 630, "total_steps": 1824, "loss": 0.494, "accuracy": 0.9599999785423279, "learning_rate": 1.9505776024738873e-07, "epoch": 1.0355029585798816, "percentage": 34.54, "elapsed_time": "7:18:44", "remaining_time": "13:51:31"}
127
+ {"current_steps": 635, "total_steps": 1824, "loss": 0.5568, "accuracy": 0.949999988079071, "learning_rate": 1.9411601909730397e-07, "epoch": 1.0437212360289283, "percentage": 34.81, "elapsed_time": "7:22:14", "remaining_time": "13:48:03"}
128
+ {"current_steps": 640, "total_steps": 1824, "loss": 0.5268, "accuracy": 0.949999988079071, "learning_rate": 1.9316859308795215e-07, "epoch": 1.051939513477975, "percentage": 35.09, "elapsed_time": "7:25:44", "remaining_time": "13:44:36"}
129
+ {"current_steps": 645, "total_steps": 1824, "loss": 0.4933, "accuracy": 0.949999988079071, "learning_rate": 1.9221556014603674e-07, "epoch": 1.0601577909270217, "percentage": 35.36, "elapsed_time": "7:29:13", "remaining_time": "13:41:07"}
130
+ {"current_steps": 650, "total_steps": 1824, "loss": 0.4992, "accuracy": 0.9399999976158142, "learning_rate": 1.9125699865943696e-07, "epoch": 1.0683760683760684, "percentage": 35.64, "elapsed_time": "7:32:41", "remaining_time": "13:37:38"}
131
+ {"current_steps": 655, "total_steps": 1824, "loss": 0.4653, "accuracy": 1.0, "learning_rate": 1.9029298747076e-07, "epoch": 1.076594345825115, "percentage": 35.91, "elapsed_time": "7:36:10", "remaining_time": "13:34:08"}
132
+ {"current_steps": 660, "total_steps": 1824, "loss": 0.4897, "accuracy": 0.9800000190734863, "learning_rate": 1.893236058708565e-07, "epoch": 1.0848126232741617, "percentage": 36.18, "elapsed_time": "7:39:38", "remaining_time": "13:30:38"}
133
+ {"current_steps": 665, "total_steps": 1824, "loss": 0.4925, "accuracy": 0.9599999785423279, "learning_rate": 1.8834893359229839e-07, "epoch": 1.0930309007232084, "percentage": 36.46, "elapsed_time": "7:43:07", "remaining_time": "13:27:09"}
134
+ {"current_steps": 670, "total_steps": 1824, "loss": 0.5118, "accuracy": 0.9800000190734863, "learning_rate": 1.8736905080282117e-07, "epoch": 1.101249178172255, "percentage": 36.73, "elapsed_time": "7:46:35", "remaining_time": "13:23:39"}
135
+ {"current_steps": 675, "total_steps": 1824, "loss": 0.4881, "accuracy": 0.9100000262260437, "learning_rate": 1.8638403809872988e-07, "epoch": 1.1094674556213018, "percentage": 37.01, "elapsed_time": "7:50:03", "remaining_time": "13:20:08"}
136
+ {"current_steps": 680, "total_steps": 1824, "loss": 0.4408, "accuracy": 0.9800000190734863, "learning_rate": 1.8539397649826993e-07, "epoch": 1.1176857330703485, "percentage": 37.28, "elapsed_time": "7:53:32", "remaining_time": "13:16:39"}
137
+ {"current_steps": 685, "total_steps": 1824, "loss": 0.464, "accuracy": 0.9800000190734863, "learning_rate": 1.8439894743496336e-07, "epoch": 1.1259040105193951, "percentage": 37.55, "elapsed_time": "7:57:03", "remaining_time": "13:13:13"}
138
+ {"current_steps": 690, "total_steps": 1824, "loss": 0.4292, "accuracy": 1.0, "learning_rate": 1.8339903275091085e-07, "epoch": 1.1341222879684418, "percentage": 37.83, "elapsed_time": "8:00:32", "remaining_time": "13:09:45"}
139
+ {"current_steps": 695, "total_steps": 1824, "loss": 0.4627, "accuracy": 0.9399999976158142, "learning_rate": 1.8239431469006e-07, "epoch": 1.1423405654174885, "percentage": 38.1, "elapsed_time": "8:03:59", "remaining_time": "13:06:14"}
140
+ {"current_steps": 700, "total_steps": 1824, "loss": 0.5063, "accuracy": 0.9700000286102295, "learning_rate": 1.8138487589144093e-07, "epoch": 1.1505588428665352, "percentage": 38.38, "elapsed_time": "8:07:29", "remaining_time": "13:02:46"}
141
+ {"current_steps": 705, "total_steps": 1824, "loss": 0.4823, "accuracy": 0.9599999785423279, "learning_rate": 1.8037079938236894e-07, "epoch": 1.1587771203155819, "percentage": 38.65, "elapsed_time": "8:10:56", "remaining_time": "12:59:14"}
142
+ {"current_steps": 710, "total_steps": 1824, "loss": 0.4268, "accuracy": 0.9800000190734863, "learning_rate": 1.793521685716154e-07, "epoch": 1.1669953977646286, "percentage": 38.93, "elapsed_time": "8:14:26", "remaining_time": "12:55:47"}
143
+ {"current_steps": 715, "total_steps": 1824, "loss": 0.4347, "accuracy": 0.9700000286102295, "learning_rate": 1.7832906724254747e-07, "epoch": 1.1752136752136753, "percentage": 39.2, "elapsed_time": "8:17:54", "remaining_time": "12:52:17"}
144
+ {"current_steps": 720, "total_steps": 1824, "loss": 0.5001, "accuracy": 0.9599999785423279, "learning_rate": 1.7730157954623685e-07, "epoch": 1.183431952662722, "percentage": 39.47, "elapsed_time": "8:21:22", "remaining_time": "12:48:46"}
145
+ {"current_steps": 725, "total_steps": 1824, "loss": 0.3929, "accuracy": 0.9900000095367432, "learning_rate": 1.7626978999453794e-07, "epoch": 1.1916502301117686, "percentage": 39.75, "elapsed_time": "8:24:51", "remaining_time": "12:45:17"}
146
+ {"current_steps": 730, "total_steps": 1824, "loss": 0.5242, "accuracy": 0.9900000095367432, "learning_rate": 1.7523378345313714e-07, "epoch": 1.1998685075608153, "percentage": 40.02, "elapsed_time": "8:28:19", "remaining_time": "12:41:47"}
147
+ {"current_steps": 735, "total_steps": 1824, "loss": 0.4562, "accuracy": 0.9900000095367432, "learning_rate": 1.741936451345722e-07, "epoch": 1.208086785009862, "percentage": 40.3, "elapsed_time": "8:31:48", "remaining_time": "12:38:18"}
148
+ {"current_steps": 740, "total_steps": 1824, "loss": 0.4598, "accuracy": 0.9700000286102295, "learning_rate": 1.731494605912235e-07, "epoch": 1.2163050624589087, "percentage": 40.57, "elapsed_time": "8:35:17", "remaining_time": "12:34:49"}
149
+ {"current_steps": 745, "total_steps": 1824, "loss": 0.4921, "accuracy": 0.9599999785423279, "learning_rate": 1.721013157082774e-07, "epoch": 1.2245233399079554, "percentage": 40.84, "elapsed_time": "8:38:47", "remaining_time": "12:31:23"}
150
+ {"current_steps": 750, "total_steps": 1824, "loss": 0.5132, "accuracy": 0.9800000190734863, "learning_rate": 1.7104929669666194e-07, "epoch": 1.232741617357002, "percentage": 41.12, "elapsed_time": "8:42:16", "remaining_time": "12:27:53"}
151
+ {"current_steps": 755, "total_steps": 1824, "loss": 0.4746, "accuracy": 0.9599999785423279, "learning_rate": 1.69993490085956e-07, "epoch": 1.2409598948060487, "percentage": 41.39, "elapsed_time": "8:45:45", "remaining_time": "12:24:24"}
152
+ {"current_steps": 760, "total_steps": 1824, "loss": 0.4574, "accuracy": 0.9900000095367432, "learning_rate": 1.6893398271727222e-07, "epoch": 1.2491781722550954, "percentage": 41.67, "elapsed_time": "8:49:13", "remaining_time": "12:20:55"}
153
+ {"current_steps": 765, "total_steps": 1824, "loss": 0.4631, "accuracy": 1.0, "learning_rate": 1.6787086173611407e-07, "epoch": 1.2573964497041419, "percentage": 41.94, "elapsed_time": "8:52:42", "remaining_time": "12:17:25"}
154
+ {"current_steps": 770, "total_steps": 1824, "loss": 0.4905, "accuracy": 0.9800000190734863, "learning_rate": 1.6680421458520813e-07, "epoch": 1.2656147271531886, "percentage": 42.21, "elapsed_time": "8:56:10", "remaining_time": "12:13:55"}
155
+ {"current_steps": 775, "total_steps": 1824, "loss": 0.4091, "accuracy": 1.0, "learning_rate": 1.6573412899731187e-07, "epoch": 1.2738330046022353, "percentage": 42.49, "elapsed_time": "8:59:39", "remaining_time": "12:10:27"}
156
+ {"current_steps": 780, "total_steps": 1824, "loss": 0.4266, "accuracy": 0.9800000190734863, "learning_rate": 1.646606929879975e-07, "epoch": 1.282051282051282, "percentage": 42.76, "elapsed_time": "9:03:07", "remaining_time": "12:06:57"}
157
+ {"current_steps": 785, "total_steps": 1824, "loss": 0.5129, "accuracy": 0.9599999785423279, "learning_rate": 1.6358399484841268e-07, "epoch": 1.2902695595003286, "percentage": 43.04, "elapsed_time": "9:06:36", "remaining_time": "12:03:28"}
158
+ {"current_steps": 790, "total_steps": 1824, "loss": 0.4581, "accuracy": 0.9800000190734863, "learning_rate": 1.625041231380184e-07, "epoch": 1.2984878369493753, "percentage": 43.31, "elapsed_time": "9:10:05", "remaining_time": "11:59:59"}
159
+ {"current_steps": 795, "total_steps": 1824, "loss": 0.4713, "accuracy": 0.9599999785423279, "learning_rate": 1.6142116667730482e-07, "epoch": 1.306706114398422, "percentage": 43.59, "elapsed_time": "9:13:32", "remaining_time": "11:56:28"}
160
+ {"current_steps": 800, "total_steps": 1824, "loss": 0.4673, "accuracy": 0.9399999976158142, "learning_rate": 1.6033521454048597e-07, "epoch": 1.3149243918474687, "percentage": 43.86, "elapsed_time": "9:17:01", "remaining_time": "11:52:59"}
161
+ {"current_steps": 805, "total_steps": 1824, "loss": 0.4065, "accuracy": 0.9800000190734863, "learning_rate": 1.5924635604817306e-07, "epoch": 1.3231426692965154, "percentage": 44.13, "elapsed_time": "9:20:30", "remaining_time": "11:49:31"}
162
+ {"current_steps": 810, "total_steps": 1824, "loss": 0.429, "accuracy": 0.949999988079071, "learning_rate": 1.5815468076002771e-07, "epoch": 1.331360946745562, "percentage": 44.41, "elapsed_time": "9:23:59", "remaining_time": "11:46:01"}
163
+ {"current_steps": 815, "total_steps": 1824, "loss": 0.4521, "accuracy": 0.9700000286102295, "learning_rate": 1.5706027846739588e-07, "epoch": 1.3395792241946087, "percentage": 44.68, "elapsed_time": "9:27:28", "remaining_time": "11:42:33"}
164
+ {"current_steps": 820, "total_steps": 1824, "loss": 0.4833, "accuracy": 0.9200000166893005, "learning_rate": 1.5596323918592227e-07, "epoch": 1.3477975016436554, "percentage": 44.96, "elapsed_time": "9:30:58", "remaining_time": "11:39:06"}
165
+ {"current_steps": 825, "total_steps": 1824, "loss": 0.4084, "accuracy": 0.949999988079071, "learning_rate": 1.5486365314814637e-07, "epoch": 1.356015779092702, "percentage": 45.23, "elapsed_time": "9:34:26", "remaining_time": "11:35:36"}
166
+ {"current_steps": 830, "total_steps": 1824, "loss": 0.46, "accuracy": 0.949999988079071, "learning_rate": 1.5376161079608088e-07, "epoch": 1.3642340565417488, "percentage": 45.5, "elapsed_time": "9:37:56", "remaining_time": "11:32:08"}
167
+ {"current_steps": 835, "total_steps": 1824, "loss": 0.4435, "accuracy": 0.9599999785423279, "learning_rate": 1.5265720277377273e-07, "epoch": 1.3724523339907955, "percentage": 45.78, "elapsed_time": "9:41:26", "remaining_time": "11:28:40"}
168
+ {"current_steps": 840, "total_steps": 1824, "loss": 0.4849, "accuracy": 0.949999988079071, "learning_rate": 1.5155051991984745e-07, "epoch": 1.3806706114398422, "percentage": 46.05, "elapsed_time": "9:44:55", "remaining_time": "11:25:11"}
169
+ {"current_steps": 845, "total_steps": 1824, "loss": 0.4367, "accuracy": 0.9800000190734863, "learning_rate": 1.504416532600378e-07, "epoch": 1.3888888888888888, "percentage": 46.33, "elapsed_time": "9:48:23", "remaining_time": "11:21:41"}
170
+ {"current_steps": 850, "total_steps": 1824, "loss": 0.4617, "accuracy": 0.949999988079071, "learning_rate": 1.4933069399969653e-07, "epoch": 1.3971071663379355, "percentage": 46.6, "elapsed_time": "9:51:51", "remaining_time": "11:18:11"}
171
+ {"current_steps": 855, "total_steps": 1824, "loss": 0.4132, "accuracy": 0.9599999785423279, "learning_rate": 1.4821773351629487e-07, "epoch": 1.4053254437869822, "percentage": 46.88, "elapsed_time": "9:55:18", "remaining_time": "11:14:41"}
172
+ {"current_steps": 860, "total_steps": 1824, "loss": 0.4363, "accuracy": 0.9800000190734863, "learning_rate": 1.4710286335190664e-07, "epoch": 1.413543721236029, "percentage": 47.15, "elapsed_time": "9:58:46", "remaining_time": "11:11:10"}
173
+ {"current_steps": 865, "total_steps": 1824, "loss": 0.4445, "accuracy": 0.9800000190734863, "learning_rate": 1.4598617520567863e-07, "epoch": 1.4217619986850756, "percentage": 47.42, "elapsed_time": "10:02:15", "remaining_time": "11:07:41"}
174
+ {"current_steps": 870, "total_steps": 1824, "loss": 0.4916, "accuracy": 0.9399999976158142, "learning_rate": 1.448677609262885e-07, "epoch": 1.4299802761341223, "percentage": 47.7, "elapsed_time": "10:05:44", "remaining_time": "11:04:13"}
175
+ {"current_steps": 875, "total_steps": 1824, "loss": 0.353, "accuracy": 0.9800000190734863, "learning_rate": 1.4374771250438997e-07, "epoch": 1.438198553583169, "percentage": 47.97, "elapsed_time": "10:09:12", "remaining_time": "11:00:44"}
176
+ {"current_steps": 880, "total_steps": 1824, "loss": 0.4398, "accuracy": 0.9599999785423279, "learning_rate": 1.4262612206504653e-07, "epoch": 1.4464168310322156, "percentage": 48.25, "elapsed_time": "10:12:41", "remaining_time": "10:57:15"}
177
+ {"current_steps": 885, "total_steps": 1824, "loss": 0.4864, "accuracy": 0.9700000286102295, "learning_rate": 1.4150308186015428e-07, "epoch": 1.4546351084812623, "percentage": 48.52, "elapsed_time": "10:16:10", "remaining_time": "10:53:46"}
178
+ {"current_steps": 890, "total_steps": 1824, "loss": 0.4823, "accuracy": 0.9700000286102295, "learning_rate": 1.4037868426085368e-07, "epoch": 1.462853385930309, "percentage": 48.79, "elapsed_time": "10:19:38", "remaining_time": "10:50:16"}
179
+ {"current_steps": 895, "total_steps": 1824, "loss": 0.4288, "accuracy": 0.9599999785423279, "learning_rate": 1.3925302174993233e-07, "epoch": 1.4710716633793557, "percentage": 49.07, "elapsed_time": "10:23:07", "remaining_time": "10:46:48"}
180
+ {"current_steps": 900, "total_steps": 1824, "loss": 0.4755, "accuracy": 0.9800000190734863, "learning_rate": 1.3812618691421803e-07, "epoch": 1.4792899408284024, "percentage": 49.34, "elapsed_time": "10:26:36", "remaining_time": "10:43:18"}
181
+ {"current_steps": 905, "total_steps": 1824, "loss": 0.4732, "accuracy": 0.9300000071525574, "learning_rate": 1.3699827243696336e-07, "epoch": 1.487508218277449, "percentage": 49.62, "elapsed_time": "10:30:04", "remaining_time": "10:39:49"}
182
+ {"current_steps": 910, "total_steps": 1824, "loss": 0.4663, "accuracy": 0.9900000095367432, "learning_rate": 1.3586937109022251e-07, "epoch": 1.4957264957264957, "percentage": 49.89, "elapsed_time": "10:33:34", "remaining_time": "10:36:21"}
183
+ {"current_steps": 915, "total_steps": 1824, "loss": 0.4515, "accuracy": 1.0, "learning_rate": 1.347395757272207e-07, "epoch": 1.5039447731755424, "percentage": 50.16, "elapsed_time": "10:37:04", "remaining_time": "10:32:54"}
184
+ {"current_steps": 920, "total_steps": 1824, "loss": 0.4632, "accuracy": 0.9399999976158142, "learning_rate": 1.3360897927471668e-07, "epoch": 1.5121630506245891, "percentage": 50.44, "elapsed_time": "10:40:33", "remaining_time": "10:29:25"}
185
+ {"current_steps": 925, "total_steps": 1824, "loss": 0.4686, "accuracy": 0.9700000286102295, "learning_rate": 1.3247767472535972e-07, "epoch": 1.5203813280736358, "percentage": 50.71, "elapsed_time": "10:44:01", "remaining_time": "10:25:55"}
186
+ {"current_steps": 930, "total_steps": 1824, "loss": 0.3908, "accuracy": 0.9800000190734863, "learning_rate": 1.3134575513004073e-07, "epoch": 1.5285996055226825, "percentage": 50.99, "elapsed_time": "10:47:31", "remaining_time": "10:22:27"}
187
+ {"current_steps": 935, "total_steps": 1824, "loss": 0.4262, "accuracy": 1.0, "learning_rate": 1.3021331359023874e-07, "epoch": 1.5368178829717292, "percentage": 51.26, "elapsed_time": "10:50:59", "remaining_time": "10:18:57"}
188
+ {"current_steps": 940, "total_steps": 1824, "loss": 0.4616, "accuracy": 0.9900000095367432, "learning_rate": 1.2908044325036312e-07, "epoch": 1.5450361604207759, "percentage": 51.54, "elapsed_time": "10:54:27", "remaining_time": "10:15:28"}
189
+ {"current_steps": 945, "total_steps": 1824, "loss": 0.4502, "accuracy": 0.949999988079071, "learning_rate": 1.2794723729009255e-07, "epoch": 1.5532544378698225, "percentage": 51.81, "elapsed_time": "10:57:57", "remaining_time": "10:11:59"}
190
+ {"current_steps": 950, "total_steps": 1824, "loss": 0.4737, "accuracy": 0.9900000095367432, "learning_rate": 1.2681378891671082e-07, "epoch": 1.5614727153188692, "percentage": 52.08, "elapsed_time": "11:01:25", "remaining_time": "10:08:31"}
191
+ {"current_steps": 955, "total_steps": 1824, "loss": 0.4349, "accuracy": 0.9900000095367432, "learning_rate": 1.2568019135744044e-07, "epoch": 1.569690992767916, "percentage": 52.36, "elapsed_time": "11:04:53", "remaining_time": "10:05:00"}
192
+ {"current_steps": 960, "total_steps": 1824, "loss": 0.4231, "accuracy": 0.9900000095367432, "learning_rate": 1.2454653785177445e-07, "epoch": 1.5779092702169626, "percentage": 52.63, "elapsed_time": "11:08:22", "remaining_time": "10:01:32"}
193
+ {"current_steps": 965, "total_steps": 1824, "loss": 0.4817, "accuracy": 0.9399999976158142, "learning_rate": 1.2341292164380783e-07, "epoch": 1.5861275476660093, "percentage": 52.91, "elapsed_time": "11:11:50", "remaining_time": "9:58:02"}
194
+ {"current_steps": 970, "total_steps": 1824, "loss": 0.4114, "accuracy": 1.0, "learning_rate": 1.222794359745675e-07, "epoch": 1.594345825115056, "percentage": 53.18, "elapsed_time": "11:15:18", "remaining_time": "9:54:33"}
195
+ {"current_steps": 975, "total_steps": 1824, "loss": 0.4326, "accuracy": 0.9800000190734863, "learning_rate": 1.2114617407434354e-07, "epoch": 1.6025641025641026, "percentage": 53.45, "elapsed_time": "11:18:47", "remaining_time": "9:51:04"}
196
+ {"current_steps": 980, "total_steps": 1824, "loss": 0.3942, "accuracy": 0.9700000286102295, "learning_rate": 1.2001322915502091e-07, "epoch": 1.6107823800131493, "percentage": 53.73, "elapsed_time": "11:22:15", "remaining_time": "9:47:34"}
197
+ {"current_steps": 985, "total_steps": 1824, "loss": 0.4222, "accuracy": 0.9800000190734863, "learning_rate": 1.1888069440241243e-07, "epoch": 1.619000657462196, "percentage": 54.0, "elapsed_time": "11:25:43", "remaining_time": "9:44:05"}
198
+ {"current_steps": 990, "total_steps": 1824, "loss": 0.4749, "accuracy": 0.9800000190734863, "learning_rate": 1.1774866296859448e-07, "epoch": 1.6272189349112427, "percentage": 54.28, "elapsed_time": "11:29:13", "remaining_time": "9:40:36"}
199
+ {"current_steps": 995, "total_steps": 1824, "loss": 0.4268, "accuracy": 0.9900000095367432, "learning_rate": 1.1661722796424478e-07, "epoch": 1.6354372123602894, "percentage": 54.55, "elapsed_time": "11:32:42", "remaining_time": "9:37:08"}
200
+ {"current_steps": 1000, "total_steps": 1824, "loss": 0.4368, "accuracy": 0.9900000095367432, "learning_rate": 1.1548648245098432e-07, "epoch": 1.643655489809336, "percentage": 54.82, "elapsed_time": "11:36:13", "remaining_time": "9:33:41"}
201
+ {"current_steps": 1005, "total_steps": 1824, "loss": 0.4208, "accuracy": 1.0, "learning_rate": 1.1435651943372278e-07, "epoch": 1.6518737672583828, "percentage": 55.1, "elapsed_time": "11:39:41", "remaining_time": "9:30:11"}
202
+ {"current_steps": 1010, "total_steps": 1824, "loss": 0.4889, "accuracy": 0.9399999976158142, "learning_rate": 1.1322743185300865e-07, "epoch": 1.6600920447074294, "percentage": 55.37, "elapsed_time": "11:43:09", "remaining_time": "9:26:41"}
203
+ {"current_steps": 1015, "total_steps": 1824, "loss": 0.4487, "accuracy": 0.9800000190734863, "learning_rate": 1.1209931257738503e-07, "epoch": 1.6683103221564761, "percentage": 55.65, "elapsed_time": "11:46:38", "remaining_time": "9:23:13"}
204
+ {"current_steps": 1020, "total_steps": 1824, "loss": 0.4648, "accuracy": 0.949999988079071, "learning_rate": 1.1097225439575096e-07, "epoch": 1.6765285996055228, "percentage": 55.92, "elapsed_time": "11:50:07", "remaining_time": "9:19:44"}
205
+ {"current_steps": 1025, "total_steps": 1824, "loss": 0.5101, "accuracy": 0.9599999785423279, "learning_rate": 1.0984635000972946e-07, "epoch": 1.6847468770545695, "percentage": 56.2, "elapsed_time": "11:53:35", "remaining_time": "9:16:15"}
206
+ {"current_steps": 1030, "total_steps": 1824, "loss": 0.4259, "accuracy": 0.949999988079071, "learning_rate": 1.0872169202604284e-07, "epoch": 1.6929651545036162, "percentage": 56.47, "elapsed_time": "11:57:04", "remaining_time": "9:12:46"}
207
+ {"current_steps": 1035, "total_steps": 1824, "loss": 0.4365, "accuracy": 0.9700000286102295, "learning_rate": 1.0759837294889546e-07, "epoch": 1.7011834319526629, "percentage": 56.74, "elapsed_time": "12:00:31", "remaining_time": "9:09:16"}
208
+ {"current_steps": 1040, "total_steps": 1824, "loss": 0.4077, "accuracy": 0.9800000190734863, "learning_rate": 1.0647648517236547e-07, "epoch": 1.7094017094017095, "percentage": 57.02, "elapsed_time": "12:04:01", "remaining_time": "9:05:48"}
209
+ {"current_steps": 1045, "total_steps": 1824, "loss": 0.4578, "accuracy": 0.949999988079071, "learning_rate": 1.0535612097280505e-07, "epoch": 1.7176199868507562, "percentage": 57.29, "elapsed_time": "12:07:31", "remaining_time": "9:02:19"}
210
+ {"current_steps": 1050, "total_steps": 1824, "loss": 0.4706, "accuracy": 0.9599999785423279, "learning_rate": 1.042373725012508e-07, "epoch": 1.725838264299803, "percentage": 57.57, "elapsed_time": "12:10:59", "remaining_time": "8:58:50"}
211
+ {"current_steps": 1055, "total_steps": 1824, "loss": 0.3922, "accuracy": 0.9800000190734863, "learning_rate": 1.0312033177584409e-07, "epoch": 1.7340565417488496, "percentage": 57.84, "elapsed_time": "12:14:29", "remaining_time": "8:55:22"}
212
+ {"current_steps": 1060, "total_steps": 1824, "loss": 0.444, "accuracy": 0.9700000286102295, "learning_rate": 1.0200509067426243e-07, "epoch": 1.7422748191978963, "percentage": 58.11, "elapsed_time": "12:17:58", "remaining_time": "8:51:53"}
213
+ {"current_steps": 1065, "total_steps": 1824, "loss": 0.4607, "accuracy": 0.9399999976158142, "learning_rate": 1.0089174092616271e-07, "epoch": 1.7504930966469427, "percentage": 58.39, "elapsed_time": "12:21:26", "remaining_time": "8:48:24"}
214
+ {"current_steps": 1070, "total_steps": 1824, "loss": 0.3879, "accuracy": 0.949999988079071, "learning_rate": 9.97803741056361e-08, "epoch": 1.7587113740959894, "percentage": 58.66, "elapsed_time": "12:24:57", "remaining_time": "8:44:56"}
215
+ {"current_steps": 1075, "total_steps": 1824, "loss": 0.3974, "accuracy": 0.9700000286102295, "learning_rate": 9.867108162367594e-08, "epoch": 1.7669296515450361, "percentage": 58.94, "elapsed_time": "12:28:26", "remaining_time": "8:41:28"}
216
+ {"current_steps": 1080, "total_steps": 1824, "loss": 0.4368, "accuracy": 0.9700000286102295, "learning_rate": 9.756395472065947e-08, "epoch": 1.7751479289940828, "percentage": 59.21, "elapsed_time": "12:31:56", "remaining_time": "8:38:00"}
217
+ {"current_steps": 1085, "total_steps": 1824, "loss": 0.392, "accuracy": 1.0, "learning_rate": 9.645908445884271e-08, "epoch": 1.7833662064431295, "percentage": 59.48, "elapsed_time": "12:35:24", "remaining_time": "8:34:30"}
218
+ {"current_steps": 1090, "total_steps": 1824, "loss": 0.4113, "accuracy": 0.9900000095367432, "learning_rate": 9.535656171487096e-08, "epoch": 1.7915844838921762, "percentage": 59.76, "elapsed_time": "12:38:53", "remaining_time": "8:31:02"}
219
+ {"current_steps": 1095, "total_steps": 1824, "loss": 0.4062, "accuracy": 0.949999988079071, "learning_rate": 9.425647717230382e-08, "epoch": 1.7998027613412229, "percentage": 60.03, "elapsed_time": "12:42:22", "remaining_time": "8:27:33"}
220
+ {"current_steps": 1100, "total_steps": 1824, "loss": 0.3948, "accuracy": 0.9800000190734863, "learning_rate": 9.315892131415642e-08, "epoch": 1.8080210387902695, "percentage": 60.31, "elapsed_time": "12:45:50", "remaining_time": "8:24:04"}
221
+ {"current_steps": 1105, "total_steps": 1824, "loss": 0.3759, "accuracy": 1.0, "learning_rate": 9.206398441545729e-08, "epoch": 1.8162393162393162, "percentage": 60.58, "elapsed_time": "12:49:20", "remaining_time": "8:20:35"}
222
+ {"current_steps": 1110, "total_steps": 1824, "loss": 0.41, "accuracy": 0.9599999785423279, "learning_rate": 9.097175653582299e-08, "epoch": 1.824457593688363, "percentage": 60.86, "elapsed_time": "12:52:49", "remaining_time": "8:17:07"}
223
+ {"current_steps": 1115, "total_steps": 1824, "loss": 0.4401, "accuracy": 0.9599999785423279, "learning_rate": 8.988232751205051e-08, "epoch": 1.8326758711374096, "percentage": 61.13, "elapsed_time": "12:56:16", "remaining_time": "8:13:37"}
224
+ {"current_steps": 1120, "total_steps": 1824, "loss": 0.4135, "accuracy": 0.9800000190734863, "learning_rate": 8.879578695072846e-08, "epoch": 1.8408941485864563, "percentage": 61.4, "elapsed_time": "12:59:46", "remaining_time": "8:10:08"}
225
+ {"current_steps": 1125, "total_steps": 1824, "loss": 0.3998, "accuracy": 0.9800000190734863, "learning_rate": 8.771222422086639e-08, "epoch": 1.849112426035503, "percentage": 61.68, "elapsed_time": "13:03:14", "remaining_time": "8:06:39"}
226
+ {"current_steps": 1130, "total_steps": 1824, "loss": 0.4455, "accuracy": 0.9700000286102295, "learning_rate": 8.663172844654452e-08, "epoch": 1.8573307034845496, "percentage": 61.95, "elapsed_time": "13:06:42", "remaining_time": "8:03:10"}
227
+ {"current_steps": 1135, "total_steps": 1824, "loss": 0.3864, "accuracy": 0.949999988079071, "learning_rate": 8.555438849958296e-08, "epoch": 1.8655489809335963, "percentage": 62.23, "elapsed_time": "13:10:10", "remaining_time": "7:59:40"}
228
+ {"current_steps": 1140, "total_steps": 1824, "loss": 0.4933, "accuracy": 0.949999988079071, "learning_rate": 8.448029299223194e-08, "epoch": 1.873767258382643, "percentage": 62.5, "elapsed_time": "13:13:38", "remaining_time": "7:56:10"}
229
+ {"current_steps": 1145, "total_steps": 1824, "loss": 0.4615, "accuracy": 0.9599999785423279, "learning_rate": 8.340953026988351e-08, "epoch": 1.8819855358316897, "percentage": 62.77, "elapsed_time": "13:17:05", "remaining_time": "7:52:41"}
230
+ {"current_steps": 1150, "total_steps": 1824, "loss": 0.4341, "accuracy": 0.9700000286102295, "learning_rate": 8.234218840380475e-08, "epoch": 1.8902038132807364, "percentage": 63.05, "elapsed_time": "13:20:32", "remaining_time": "7:49:11"}
231
+ {"current_steps": 1155, "total_steps": 1824, "loss": 0.4095, "accuracy": 0.9800000190734863, "learning_rate": 8.127835518389417e-08, "epoch": 1.898422090729783, "percentage": 63.32, "elapsed_time": "13:24:00", "remaining_time": "7:45:42"}
232
+ {"current_steps": 1160, "total_steps": 1824, "loss": 0.4551, "accuracy": 0.9599999785423279, "learning_rate": 8.021811811146075e-08, "epoch": 1.9066403681788298, "percentage": 63.6, "elapsed_time": "13:27:28", "remaining_time": "7:42:12"}
233
+ {"current_steps": 1165, "total_steps": 1824, "loss": 0.4289, "accuracy": 0.9800000190734863, "learning_rate": 7.916156439202672e-08, "epoch": 1.9148586456278764, "percentage": 63.87, "elapsed_time": "13:30:58", "remaining_time": "7:38:44"}
234
+ {"current_steps": 1170, "total_steps": 1824, "loss": 0.3663, "accuracy": 0.9700000286102295, "learning_rate": 7.810878092815512e-08, "epoch": 1.9230769230769231, "percentage": 64.14, "elapsed_time": "13:34:25", "remaining_time": "7:35:14"}
235
+ {"current_steps": 1175, "total_steps": 1824, "loss": 0.391, "accuracy": 0.9800000190734863, "learning_rate": 7.705985431230183e-08, "epoch": 1.9312952005259696, "percentage": 64.42, "elapsed_time": "13:37:56", "remaining_time": "7:31:47"}
236
+ {"current_steps": 1180, "total_steps": 1824, "loss": 0.3851, "accuracy": 0.9300000071525574, "learning_rate": 7.601487081969307e-08, "epoch": 1.9395134779750163, "percentage": 64.69, "elapsed_time": "13:41:26", "remaining_time": "7:28:18"}
237
+ {"current_steps": 1185, "total_steps": 1824, "loss": 0.4041, "accuracy": 0.9700000286102295, "learning_rate": 7.497391640122967e-08, "epoch": 1.947731755424063, "percentage": 64.97, "elapsed_time": "13:44:55", "remaining_time": "7:24:50"}
238
+ {"current_steps": 1190, "total_steps": 1824, "loss": 0.4276, "accuracy": 0.9700000286102295, "learning_rate": 7.393707667641691e-08, "epoch": 1.9559500328731096, "percentage": 65.24, "elapsed_time": "13:48:24", "remaining_time": "7:21:21"}
239
+ {"current_steps": 1195, "total_steps": 1824, "loss": 0.4942, "accuracy": 0.9700000286102295, "learning_rate": 7.290443692632281e-08, "epoch": 1.9641683103221563, "percentage": 65.52, "elapsed_time": "13:51:52", "remaining_time": "7:17:52"}
240
+ {"current_steps": 1200, "total_steps": 1824, "loss": 0.3964, "accuracy": 0.9900000095367432, "learning_rate": 7.187608208656328e-08, "epoch": 1.972386587771203, "percentage": 65.79, "elapsed_time": "13:55:20", "remaining_time": "7:14:22"}
241
+ {"current_steps": 1205, "total_steps": 1824, "loss": 0.3766, "accuracy": 0.9800000190734863, "learning_rate": 7.085209674031618e-08, "epoch": 1.9806048652202497, "percentage": 66.06, "elapsed_time": "13:58:48", "remaining_time": "7:10:53"}
242
+ {"current_steps": 1210, "total_steps": 1824, "loss": 0.3878, "accuracy": 0.949999988079071, "learning_rate": 6.983256511136442e-08, "epoch": 1.9888231426692964, "percentage": 66.34, "elapsed_time": "14:02:17", "remaining_time": "7:07:24"}
243
+ {"current_steps": 1215, "total_steps": 1824, "loss": 0.4009, "accuracy": 0.9900000095367432, "learning_rate": 6.881757105716831e-08, "epoch": 1.997041420118343, "percentage": 66.61, "elapsed_time": "14:05:46", "remaining_time": "7:03:55"}
244
+ {"current_steps": 1220, "total_steps": 1824, "loss": 0.4449, "accuracy": 0.9800000190734863, "learning_rate": 6.780719806196828e-08, "epoch": 2.0052596975673898, "percentage": 66.89, "elapsed_time": "14:09:42", "remaining_time": "7:00:40"}
245
+ {"current_steps": 1225, "total_steps": 1824, "loss": 0.3868, "accuracy": 0.9599999785423279, "learning_rate": 6.680152922991822e-08, "epoch": 2.0134779750164364, "percentage": 67.16, "elapsed_time": "14:13:10", "remaining_time": "6:57:11"}
246
