File size: 62,851 Bytes
eb2ed2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 |
# code adapted from https://huggingface.co/fahadh4ilyas
"""PyTorch Dbrx model."""
import math
import warnings
from copy import deepcopy
from functools import partial
from typing import Any, Callable, Dict, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import (MoeCausalLMOutputWithPast,
MoeModelOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import is_flash_attn_2_available, logging
from .configuration_dbrx import DbrxAttentionConfig, DbrxConfig, DbrxFFNConfig
if is_flash_attn_2_available():
try:
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import pad_input # noqa
from flash_attn.bert_padding import index_first_axis, unpad_input
except:
pass
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = 'DbrxConfig'
#############################################################################
# Copied from LLaMaRotaryEmbedding
#############################################################################
class DbrxRotaryEmbedding(nn.Module):
def __init__(self,
dim: int,
max_position_embeddings: int = 2048,
base: float = 10000.0,
scaling_factor: float = 1.0):
super().__init__()
self.scaling_factor = scaling_factor
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base**(
torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
self.register_buffer('inv_freq', inv_freq, persistent=False)
# For BC we register cos and sin cached
self.max_seq_len_cached = max_position_embeddings
@torch.no_grad()
def forward(
self, x: torch.Tensor, position_ids: torch.LongTensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# x: [bs, num_attention_heads, seq_len, head_size]
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(
position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 since bfloat16 loses precision on long contexts
# See https://github.com/huggingface/transformers/pull/29285
device_type = x.device.type
device_type = device_type if isinstance(
device_type, str) and device_type != 'mps' else 'cpu'
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float()
@ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x: torch.Tensor) -> torch.Tensor:
"""Rotates half the hidden dims of the input."""
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
unsqueeze_dim: int = 1) -> Tuple[torch.Tensor, torch.Tensor]:
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos and
sin so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos and sin have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos and sin broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""Equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
(batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :,
None, :, :].expand(batch, num_key_value_heads,
n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
head_dim)
#############################################################################
#############################################################################
# Modified from modeling_mixtral
#############################################################################
def load_balancing_loss_func(
gate_logits: torch.Tensor,
num_experts: int,
top_k: int,
attention_mask: Optional[torch.Tensor],
) -> torch.Tensor:
r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
num_experts (`int`):
Number of experts.
top_k (`int`):
The number of experts each token is routed to.
attention_mask (`torch.Tensor`, None):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if gate_logits is None or not isinstance(gate_logits, tuple):
return torch.tensor(0.0)
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat(
[layer_gate.to(compute_device) for layer_gate in gate_logits],
dim=0)
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits,
dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (
batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (attention_mask[None, :, :, None, None].expand(
(num_hidden_layers, batch_size, sequence_length, top_k,
num_experts)).reshape(-1, top_k, num_experts).to(compute_device))
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(
expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None].expand(
(num_hidden_layers, batch_size, sequence_length,
num_experts)).reshape(-1, num_experts).to(compute_device))
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(
routing_weights * router_per_expert_attention_mask,
dim=0) / torch.sum(router_per_expert_attention_mask, dim=0)
overall_loss = torch.sum(tokens_per_expert *
router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
#############################################################################
def resolve_ffn_act_fn(
ffn_act_fn: dict) -> Callable[[torch.Tensor], torch.Tensor]:
"""Resolve the activation function for the feed-forward network.
Args:
ffn_act_fn (dict): The configuration dictionary for the activation function.
The dict config must specify the 'name' of a torch.nn.functional activation
function. All of other key values pairs are bound to the function as a partial.
Returns:
Callable[[torch.Tensor], torch.Tensor]: The activation function.
"""
config = deepcopy(ffn_act_fn)
name = config.pop('name')
if not hasattr(nn.functional, name):
raise ValueError(f'Unrecognised activation function name ({name}).')
act = getattr(nn.functional, name)
return partial(act, **config)
#############################################################################
# Copied from LLaMaAttention
#############################################################################
def _get_unpad_data(attention_mask: torch.Tensor):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32),
(1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
class DbrxAttention(nn.Module):
"""Multi-head self attention."""
def __init__(self,
hidden_size: int,
num_heads: int,
max_position_embeddings: int,
attn_config: DbrxAttentionConfig,
block_idx: Optional[int] = None):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = max_position_embeddings
self.block_idx = block_idx
self.config = attn_config
if block_idx is None:
logger.warning_once(
f'Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will '
+
'lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` '
+ 'when creating this class.')
