File size: 7,486 Bytes
0327787
2fb5deb
cf9909d
 
2fb5deb
07b41b5
2fb5deb
 
 
 
 
cf9909d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0327787
 
d69ac68
0327787
 
 
 
2fb5deb
 
 
0327787
 
 
 
 
 
 
2fb5deb
0327787
2fb5deb
 
 
 
0327787
d0d69a6
 
 
 
 
 
 
 
 
 
0327787
 
 
 
2fb5deb
0327787
2fb5deb
 
 
 
 
 
 
0327787
2fb5deb
0327787
2fb5deb
0327787
2fb5deb
0327787
2fb5deb
0327787
690c973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf9909d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
license: other
library_name: transformers
base_model: meta-llama/Meta-Llama-3-8B
datasets:
- mlabonne/orpo-dpo-mix-40k
- Open-Orca/SlimOrca-Dedup
- jondurbin/airoboros-3.2
- microsoft/orca-math-word-problems-200k
- m-a-p/Code-Feedback
- MaziyarPanahi/WizardLM_evol_instruct_V2_196k
model-index:
- name: llama-3-neural-chat-v1-8b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 60.84
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 84.13
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.69
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 56.34
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.22
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 54.81
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/llama-3-neural-chat-v1-8b
      name: Open LLM Leaderboard
---

# llama-3-neural-chat-v1-8b

<!-- Provide a quick summary of what the model is/does. -->


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/6XQuhjWNr6C4RbU9f1k99.png)



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

I fine-tuned llama-3 8B on an approach similar to Intel's neural chat language model. I have slightly modified the data sources so it is stronger in coding, math, and writing. I use both SFT and DPO.

- **Developed by:** Locutusque
- **Model type:** Built with Meta Llama 3
- **Language(s) (NLP):** Many?
- **License:** Llama 3 license https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE

## Quants

### EXL2 [@bartowski](https://huggingface.co/bartowski/)

- https://huggingface.co/bartowski/llama-3-neural-chat-v1-8b-exl2

### GGUF [@bartowski](https://huggingface.co/bartowski/)

- https://huggingface.co/bartowski/llama-3-neural-chat-v1-8b-GGUF

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

This model has great performance in writing and coding.

## Training Data
- Open-Orca/SlimOrca-Dedup
- jondurbin/airoboros-3.2
- microsoft/orca-math-word-problems-200k
- m-a-p/Code-Feedback
- MaziyarPanahi/WizardLM_evol_instruct_V2_196k
- mlabonne/orpo-dpo-mix-40k

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

Conversational AI.

## Evaluations

|              Tasks              |Version|     Filter     |n-shot|  Metric   |Value |   |Stderr|
|---------------------------------|-------|----------------|-----:|-----------|-----:|---|-----:|
|truthfulqa_mc2                   |      2|none            |     0|acc        |0.5627|±  |0.0154|
|gsm8k                            |      3|strict-match    |     5|exact_match|0.5481|±  |0.0137|
|                                 |       |flexible-extract|     5|exact_match|0.5557|±  |0.0137|
|agieval_nous                     |N/A    |none            |     0|acc        |0.3763|±  |0.0093|
|                                 |       |none            |     0|acc_norm   |0.3665|±  |0.0093|
| - agieval_aqua_rat              |      1|none            |     0|acc        |0.2087|±  |0.0255|
|                                 |       |none            |     0|acc_norm   |0.2047|±  |0.0254|
| - agieval_logiqa_en             |      1|none            |     0|acc        |0.3456|±  |0.0187|
|                                 |       |none            |     0|acc_norm   |0.3594|±  |0.0188|
| - agieval_lsat_ar               |      1|none            |     0|acc        |0.1826|±  |0.0255|
|                                 |       |none            |     0|acc_norm   |0.1783|±  |0.0253|
| - agieval_lsat_lr               |      1|none            |     0|acc        |0.3549|±  |0.0212|
|                                 |       |none            |     0|acc_norm   |0.3451|±  |0.0211|
| - agieval_lsat_rc               |      1|none            |     0|acc        |0.5242|±  |0.0305|
|                                 |       |none            |     0|acc_norm   |0.5130|±  |0.0305|
| - agieval_sat_en                |      1|none            |     0|acc        |0.6650|±  |0.0330|
|                                 |       |none            |     0|acc_norm   |0.6505|±  |0.0333|
| - agieval_sat_en_without_passage|      1|none            |     0|acc        |0.4175|±  |0.0344|
|                                 |       |none            |     0|acc_norm   |0.3738|±  |0.0338|
| - agieval_sat_math              |      1|none            |     0|acc        |0.4227|±  |0.0334|
|                                 |       |none            |     0|acc_norm   |0.3682|±  |0.0326|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__llama-3-neural-chat-v1-8b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |66.50|
|AI2 Reasoning Challenge (25-Shot)|60.84|
|HellaSwag (10-Shot)              |84.13|
|MMLU (5-Shot)                    |64.69|
|TruthfulQA (0-shot)              |56.34|
|Winogrande (5-shot)              |78.22|
|GSM8k (5-shot)                   |54.81|