+ {"current_steps": 1230, "total_steps": 1824, "loss": 0.4093, "accuracy": 0.9399999976158142, "learning_rate": 6.580064727824994e-08, "epoch": 2.021696252465483, "percentage": 67.43, "elapsed_time": "14:16:38", "remaining_time": "6:53:41"}
247
+ {"current_steps": 1235, "total_steps": 1824, "loss": 0.4202, "accuracy": 0.9599999785423279, "learning_rate": 6.480463453046985e-08, "epoch": 2.02991452991453, "percentage": 67.71, "elapsed_time": "14:20:06", "remaining_time": "6:50:12"}
248
+ {"current_steps": 1240, "total_steps": 1824, "loss": 0.3722, "accuracy": 0.9900000095367432, "learning_rate": 6.381357290958767e-08, "epoch": 2.0381328073635765, "percentage": 67.98, "elapsed_time": "14:23:36", "remaining_time": "6:46:44"}
249
+ {"current_steps": 1245, "total_steps": 1824, "loss": 0.4065, "accuracy": 0.9599999785423279, "learning_rate": 6.282754393137796e-08, "epoch": 2.046351084812623, "percentage": 68.26, "elapsed_time": "14:27:04", "remaining_time": "6:43:14"}
250
+ {"current_steps": 1250, "total_steps": 1824, "loss": 0.4175, "accuracy": 0.949999988079071, "learning_rate": 6.184662869767577e-08, "epoch": 2.05456936226167, "percentage": 68.53, "elapsed_time": "14:30:33", "remaining_time": "6:39:45"}
251
+ {"current_steps": 1255, "total_steps": 1824, "loss": 0.4021, "accuracy": 0.9599999785423279, "learning_rate": 6.08709078897056e-08, "epoch": 2.0627876397107165, "percentage": 68.8, "elapsed_time": "14:34:02", "remaining_time": "6:36:16"}
252
+ {"current_steps": 1260, "total_steps": 1824, "loss": 0.4283, "accuracy": 0.9100000262260437, "learning_rate": 5.990046176144551e-08, "epoch": 2.0710059171597632, "percentage": 69.08, "elapsed_time": "14:37:29", "remaining_time": "6:32:47"}
253
+ {"current_steps": 1265, "total_steps": 1824, "loss": 0.4253, "accuracy": 0.9900000095367432, "learning_rate": 5.893537013302602e-08, "epoch": 2.07922419460881, "percentage": 69.35, "elapsed_time": "14:40:57", "remaining_time": "6:29:17"}
254
+ {"current_steps": 1270, "total_steps": 1824, "loss": 0.4009, "accuracy": 0.9700000286102295, "learning_rate": 5.7975712384164795e-08, "epoch": 2.0874424720578566, "percentage": 69.63, "elapsed_time": "14:44:25", "remaining_time": "6:25:48"}
255
+ {"current_steps": 1275, "total_steps": 1824, "loss": 0.4211, "accuracy": 0.9599999785423279, "learning_rate": 5.702156744763784e-08, "epoch": 2.0956607495069033, "percentage": 69.9, "elapsed_time": "14:47:52", "remaining_time": "6:22:18"}
256
+ {"current_steps": 1280, "total_steps": 1824, "loss": 0.4356, "accuracy": 0.9599999785423279, "learning_rate": 5.607301380278683e-08, "epoch": 2.10387902695595, "percentage": 70.18, "elapsed_time": "14:51:18", "remaining_time": "6:18:48"}
257
+ {"current_steps": 1285, "total_steps": 1824, "loss": 0.3884, "accuracy": 0.9599999785423279, "learning_rate": 5.513012946906445e-08, "epoch": 2.1120973044049967, "percentage": 70.45, "elapsed_time": "14:54:45", "remaining_time": "6:15:18"}
258
+ {"current_steps": 1290, "total_steps": 1824, "loss": 0.3565, "accuracy": 0.9900000095367432, "learning_rate": 5.419299199961708e-08, "epoch": 2.1203155818540433, "percentage": 70.72, "elapsed_time": "14:58:12", "remaining_time": "6:11:49"}
259
+ {"current_steps": 1295, "total_steps": 1824, "loss": 0.391, "accuracy": 0.9599999785423279, "learning_rate": 5.3261678474905785e-08, "epoch": 2.12853385930309, "percentage": 71.0, "elapsed_time": "15:01:39", "remaining_time": "6:08:19"}
260
+ {"current_steps": 1300, "total_steps": 1824, "loss": 0.3604, "accuracy": 0.9900000095367432, "learning_rate": 5.2336265496366774e-08, "epoch": 2.1367521367521367, "percentage": 71.27, "elapsed_time": "15:05:06", "remaining_time": "6:04:49"}
261
+ {"current_steps": 1305, "total_steps": 1824, "loss": 0.4611, "accuracy": 0.9700000286102295, "learning_rate": 5.141682918011055e-08, "epoch": 2.1449704142011834, "percentage": 71.55, "elapsed_time": "15:08:33", "remaining_time": "6:01:19"}
262
+ {"current_steps": 1310, "total_steps": 1824, "loss": 0.3828, "accuracy": 1.0, "learning_rate": 5.0503445150661306e-08, "epoch": 2.15318869165023, "percentage": 71.82, "elapsed_time": "15:11:59", "remaining_time": "5:57:50"}
263
+ {"current_steps": 1315, "total_steps": 1824, "loss": 0.4158, "accuracy": 0.9700000286102295, "learning_rate": 4.959618853473696e-08, "epoch": 2.1614069690992768, "percentage": 72.09, "elapsed_time": "15:15:29", "remaining_time": "5:54:21"}
264
+ {"current_steps": 1320, "total_steps": 1824, "loss": 0.429, "accuracy": 0.9599999785423279, "learning_rate": 4.8695133955069564e-08, "epoch": 2.1696252465483234, "percentage": 72.37, "elapsed_time": "15:18:57", "remaining_time": "5:50:52"}
265
+ {"current_steps": 1325, "total_steps": 1824, "loss": 0.4175, "accuracy": 0.9800000190734863, "learning_rate": 4.780035552426787e-08, "epoch": 2.17784352399737, "percentage": 72.64, "elapsed_time": "15:22:23", "remaining_time": "5:47:22"}
266
+ {"current_steps": 1330, "total_steps": 1824, "loss": 0.382, "accuracy": 0.9900000095367432, "learning_rate": 4.691192683872129e-08, "epoch": 2.186061801446417, "percentage": 72.92, "elapsed_time": "15:25:50", "remaining_time": "5:43:53"}
267
+ {"current_steps": 1335, "total_steps": 1824, "loss": 0.3948, "accuracy": 0.9599999785423279, "learning_rate": 4.602992097254646e-08, "epoch": 2.1942800788954635, "percentage": 73.19, "elapsed_time": "15:29:17", "remaining_time": "5:40:23"}
268
+ {"current_steps": 1340, "total_steps": 1824, "loss": 0.4279, "accuracy": 0.9700000286102295, "learning_rate": 4.515441047157707e-08, "epoch": 2.20249835634451, "percentage": 73.46, "elapsed_time": "15:32:43", "remaining_time": "5:36:53"}
269
+ {"current_steps": 1345, "total_steps": 1824, "loss": 0.3393, "accuracy": 0.9900000095367432, "learning_rate": 4.428546734739666e-08, "epoch": 2.210716633793557, "percentage": 73.74, "elapsed_time": "15:36:09", "remaining_time": "5:33:23"}
270
+ {"current_steps": 1350, "total_steps": 1824, "loss": 0.4169, "accuracy": 0.9599999785423279, "learning_rate": 4.342316307141568e-08, "epoch": 2.2189349112426036, "percentage": 74.01, "elapsed_time": "15:39:35", "remaining_time": "5:29:54"}
271
+ {"current_steps": 1355, "total_steps": 1824, "loss": 0.3688, "accuracy": 0.9800000190734863, "learning_rate": 4.256756856899299e-08, "epoch": 2.2271531886916502, "percentage": 74.29, "elapsed_time": "15:43:02", "remaining_time": "5:26:24"}
272
+ {"current_steps": 1360, "total_steps": 1824, "loss": 0.4039, "accuracy": 0.9599999785423279, "learning_rate": 4.171875421360202e-08, "epoch": 2.235371466140697, "percentage": 74.56, "elapsed_time": "15:46:28", "remaining_time": "5:22:54"}
273
+ {"current_steps": 1365, "total_steps": 1824, "loss": 0.3941, "accuracy": 0.9599999785423279, "learning_rate": 4.0876789821042606e-08, "epoch": 2.2435897435897436, "percentage": 74.84, "elapsed_time": "15:49:54", "remaining_time": "5:19:25"}
274
+ {"current_steps": 1370, "total_steps": 1824, "loss": 0.4133, "accuracy": 0.9800000190734863, "learning_rate": 4.0041744643698585e-08, "epoch": 2.2518080210387903, "percentage": 75.11, "elapsed_time": "15:53:20", "remaining_time": "5:15:55"}
275
+ {"current_steps": 1375, "total_steps": 1824, "loss": 0.3827, "accuracy": 0.9900000095367432, "learning_rate": 3.9213687364841514e-08, "epoch": 2.260026298487837, "percentage": 75.38, "elapsed_time": "15:56:47", "remaining_time": "5:12:26"}
276