self.attn_pdrop = attn_config.attn_pdrop
self.clip_qkv = attn_config.clip_qkv
self.num_key_value_heads = attn_config.kv_n_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.rope_theta = attn_config.rope_theta
self.q_proj = nn.Linear(self.hidden_size,
self.hidden_size,
bias=False)
self.k_proj = nn.Linear(self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=False)
self.v_proj = nn.Linear(self.hidden_size,
self.num_key_value_heads * self.head_dim,
bias=False)
self.out_proj = nn.Linear(self.hidden_size,
self.hidden_size,
bias=False)
self.rotary_emb = DbrxRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
if self.clip_qkv is not None:
query_states = query_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
key_states = key_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
value_states = value_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
query_states = query_states.view(bsz, q_len, self.num_heads,
self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
past_key_value = getattr(self, 'past_key_value', past_key_value)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states,
key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
cache_kwargs = {
'sin': sin,
'cos': cos,
'cache_position': cache_position
}
key_states, value_states = past_key_value.update(
key_states, value_states, self.block_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(
2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, :key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1,
dtype=torch.float32).to(
query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights,
p=self.attn_pdrop,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
+ f' {attn_output.size()}')
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class DbrxFlashAttention2(DbrxAttention):
"""Dbrx flash attention module.
This module inherits from `DbrxAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it
calls the public API of flash attention.
"""
def __init__(self, *args: Any, **kwargs: Any):
if not is_flash_attn_2_available():
raise ImportError(
'Flash Attention 2 is not available. Please install it with `pip install flash-attn`.'
)
super().__init__(*args, **kwargs)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
logger.debug(
'Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.'
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
if self.clip_qkv is not None:
query_states = query_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
key_states = key_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
value_states = value_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads,
self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states,
key_states, cos, sin)
past_key_value = getattr(self, 'past_key_value', past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {
'sin': sin,
'cos': cos,
'cache_position': cache_position
}
key_states, value_states = past_key_value.update(
key_states, value_states, self.block_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attn_pdrop if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, '_pre_quantization_dtype'):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = query_states.dtype
logger.warning_once(
f'The input hidden states seems to be silently casted in float32, this might be '
+
f'related to the fact you have upcasted embedding or layer norm layers in '
+ f'float32. We will cast back the input in {target_dtype}.')
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
)
attn_output = attn_output.reshape(bsz, q_len,
self.hidden_size).contiguous()
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value # type: ignore
def _flash_attention_forward(
self,
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
attention_mask: Union[torch.LongTensor, None],
query_length: int,
dropout: float = 0.0,
softmax_scale: Optional[float] = None,
):
"""Use FlashAttention, stripping padding tokens if necessary.
Args:
query_states (torch.Tensor): Input query states to be passed to Flash Attention API
key_states (torch.Tensor): Input key states to be passed to Flash Attention API
value_states (torch.Tensor): Input value states to be passed to Flash Attention API
attention_mask (torch.LongTensor | None): The padding mask - corresponds to a tensor of size
(batch_size, seq_len) where 0 stands for the position of padding tokens and 1
for the position of non-padding tokens.
query_length (int): The length of the query sequence
dropout (float): Attention dropout
softmax_scale (float, optional): The scaling of QK^T before applying softmax.
Defaults to 1 / sqrt(head_dim)
"""
causal = True
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask,
query_length)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(
attn_output_unpad,
indices_q,
batch_size,
query_length,
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
)
return attn_output
def _upad_input(self, query_layer: torch.Tensor, key_layer: torch.Tensor,
value_layer: torch.Tensor, attention_mask: torch.Tensor,
query_length: int):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
head_dim), indices_k)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
head_dim), indices_k)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads,
head_dim), indices_k)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
DBRX_ATTENTION_CLASSES = {
'eager': DbrxAttention,
'flash_attention_2': DbrxFlashAttention2,
}
class DbrxNormAttentionNorm(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
max_position_embeddings: int,
resid_pdrop: float,
attn_implementation: str,
attn_config: DbrxAttentionConfig,
block_idx: Optional[int] = None,
):
super().__init__()
self.block_idx = block_idx
self.resid_pdrop = resid_pdrop
self.norm_1 = nn.LayerNorm(hidden_size, bias=False)
self.attn = DBRX_ATTENTION_CLASSES[attn_implementation](
hidden_size=hidden_size,
num_heads=num_heads,
max_position_embeddings=max_position_embeddings,
attn_config=attn_config,
block_idx=block_idx,
)
self.norm_2 = nn.LayerNorm(hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor],
Optional[Cache]]:
residual_states = hidden_states
hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype)
hidden_states, attn_weights, past_key_value = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = nn.functional.dropout(hidden_states,
p=self.resid_pdrop,
training=self.training)
hidden_states = hidden_states + residual_states
residual_states = hidden_states
hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype)
return residual_states, hidden_states, attn_weights, past_key_value
class DbrxRouter(nn.Module):
def __init__(self, hidden_size: int, moe_num_experts: int, moe_top_k: int,
moe_jitter_eps: Optional[float],
moe_normalize_expert_weights: Optional[float],
uniform_expert_assignment: bool):
super().__init__()
self.hidden_size = hidden_size
self.moe_num_experts = moe_num_experts
self.moe_top_k = moe_top_k
self.moe_jitter_eps = moe_jitter_eps
self.moe_normalize_expert_weights = moe_normalize_expert_weights
self.uniform_expert_assignment = uniform_expert_assignment
self.layer = nn.Linear(self.hidden_size,
self.moe_num_experts,
bias=False)
def jitter(self, x: torch.Tensor) -> torch.Tensor:
if self.moe_jitter_eps is None:
raise RuntimeError('The router does not have moe_jitter_eps set.')
low = 1.0 - self.moe_jitter_eps
high = 1.0 + self.moe_jitter_eps
noise = torch.rand(x.size(), dtype=x.dtype, device=x.device)
return low + noise * (high - low)
def forward(
self, x: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
if self.training and self.moe_jitter_eps is not None:
x = x * self.jitter(x)
weights = self.layer(x.view(-1,
x.shape[-1])).softmax(dim=-1,
dtype=torch.float32)
top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1)
if self.moe_normalize_expert_weights:
top_weights = top_weights / torch.norm(
top_weights,
p=self.moe_normalize_expert_weights,
dim=-1,
keepdim=True)
if self.uniform_expert_assignment:
with torch.no_grad():
uniform_tensor = torch.arange(
0,
top_experts.numel(),
device=top_experts.device,
dtype=top_experts.dtype) % self.moe_num_experts
top_experts = uniform_tensor.reshape(top_experts.shape)
# Note, weights and top_weights are not changed
weights = weights.to(x.dtype)
top_weights = top_weights.to(x.dtype)
return weights, top_weights, top_experts # type: ignore
class DbrxMLP(nn.Module):
def __init__(self, hidden_size: int, ffn_hidden_size: int, ffn_act_fn: dict):
super().__init__()
self.w1 = nn.Linear(hidden_size, ffn_hidden_size, bias=False)
self.v1 = nn.Linear(hidden_size, ffn_hidden_size, bias=False)
self.w2 = nn.Linear(ffn_hidden_size, hidden_size, bias=False)
self.activation_fn = resolve_ffn_act_fn(ffn_act_fn)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.w2(self.activation_fn(self.w1(x)) * self.v1(x))
class DbrxExperts(nn.Module):
def __init__(self, hidden_size: int, ffn_hidden_size: int,
moe_num_experts: int, ffn_act_fn: dict):
super().__init__()
self.moe_num_experts = moe_num_experts
self.mlp = nn.ModuleList([DbrxMLP(hidden_size, ffn_hidden_size, ffn_act_fn) for _ in range(moe_num_experts)])
def forward(self, x: torch.Tensor, weights: torch.Tensor,
top_weights: torch.Tensor,
top_experts: torch.LongTensor) -> torch.Tensor:
bsz, q_len, hidden_size = x.shape
x = x.view(-1, hidden_size)
out = torch.zeros_like(x)
expert_mask = nn.functional.one_hot(
top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0)
for expert_idx in range(0, self.moe_num_experts):
topk_idx, token_idx = torch.where(expert_mask[expert_idx])
if token_idx.shape[0] == 0:
continue
expert_tokens = x[None, token_idx].reshape(-1, hidden_size)
expert_out = self.mlp[expert_idx](expert_tokens) * top_weights[token_idx, topk_idx, None]
out.index_add_(0, token_idx, expert_out)
out = out.reshape(bsz, q_len, hidden_size)
return out
class DbrxFFN(nn.Module):
def __init__(self, hidden_size: int, ffn_config: DbrxFFNConfig):
super().__init__()
self.router = DbrxRouter(
hidden_size,
moe_num_experts=ffn_config.moe_num_experts,
moe_top_k=ffn_config.moe_top_k,
moe_jitter_eps=ffn_config.moe_jitter_eps,
moe_normalize_expert_weights=ffn_config.
moe_normalize_expert_weights,
uniform_expert_assignment=ffn_config.uniform_expert_assignment,
)
self.experts = DbrxExperts(
hidden_size=hidden_size,
ffn_hidden_size=ffn_config.ffn_hidden_size,
moe_num_experts=ffn_config.moe_num_experts,
ffn_act_fn=ffn_config.ffn_act_fn,
)
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
weights, top_weights, top_experts = self.router(x)
out = self.experts(x, weights, top_weights, top_experts)
return out, weights
class DbrxBlock(nn.Module):
def __init__(self, config: DbrxConfig, block_idx: int):
super().__init__()
self.hidden_size = config.d_model
self.resid_pdrop = config.resid_pdrop
self.block_idx = block_idx
self.norm_attn_norm = DbrxNormAttentionNorm(
hidden_size=config.d_model,
num_heads=config.n_heads,
max_position_embeddings=config.max_seq_len,
resid_pdrop=config.resid_pdrop,
attn_implementation=config._attn_implementation,
attn_config=config.attn_config,
block_idx=block_idx,
)
self.ffn = DbrxFFN(hidden_size=config.d_model,
ffn_config=config.ffn_config)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, Optional[torch.Tensor]],
Tuple[torch.Tensor, Optional[Cache]], Tuple[
torch.Tensor, Optional[torch.Tensor], Optional[Cache]],
Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[torch.Tensor]], Tuple[
torch.Tensor, Optional[Cache], Optional[torch.Tensor]],
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache],
Optional[torch.Tensor]],]:
"""Forward function for DbrxBlock.
Args:
hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)`
attention_mask (`torch.Tensor`, optional): attention mask of size (batch_size, sequence_length)
if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length)
if default attention is used.
past_key_value (`Tuple(torch.Tensor)`, optional): cached past key and value projection states
output_attentions (`bool`, optional): Whether or not to return the attentions tensors of all
attention layers. See `attentions` under returned tensors for more detail.
output_router_logits (`bool`, optional): Whether or not to return the router logits.
use_cache (`bool`, optional): If set to `True`, `past_key_values` key value states are
returned and can be used to speed up decoding (see `past_key_values`).
cache_position (`torch.LongTensor`, optional): position ids of the cache
"""
if 'padding_mask' in kwargs:
warnings.warn(
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
)
# Norm + Attention + Norm
resid_states, hidden_states, self_attn_weights, present_key_value = self.norm_attn_norm(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
# Fully Connected
hidden_states, router_logits = self.ffn(hidden_states)
hidden_states = nn.functional.dropout(hidden_states,
p=self.resid_pdrop,
training=self.training)
hidden_states = resid_states + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
class DbrxPreTrainedModel(PreTrainedModel):
config_class = DbrxConfig
base_model_prefix = 'transformer'
supports_gradient_checkpointing = True
_no_split_modules = ['DbrxBlock']
_skip_keys_device_placement = ['past_key_values']
_supports_flash_attn_2 = True
_supports_sdpa = False
_supports_cache_class = True
def _init_weights(self, module: nn.Module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
def _setup_cache(self, cache_cls: Any, max_batch_size: int,
max_cache_len: int): # TODO: how to set var type of class?
if self.config._attn_implementation == 'flash_attention_2' and cache_cls == StaticCache:
raise ValueError(
'`static` cache implementation is not compatible with ' +
'`attn_implementation==flash_attention_2`. Make sure to use ' +
'`spda` in the mean time and open an issue at https://github.com/huggingface/transformers.'
)
for block in self.transformer.blocks:
device = block.norm_attn_norm.norm_1.weight.device
if hasattr(self.config, '_pre_quantization_dtype'):
dtype = self.config._pre_quantization_dtype
else:
dtype = block.norm_attn_norm.attn.out_proj.weight.dtype
block.norm_attn_norm.attn.past_key_value = cache_cls(self.config,
max_batch_size,
max_cache_len,
device=device,
dtype=dtype)
def _reset_cache(self):
for block in self.transformer.blocks:
block.norm_attn_norm.attn.past_key_value = None
class DbrxModel(DbrxPreTrainedModel):
"""Transformer decoder consisting of *config.num_hidden_layers*
[`DbrxBlock`] layers.
