File size: 7,486 Bytes
0327787 2fb5deb cf9909d 2fb5deb 07b41b5 2fb5deb cf9909d 0327787 d69ac68 0327787 2fb5deb 0327787 2fb5deb 0327787 2fb5deb 0327787 d0d69a6 0327787 2fb5deb 0327787 2fb5deb 0327787 2fb5deb 0327787 2fb5deb 0327787 2fb5deb 0327787 2fb5deb 0327787 690c973 cf9909d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
license: other
library_name: transformers
base_model: meta-llama/Meta-Llama-3-8B
datasets:
- mlabonne/orpo-dpo-mix-40k
- Open-Orca/SlimOrca-Dedup
- jondurbin/airoboros-3.2
- microsoft/orca-math-word-problems-200k
- m-a-p/Code-Feedback
- MaziyarPanahi/WizardLM_evol_instruct_V2_196k
model-index:
- name: llama-3-neural-chat-v1-8b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.84
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.13
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 56.34
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 54.81
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
name: Open LLM Leaderboard
---
# llama-3-neural-chat-v1-8b
<!-- Provide a quick summary of what the model is/does. -->
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/6XQuhjWNr6C4RbU9f1k99.png)
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
I fine-tuned llama-3 8B on an approach similar to Intel's neural chat language model. I have slightly modified the data sources so it is stronger in coding, math, and writing. I use both SFT and DPO.
- **Developed by:** Locutusque
- **Model type:** Built with Meta Llama 3
- **Language(s) (NLP):** Many?
- **License:** Llama 3 license https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
## Quants
### EXL2 [@bartowski](https://huggingface.co/bartowski/)
- https://huggingface.co/bartowski/llama-3-neural-chat-v1-8b-exl2
### GGUF [@bartowski](https://huggingface.co/bartowski/)
- https://huggingface.co/bartowski/llama-3-neural-chat-v1-8b-GGUF
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
This model has great performance in writing and coding.
## Training Data
- Open-Orca/SlimOrca-Dedup
- jondurbin/airoboros-3.2
- microsoft/orca-math-word-problems-200k
- m-a-p/Code-Feedback
- MaziyarPanahi/WizardLM_evol_instruct_V2_196k
- mlabonne/orpo-dpo-mix-40k
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
Conversational AI.
## Evaluations
| Tasks |Version| Filter |n-shot| Metric |Value | |Stderr|
|---------------------------------|-------|----------------|-----:|-----------|-----:|---|-----:|
|truthfulqa_mc2 | 2|none | 0|acc |0.5627|± |0.0154|
|gsm8k | 3|strict-match | 5|exact_match|0.5481|± |0.0137|
| | |flexible-extract| 5|exact_match|0.5557|± |0.0137|
|agieval_nous |N/A |none | 0|acc |0.3763|± |0.0093|
| | |none | 0|acc_norm |0.3665|± |0.0093|
| - agieval_aqua_rat | 1|none | 0|acc |0.2087|± |0.0255|
| | |none | 0|acc_norm |0.2047|± |0.0254|
| - agieval_logiqa_en | 1|none | 0|acc |0.3456|± |0.0187|
| | |none | 0|acc_norm |0.3594|± |0.0188|
| - agieval_lsat_ar | 1|none | 0|acc |0.1826|± |0.0255|
| | |none | 0|acc_norm |0.1783|± |0.0253|
| - agieval_lsat_lr | 1|none | 0|acc |0.3549|± |0.0212|
| | |none | 0|acc_norm |0.3451|± |0.0211|
| - agieval_lsat_rc | 1|none | 0|acc |0.5242|± |0.0305|
| | |none | 0|acc_norm |0.5130|± |0.0305|
| - agieval_sat_en | 1|none | 0|acc |0.6650|± |0.0330|
| | |none | 0|acc_norm |0.6505|± |0.0333|
| - agieval_sat_en_without_passage| 1|none | 0|acc |0.4175|± |0.0344|
| | |none | 0|acc_norm |0.3738|± |0.0338|
| - agieval_sat_math | 1|none | 0|acc |0.4227|± |0.0334|
| | |none | 0|acc_norm |0.3682|± |0.0326|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__llama-3-neural-chat-v1-8b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |66.50|
|AI2 Reasoning Challenge (25-Shot)|60.84|
|HellaSwag (10-Shot) |84.13|
|MMLU (5-Shot) |64.69|
|TruthfulQA (0-shot) |56.34|
|Winogrande (5-shot) |78.22|
|GSM8k (5-shot) |54.81|
|