+ {"current_steps": 1380, "total_steps": 1824, "loss": 0.3713, "accuracy": 0.9700000286102295, "learning_rate": 3.8392686092981716e-08, "epoch": 2.2682445759368837, "percentage": 75.66, "elapsed_time": "16:00:15", "remaining_time": "5:08:57"}
277
+ {"current_steps": 1385, "total_steps": 1824, "loss": 0.3984, "accuracy": 0.9800000190734863, "learning_rate": 3.757880835626601e-08, "epoch": 2.2764628533859304, "percentage": 75.93, "elapsed_time": "16:03:41", "remaining_time": "5:05:27"}
278
+ {"current_steps": 1390, "total_steps": 1824, "loss": 0.4114, "accuracy": 1.0, "learning_rate": 3.677212109692364e-08, "epoch": 2.284681130834977, "percentage": 76.21, "elapsed_time": "16:07:08", "remaining_time": "5:01:58"}
279
+ {"current_steps": 1395, "total_steps": 1824, "loss": 0.3695, "accuracy": 0.9700000286102295, "learning_rate": 3.597269066576017e-08, "epoch": 2.2928994082840237, "percentage": 76.48, "elapsed_time": "16:10:35", "remaining_time": "4:58:29"}
280
+ {"current_steps": 1400, "total_steps": 1824, "loss": 0.405, "accuracy": 1.0, "learning_rate": 3.518058281669996e-08, "epoch": 2.3011176857330704, "percentage": 76.75, "elapsed_time": "16:14:01", "remaining_time": "4:54:59"}
281
+ {"current_steps": 1405, "total_steps": 1824, "loss": 0.382, "accuracy": 0.9800000190734863, "learning_rate": 3.439586270137797e-08, "epoch": 2.309335963182117, "percentage": 77.03, "elapsed_time": "16:17:27", "remaining_time": "4:51:30"}
282
+ {"current_steps": 1410, "total_steps": 1824, "loss": 0.3468, "accuracy": 0.9800000190734863, "learning_rate": 3.3618594863780993e-08, "epoch": 2.3175542406311638, "percentage": 77.3, "elapsed_time": "16:20:53", "remaining_time": "4:48:00"}
283
+ {"current_steps": 1415, "total_steps": 1824, "loss": 0.36, "accuracy": 1.0, "learning_rate": 3.2848843234938694e-08, "epoch": 2.3257725180802105, "percentage": 77.58, "elapsed_time": "16:24:18", "remaining_time": "4:44:30"}
284
+ {"current_steps": 1420, "total_steps": 1824, "loss": 0.3933, "accuracy": 0.9800000190734863, "learning_rate": 3.208667112766529e-08, "epoch": 2.333990795529257, "percentage": 77.85, "elapsed_time": "16:27:44", "remaining_time": "4:41:01"}
285
+ {"current_steps": 1425, "total_steps": 1824, "loss": 0.3954, "accuracy": 0.9900000095367432, "learning_rate": 3.1332141231352194e-08, "epoch": 2.342209072978304, "percentage": 78.12, "elapsed_time": "16:31:11", "remaining_time": "4:37:31"}
286
+ {"current_steps": 1430, "total_steps": 1824, "loss": 0.3363, "accuracy": 0.9800000190734863, "learning_rate": 3.058531560681141e-08, "epoch": 2.3504273504273505, "percentage": 78.4, "elapsed_time": "16:34:38", "remaining_time": "4:34:02"}
287
+ {"current_steps": 1435, "total_steps": 1824, "loss": 0.4029, "accuracy": 0.9800000190734863, "learning_rate": 2.984625568117129e-08, "epoch": 2.358645627876397, "percentage": 78.67, "elapsed_time": "16:38:04", "remaining_time": "4:30:33"}
288
+ {"current_steps": 1440, "total_steps": 1824, "loss": 0.3968, "accuracy": 0.9800000190734863, "learning_rate": 2.9115022242823862e-08, "epoch": 2.366863905325444, "percentage": 78.95, "elapsed_time": "16:41:30", "remaining_time": "4:27:04"}
289
+ {"current_steps": 1445, "total_steps": 1824, "loss": 0.4211, "accuracy": 0.9900000095367432, "learning_rate": 2.839167543642511e-08, "epoch": 2.3750821827744906, "percentage": 79.22, "elapsed_time": "16:44:57", "remaining_time": "4:23:35"}
290
+ {"current_steps": 1450, "total_steps": 1824, "loss": 0.3838, "accuracy": 0.9800000190734863, "learning_rate": 2.7676274757947816e-08, "epoch": 2.3833004602235373, "percentage": 79.5, "elapsed_time": "16:48:24", "remaining_time": "4:20:06"}
291
+ {"current_steps": 1455, "total_steps": 1824, "loss": 0.4051, "accuracy": 0.949999988079071, "learning_rate": 2.696887904978819e-08, "epoch": 2.391518737672584, "percentage": 79.77, "elapsed_time": "16:51:51", "remaining_time": "4:16:36"}
292
+ {"current_steps": 1460, "total_steps": 1824, "loss": 0.4246, "accuracy": 0.9700000286102295, "learning_rate": 2.6269546495925886e-08, "epoch": 2.3997370151216306, "percentage": 80.04, "elapsed_time": "16:55:18", "remaining_time": "4:13:07"}
293
+ {"current_steps": 1465, "total_steps": 1824, "loss": 0.3833, "accuracy": 0.9599999785423279, "learning_rate": 2.5578334617138236e-08, "epoch": 2.4079552925706773, "percentage": 80.32, "elapsed_time": "16:58:45", "remaining_time": "4:09:38"}
294
+ {"current_steps": 1470, "total_steps": 1824, "loss": 0.379, "accuracy": 0.9900000095367432, "learning_rate": 2.489530026626932e-08, "epoch": 2.416173570019724, "percentage": 80.59, "elapsed_time": "17:02:13", "remaining_time": "4:06:10"}
295
+ {"current_steps": 1475, "total_steps": 1824, "loss": 0.3486, "accuracy": 0.9900000095367432, "learning_rate": 2.422049962355366e-08, "epoch": 2.4243918474687707, "percentage": 80.87, "elapsed_time": "17:05:39", "remaining_time": "4:02:40"}
296
+ {"current_steps": 1480, "total_steps": 1824, "loss": 0.3744, "accuracy": 0.9700000286102295, "learning_rate": 2.3553988191995208e-08, "epoch": 2.4326101249178174, "percentage": 81.14, "elapsed_time": "17:09:05", "remaining_time": "3:59:11"}
297
+ {"current_steps": 1485, "total_steps": 1824, "loss": 0.3695, "accuracy": 0.9800000190734863, "learning_rate": 2.2895820792802474e-08, "epoch": 2.440828402366864, "percentage": 81.41, "elapsed_time": "17:12:32", "remaining_time": "3:55:42"}
298
+ {"current_steps": 1490, "total_steps": 1824, "loss": 0.4179, "accuracy": 0.9599999785423279, "learning_rate": 2.2246051560879095e-08, "epoch": 2.4490466798159107, "percentage": 81.69, "elapsed_time": "17:15:59", "remaining_time": "3:52:13"}
299
+ {"current_steps": 1495, "total_steps": 1824, "loss": 0.4504, "accuracy": 0.9800000190734863, "learning_rate": 2.160473394037149e-08, "epoch": 2.4572649572649574, "percentage": 81.96, "elapsed_time": "17:19:26", "remaining_time": "3:48:44"}
300
+ {"current_steps": 1500, "total_steps": 1824, "loss": 0.3262, "accuracy": 0.9800000190734863, "learning_rate": 2.097192068027276e-08, "epoch": 2.465483234714004, "percentage": 82.24, "elapsed_time": "17:22:53", "remaining_time": "3:45:15"}
301
+ {"current_steps": 1505, "total_steps": 1824, "loss": 0.3978, "accuracy": 0.9900000095367432, "learning_rate": 2.0347663830084182e-08, "epoch": 2.473701512163051, "percentage": 82.51, "elapsed_time": "17:26:19", "remaining_time": "3:41:46"}
302
+ {"current_steps": 1510, "total_steps": 1824, "loss": 0.4156, "accuracy": 0.9700000286102295, "learning_rate": 1.9732014735534168e-08, "epoch": 2.4819197896120975, "percentage": 82.79, "elapsed_time": "17:29:46", "remaining_time": "3:38:17"}
303
+ {"current_steps": 1515, "total_steps": 1824, "loss": 0.351, "accuracy": 0.9599999785423279, "learning_rate": 1.9125024034354758e-08, "epoch": 2.490138067061144, "percentage": 83.06, "elapsed_time": "17:33:13", "remaining_time": "3:34:48"}
304
+ {"current_steps": 1520, "total_steps": 1824, "loss": 0.3733, "accuracy": 0.9800000190734863, "learning_rate": 1.85267416521169e-08, "epoch": 2.498356344510191, "percentage": 83.33, "elapsed_time": "17:36:41", "remaining_time": "3:31:20"}
305
+ {"current_steps": 1525, "total_steps": 1824, "loss": 0.3857, "accuracy": 0.9700000286102295, "learning_rate": 1.793721679812389e-08, "epoch": 2.5065746219592375, "percentage": 83.61, "elapsed_time": "17:40:07", "remaining_time": "3:27:51"}
306
