File size: 3,747 Bytes
f51cd62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
library_name: transformers
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: >-
To access Gemma on Hugging Face, you’re required to review and agree to
Google’s usage license. To do this, please ensure you’re logged-in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
base_model:
- google/gemma-2b
datasets:
- vicgalle/alpaca-gpt4
---
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/uwPjZeV-JQwKWrI7nHg4w.webp)
# Gemmalpaca-2B
This is gemma-2b model supervised fine-tuned on the [vicgalle/alpaca-gpt4](https://huggingface.co/datasets/vicgalle/alpaca-gpt4) dataset. It outperforms gemma-2b-it, Google's chat version, on Nous' benchmark suite.
It's mostly a test to see how fine-tuning works with Gemma models on a well-known dataset. It turned out better than expected. :)
## 🔍 Applications
This model has a context length of 8k. I recommend using it with the Alpaca chat template and NOT the Gemma Instruct template (works perfectly with LM Studio). You also want to add `</s>` as a stop token.
## ⚡ Quantized models
* **GGUF**: https://huggingface.co/mlabonne/Gemmalpaca-2B-GGUF
## 🏆 Evaluation
### Nous
Gemmalpaca-2B outperforms gemma-2b and gemma-2b-it on Nous' benchmark suite (evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval)). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [mlabonne/Gemmalpaca-2B](https://huggingface.co/mlabonne/Gemmalpaca-2B) [📄](https://gist.github.com/mlabonne/4b638752fc3227df566f9562064cb864) | 38.39 | 24.48 | 51.22 | 47.02 | 30.85 |
| [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) [📄](https://gist.github.com/mlabonne/db0761e74175573292acf497da9e5d95) | 36.1 | 23.76 | 43.6 | 47.64 | 29.41 |
| [google/gemma-2b](https://huggingface.co/google/gemma-2b) [📄](https://gist.github.com/mlabonne/7df1f238c515a5f63a750c8792cef59e) | 34.26 | 22.7 | 43.35 | 39.96 | 31.03 |
## 🧩 Configuration
It was trained using [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) with the following configuration.
```yaml
base_model: alpindale/gemma-2b
model_type: GemmaForCausalLM
tokenizer_type: GemmaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: vicgalle/alpaca-gpt4
type: alpaca
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./out
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: <s>
eos_token: </s>
unk_token: <unk>
```
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |