File size: 2,772 Bytes
1299b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_keras_callback
model-index:
- name: ru_propaganda_opposition_model_bert-base-multilingual-cased
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# ru_propaganda_opposition_model_bert-base-multilingual-cased

This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0004
- Validation Loss: 0.2406
- Train Accuracy: 0.9551
- Epoch: 14

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7695, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.2769     | 0.1252          | 0.9474         | 0     |
| 0.0922     | 0.1174          | 0.9573         | 1     |
| 0.0506     | 0.1379          | 0.9507         | 2     |
| 0.0280     | 0.1858          | 0.9463         | 3     |
| 0.0204     | 0.1518          | 0.9584         | 4     |
| 0.0148     | 0.1745          | 0.9496         | 5     |
| 0.0091     | 0.2365          | 0.9419         | 6     |
| 0.0054     | 0.1793          | 0.9606         | 7     |
| 0.0057     | 0.1874          | 0.9595         | 8     |
| 0.0032     | 0.2165          | 0.9540         | 9     |
| 0.0020     | 0.6815          | 0.8970         | 10    |
| 0.0061     | 0.2158          | 0.9496         | 11    |
| 0.0007     | 0.2652          | 0.9452         | 12    |
| 0.0002     | 0.2304          | 0.9595         | 13    |
| 0.0004     | 0.2406          | 0.9551         | 14    |


### Framework versions

- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 3.1.0
- Tokenizers 0.19.1