+ {"current_steps": 1530, "total_steps": 1824, "loss": 0.3883, "accuracy": 0.9300000071525574, "learning_rate": 1.735649796136382e-08, "epoch": 2.5147928994082838, "percentage": 83.88, "elapsed_time": "17:43:36", "remaining_time": "3:24:22"}
307
+ {"current_steps": 1535, "total_steps": 1824, "loss": 0.3626, "accuracy": 0.9800000190734863, "learning_rate": 1.678463290652142e-08, "epoch": 2.523011176857331, "percentage": 84.16, "elapsed_time": "17:47:05", "remaining_time": "3:20:54"}
308
+ {"current_steps": 1540, "total_steps": 1824, "loss": 0.3481, "accuracy": 0.9900000095367432, "learning_rate": 1.6221668670049315e-08, "epoch": 2.531229454306377, "percentage": 84.43, "elapsed_time": "17:50:34", "remaining_time": "3:17:25"}
309
+ {"current_steps": 1545, "total_steps": 1824, "loss": 0.3531, "accuracy": 0.9800000190734863, "learning_rate": 1.5667651556299178e-08, "epoch": 2.5394477317554243, "percentage": 84.7, "elapsed_time": "17:54:02", "remaining_time": "3:13:57"}
310
+ {"current_steps": 1550, "total_steps": 1824, "loss": 0.3849, "accuracy": 0.9800000190734863, "learning_rate": 1.5122627133713262e-08, "epoch": 2.5476660092044705, "percentage": 84.98, "elapsed_time": "17:57:30", "remaining_time": "3:10:28"}
311
+ {"current_steps": 1555, "total_steps": 1824, "loss": 0.3699, "accuracy": 0.9399999976158142, "learning_rate": 1.4586640231076226e-08, "epoch": 2.5558842866535176, "percentage": 85.25, "elapsed_time": "18:00:58", "remaining_time": "3:06:59"}
312
+ {"current_steps": 1560, "total_steps": 1824, "loss": 0.3552, "accuracy": 0.9700000286102295, "learning_rate": 1.405973493382806e-08, "epoch": 2.564102564102564, "percentage": 85.53, "elapsed_time": "18:04:26", "remaining_time": "3:03:31"}
313
+ {"current_steps": 1565, "total_steps": 1824, "loss": 0.3254, "accuracy": 0.9800000190734863, "learning_rate": 1.3541954580437941e-08, "epoch": 2.572320841551611, "percentage": 85.8, "elapsed_time": "18:07:54", "remaining_time": "3:00:02"}
314
+ {"current_steps": 1570, "total_steps": 1824, "loss": 0.4055, "accuracy": 0.9800000190734863, "learning_rate": 1.3033341758839592e-08, "epoch": 2.5805391190006572, "percentage": 86.07, "elapsed_time": "18:11:23", "remaining_time": "2:56:34"}
315
+ {"current_steps": 1575, "total_steps": 1824, "loss": 0.3683, "accuracy": 0.9900000095367432, "learning_rate": 1.2533938302928329e-08, "epoch": 2.5887573964497044, "percentage": 86.35, "elapsed_time": "18:14:51", "remaining_time": "2:53:05"}
316
+ {"current_steps": 1580, "total_steps": 1824, "loss": 0.378, "accuracy": 0.9599999785423279, "learning_rate": 1.2043785289120409e-08, "epoch": 2.5969756738987506, "percentage": 86.62, "elapsed_time": "18:18:19", "remaining_time": "2:49:36"}
317
+ {"current_steps": 1585, "total_steps": 1824, "loss": 0.3656, "accuracy": 0.9800000190734863, "learning_rate": 1.1562923032974125e-08, "epoch": 2.6051939513477977, "percentage": 86.9, "elapsed_time": "18:21:48", "remaining_time": "2:46:08"}
318
+ {"current_steps": 1590, "total_steps": 1824, "loss": 0.3909, "accuracy": 0.9800000190734863, "learning_rate": 1.1091391085874161e-08, "epoch": 2.613412228796844, "percentage": 87.17, "elapsed_time": "18:25:15", "remaining_time": "2:42:39"}
319
+ {"current_steps": 1595, "total_steps": 1824, "loss": 0.3818, "accuracy": 0.9900000095367432, "learning_rate": 1.06292282317781e-08, "epoch": 2.621630506245891, "percentage": 87.45, "elapsed_time": "18:28:43", "remaining_time": "2:39:11"}
320
+ {"current_steps": 1600, "total_steps": 1824, "loss": 0.4384, "accuracy": 0.9700000286102295, "learning_rate": 1.017647248402674e-08, "epoch": 2.6298487836949374, "percentage": 87.72, "elapsed_time": "18:32:13", "remaining_time": "2:35:42"}
321
+ {"current_steps": 1605, "total_steps": 1824, "loss": 0.4032, "accuracy": 0.9800000190734863, "learning_rate": 9.733161082217223e-09, "epoch": 2.6380670611439845, "percentage": 87.99, "elapsed_time": "18:35:42", "remaining_time": "2:32:14"}
322
+ {"current_steps": 1610, "total_steps": 1824, "loss": 0.4197, "accuracy": 0.949999988079071, "learning_rate": 9.299330489140125e-09, "epoch": 2.6462853385930307, "percentage": 88.27, "elapsed_time": "18:39:10", "remaining_time": "2:28:45"}
323
+ {"current_steps": 1615, "total_steps": 1824, "loss": 0.4112, "accuracy": 0.949999988079071, "learning_rate": 8.87501638778039e-09, "epoch": 2.654503616042078, "percentage": 88.54, "elapsed_time": "18:42:38", "remaining_time": "2:25:17"}
324
+ {"current_steps": 1620, "total_steps": 1824, "loss": 0.3553, "accuracy": 0.9700000286102295, "learning_rate": 8.460253678382296e-09, "epoch": 2.662721893491124, "percentage": 88.82, "elapsed_time": "18:46:06", "remaining_time": "2:21:48"}
325
+ {"current_steps": 1625, "total_steps": 1824, "loss": 0.3922, "accuracy": 0.9900000095367432, "learning_rate": 8.055076475578918e-09, "epoch": 2.6709401709401708, "percentage": 89.09, "elapsed_time": "18:49:35", "remaining_time": "2:18:19"}
326
+ {"current_steps": 1630, "total_steps": 1824, "loss": 0.3539, "accuracy": 0.9599999785423279, "learning_rate": 7.659518105586238e-09, "epoch": 2.6791584483892175, "percentage": 89.36, "elapsed_time": "18:53:02", "remaining_time": "2:14:51"}
327
+ {"current_steps": 1635, "total_steps": 1824, "loss": 0.3316, "accuracy": 0.9800000190734863, "learning_rate": 7.273611103461836e-09, "epoch": 2.687376725838264, "percentage": 89.64, "elapsed_time": "18:56:31", "remaining_time": "2:11:22"}
328
+ {"current_steps": 1640, "total_steps": 1824, "loss": 0.4056, "accuracy": 0.9800000190734863, "learning_rate": 6.897387210429067e-09, "epoch": 2.695595003287311, "percentage": 89.91, "elapsed_time": "18:59:59", "remaining_time": "2:07:54"}
329
+ {"current_steps": 1645, "total_steps": 1824, "loss": 0.3542, "accuracy": 0.9800000190734863, "learning_rate": 6.530877371266175e-09, "epoch": 2.7038132807363575, "percentage": 90.19, "elapsed_time": "19:03:26", "remaining_time": "2:04:25"}
330
+ {"current_steps": 1650, "total_steps": 1824, "loss": 0.4291, "accuracy": 0.9700000286102295, "learning_rate": 6.1741117317611196e-09, "epoch": 2.712031558185404, "percentage": 90.46, "elapsed_time": "19:06:55", "remaining_time": "2:00:56"}
331
+ {"current_steps": 1655, "total_steps": 1824, "loss": 0.4103, "accuracy": 0.9300000071525574, "learning_rate": 5.827119636232017e-09, "epoch": 2.720249835634451, "percentage": 90.73, "elapsed_time": "19:10:24", "remaining_time": "1:57:28"}
332
+ {"current_steps": 1660, "total_steps": 1824, "loss": 0.4266, "accuracy": 0.9700000286102295, "learning_rate": 5.489929625113549e-09, "epoch": 2.7284681130834976, "percentage": 91.01, "elapsed_time": "19:13:54", "remaining_time": "1:54:00"}
333
+ {"current_steps": 1665, "total_steps": 1824, "loss": 0.3332, "accuracy": 0.9900000095367432, "learning_rate": 5.1625694326095506e-09, "epoch": 2.7366863905325443, "percentage": 91.28, "elapsed_time": "19:17:21", "remaining_time": "1:50:31"}
334
+ {"current_steps": 1670, "total_steps": 1824, "loss": 0.357, "accuracy": 0.9599999785423279, "learning_rate": 4.845065984411742e-09, "epoch": 2.744904667981591, "percentage": 91.56, "elapsed_time": "19:20:53", "remaining_time": "1:47:03"}
335
+ {"current_steps": 1675, "total_steps": 1824, "loss": 0.3677, "accuracy": 0.9700000286102295, "learning_rate": 4.5374453954851035e-09, "epoch": 2.7531229454306376, "percentage": 91.83, "elapsed_time": "19:24:22", "remaining_time": "1:43:34"}
336
+ {"current_steps": 1680, "total_steps": 1824, "loss": 0.3946, "accuracy": 0.9900000095367432, "learning_rate": 4.239732967919976e-09, "epoch": 2.7613412228796843, "percentage": 92.11, "elapsed_time": "19:27:52", "remaining_time": "1:40:06"}
337
+ {"current_steps": 1685, "total_steps": 1824, "loss": 0.3834, "accuracy": 0.9800000190734863, "learning_rate": 3.951953188850762e-09, "epoch": 2.769559500328731, "percentage": 92.38, "elapsed_time": "19:31:32", "remaining_time": "1:36:38"}
338
+ {"current_steps": 1690, "total_steps": 1824, "loss": 0.3877, "accuracy": 0.9599999785423279, "learning_rate": 3.674129728442013e-09, "epoch": 2.7777777777777777, "percentage": 92.65, "elapsed_time": "19:35:17", "remaining_time": "1:33:11"}
339
+ {"current_steps": 1695, "total_steps": 1824, "loss": 0.3607, "accuracy": 0.9800000190734863, "learning_rate": 3.4062854379414694e-09, "epoch": 2.7859960552268244, "percentage": 92.93, "elapsed_time": "19:39:03", "remaining_time": "1:29:43"}
340
+ {"current_steps": 1700, "total_steps": 1824, "loss": 0.4297, "accuracy": 0.9700000286102295, "learning_rate": 3.1484423478004563e-09, "epoch": 2.794214332675871, "percentage": 93.2, "elapsed_time": "19:42:47", "remaining_time": "1:26:16"}
341
+ {"current_steps": 1705, "total_steps": 1824, "loss": 0.399, "accuracy": 0.9700000286102295, "learning_rate": 2.9006216658619687e-09, "epoch": 2.8024326101249177, "percentage": 93.48, "elapsed_time": "19:46:34", "remaining_time": "1:22:48"}
342
+ {"current_steps": 1710, "total_steps": 1824, "loss": 0.3473, "accuracy": 0.9700000286102295, "learning_rate": 2.6628437756162635e-09, "epoch": 2.8106508875739644, "percentage": 93.75, "elapsed_time": "19:50:20", "remaining_time": "1:19:21"}
343
+ {"current_steps": 1715, "total_steps": 1824, "loss": 0.4067, "accuracy": 0.9800000190734863, "learning_rate": 2.435128234524228e-09, "epoch": 2.818869165023011, "percentage": 94.02, "elapsed_time": "19:54:04", "remaining_time": "1:15:53"}
344
+ {"current_steps": 1720, "total_steps": 1824, "loss": 0.4069, "accuracy": 0.9200000166893005, "learning_rate": 2.2174937724088877e-09, "epoch": 2.827087442472058, "percentage": 94.3, "elapsed_time": "19:57:49", "remaining_time": "1:12:25"}
345
+ {"current_steps": 1725, "total_steps": 1824, "loss": 0.3451, "accuracy": 0.9700000286102295, "learning_rate": 2.009958289914765e-09, "epoch": 2.8353057199211045, "percentage": 94.57, "elapsed_time": "20:01:33", "remaining_time": "1:08:57"}
346
+ {"current_steps": 1730, "total_steps": 1824, "loss": 0.3337, "accuracy": 0.9900000095367432, "learning_rate": 1.8125388570355422e-09, "epoch": 2.843523997370151, "percentage": 94.85, "elapsed_time": "20:05:15", "remaining_time": "1:05:29"}
347
+ {"current_steps": 1735, "total_steps": 1824, "loss": 0.4137, "accuracy": 0.9700000286102295, "learning_rate": 1.6252517117101017e-09, "epoch": 2.851742274819198, "percentage": 95.12, "elapsed_time": "20:08:59", "remaining_time": "1:02:01"}
348
+ {"current_steps": 1740, "total_steps": 1824, "loss": 0.4201, "accuracy": 1.0, "learning_rate": 1.4481122584868582e-09, "epoch": 2.8599605522682445, "percentage": 95.39, "elapsed_time": "20:12:43", "remaining_time": "0:58:32"}
349
+ {"current_steps": 1745, "total_steps": 1824, "loss": 0.4267, "accuracy": 0.9700000286102295, "learning_rate": 1.2811350672568138e-09, "epoch": 2.868178829717291, "percentage": 95.67, "elapsed_time": "20:16:28", "remaining_time": "0:55:04"}
350
+ {"current_steps": 1750, "total_steps": 1824, "loss": 0.4018, "accuracy": 0.9599999785423279, "learning_rate": 1.1243338720550445e-09, "epoch": 2.876397107166338, "percentage": 95.94, "elapsed_time": "20:20:15", "remaining_time": "0:51:35"}
351
+ {"current_steps": 1755, "total_steps": 1824, "loss": 0.3855, "accuracy": 0.9599999785423279, "learning_rate": 9.777215699311725e-10, "epoch": 2.8846153846153846, "percentage": 96.22, "elapsed_time": "20:24:02", "remaining_time": "0:48:07"}
352
+ {"current_steps": 1760, "total_steps": 1824, "loss": 0.4478, "accuracy": 1.0, "learning_rate": 8.413102198885358e-10, "epoch": 2.8928336620644313, "percentage": 96.49, "elapsed_time": "20:27:51", "remaining_time": "0:44:38"}
353
+ {"current_steps": 1765, "total_steps": 1824, "loss": 0.3988, "accuracy": 0.9900000095367432, "learning_rate": 7.151110418923134e-10, "epoch": 2.901051939513478, "percentage": 96.77, "elapsed_time": "20:31:24", "remaining_time": "0:41:09"}
354
+ {"current_steps": 1770, "total_steps": 1824, "loss": 0.352, "accuracy": 0.949999988079071, "learning_rate": 5.991344159466672e-10, "epoch": 2.9092702169625246, "percentage": 97.04, "elapsed_time": "20:35:00", "remaining_time": "0:37:40"}
355
+ {"current_steps": 1775, "total_steps": 1824, "loss": 0.3936, "accuracy": 0.9800000190734863, "learning_rate": 4.933898812409937e-10, "epoch": 2.9174884944115713, "percentage": 97.31, "elapsed_time": "20:38:35", "remaining_time": "0:34:11"}
356
+ {"current_steps": 1780, "total_steps": 1824, "loss": 0.4187, "accuracy": 0.949999988079071, "learning_rate": 3.978861353653301e-10, "epoch": 2.925706771860618, "percentage": 97.59, "elapsed_time": "20:42:05", "remaining_time": "0:30:42"}
357
+ {"current_steps": 1785, "total_steps": 1824, "loss": 0.3632, "accuracy": 0.9399999976158142, "learning_rate": 3.1263103359494005e-10, "epoch": 2.9339250493096647, "percentage": 97.86, "elapsed_time": "20:45:39", "remaining_time": "0:27:12"}
358
+ {"current_steps": 1790, "total_steps": 1824, "loss": 0.3455, "accuracy": 1.0, "learning_rate": 2.3763158824419147e-10, "epoch": 2.9421433267587114, "percentage": 98.14, "elapsed_time": "20:49:10", "remaining_time": "0:23:43"}
359
+ {"current_steps": 1795, "total_steps": 1824, "loss": 0.367, "accuracy": 0.9900000095367432, "learning_rate": 1.728939680898517e-10, "epoch": 2.950361604207758, "percentage": 98.41, "elapsed_time": "20:52:38", "remaining_time": "0:20:14"}
360
+ {"current_steps": 1800, "total_steps": 1824, "loss": 0.3921, "accuracy": 0.9599999785423279, "learning_rate": 1.184234978636456e-10, "epoch": 2.9585798816568047, "percentage": 98.68, "elapsed_time": "20:56:06", "remaining_time": "0:16:44"}
361
+ {"current_steps": 1805, "total_steps": 1824, "loss": 0.3843, "accuracy": 0.9700000286102295, "learning_rate": 7.422465781431464e-11, "epoch": 2.9667981591058514, "percentage": 98.96, "elapsed_time": "20:59:34", "remaining_time": "0:13:15"}
362
+ {"current_steps": 1810, "total_steps": 1824, "loss": 0.3819, "accuracy": 0.9700000286102295, "learning_rate": 4.030108333910598e-11, "epoch": 2.975016436554898, "percentage": 99.23, "elapsed_time": "21:03:01", "remaining_time": "0:09:46"}
363
+ {"current_steps": 1815, "total_steps": 1824, "loss": 0.372, "accuracy": 0.949999988079071, "learning_rate": 1.6655564684747713e-11, "epoch": 2.983234714003945, "percentage": 99.51, "elapsed_time": "21:06:29", "remaining_time": "0:06:16"}
364
+ {"current_steps": 1820, "total_steps": 1824, "loss": 0.3871, "accuracy": 0.9800000190734863, "learning_rate": 3.290046717979722e-12, "epoch": 2.9914529914529915, "percentage": 99.78, "elapsed_time": "21:10:00", "remaining_time": "0:02:47"}
365
+ {"current_steps": 1824, "total_steps": 1824, "epoch": 2.998027613412229, "percentage": 100.0, "elapsed_time": "21:13:52", "remaining_time": "0:00:00"}
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a28297f45322d62c967bfceac3c65a44a0da991766271a3fdc82f1ca61fa4a63
3
+ size 7032