Args:
config: DbrxConfig
"""
def __init__(self, config: DbrxConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.emb_pdrop = config.emb_pdrop
self.wte = nn.Embedding(config.vocab_size, config.d_model,
self.padding_idx)
self.blocks = nn.ModuleList([
DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)
])
self.norm_f = nn.LayerNorm(config.d_model, bias=False)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.wte
def set_input_embeddings(self, value: nn.Embedding):
self.wte = value
def _autocast_input_embeddings(self,
inputs_embeds: torch.Tensor) -> torch.Tensor:
if inputs_embeds.device.type == 'cuda' and torch.is_autocast_enabled():
return inputs_embeds.to(dtype=torch.get_autocast_gpu_dtype())
elif inputs_embeds.device.type == 'cpu' and torch.is_autocast_cpu_enabled(
):
return inputs_embeds.to(dtype=torch.get_autocast_cpu_dtype())
else:
return inputs_embeds
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
output_router_logits = (output_router_logits
if output_router_logits is not None else
self.config.output_router_logits)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
'You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one'
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.'
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
inputs_embeds = self._autocast_input_embeddings(
inputs_embeds) # type: ignore
inputs_embeds = nn.functional.dropout(inputs_embeds,
p=self.emb_pdrop,
training=self.training)
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(
past_key_values)
past_seen_tokens = past_key_values.get_seq_length( # type: ignore
)
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError(
'cache_position is a required argument when using StaticCache.'
)
cache_position = torch.arange( # type: ignore
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0) # type: ignore
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
cache_position) # type: ignore
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for block in self.blocks:
if output_hidden_states:
all_hidden_states += (hidden_states,) # type: ignore
if self.gradient_checkpointing and self.training:
block_outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
)
else:
block_outputs = block(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = block_outputs[0]
if use_cache:
next_decoder_cache = block_outputs[
2 if output_attentions else 1]
if output_attentions:
all_self_attns += (block_outputs[1],) # type: ignore
if output_router_logits:
all_router_logits += (block_outputs[-1],) # type: ignore
hidden_states = self.norm_f(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,) # type: ignore
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache() # type: ignore
if isinstance(next_decoder_cache, Cache) else
next_decoder_cache)
if not return_dict:
return tuple(v for v in [
hidden_states, next_cache, all_hidden_states, all_self_attns,
all_router_logits
] if v is not None)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
def _update_causal_mask(
self, attention_mask: Optional[torch.Tensor],
input_tensor: torch.Tensor,
cache_position: torch.Tensor) -> Optional[torch.Tensor]:
if self.config._attn_implementation == 'flash_attention_2':
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if hasattr(self.blocks[0].norm_attn_norm.attn,
'past_key_value'): # static cache
target_length = self.config.max_position_embeddings
else: # dynamic cache
target_length = (attention_mask.shape[-1] if isinstance(
attention_mask, torch.Tensor) else cache_position[-1] + 1)
target_length = int(target_length)
causal_mask = torch.full((sequence_length, target_length),
fill_value=min_dtype,
dtype=dtype,
device=device)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(
target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None,
None, :, :].expand(input_tensor.shape[0], 1,
-1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone(
) # copy to contiguous memory for in-place edit
if attention_mask.dim() == 2:
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[..., :mask_length].eq(
0.0) * attention_mask[:, None, None, :].eq(0.0)
causal_mask[..., :mask_length] = causal_mask[
..., :mask_length].masked_fill(padding_mask, min_dtype)
elif attention_mask.dim() == 4:
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
# cache. In that case, the 4D attention mask attends to the newest tokens only.
if attention_mask.shape[
-2] < cache_position[0] + sequence_length:
offset = cache_position[0]
else:
offset = 0
mask_shape = attention_mask.shape
mask_slice = (attention_mask.eq(0.0)).to(
dtype=dtype) * min_dtype
causal_mask[:mask_shape[0], :mask_shape[1],
offset:mask_shape[2] +
offset, :mask_shape[3]] = mask_slice
if (self.config._attn_implementation == 'sdpa' and
attention_mask is not None and
attention_mask.device.type == 'cuda'):
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
is_tracing = (
torch.jit.is_tracing() or
isinstance(input_tensor, torch.fx.Proxy) or # type: ignore
(hasattr(torch, '_dynamo') and torch._dynamo.is_compiling()))
if not is_tracing and torch.any(attention_mask != 1):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(
causal_mask, min_dtype)
return causal_mask
class DbrxForCausalLM(DbrxPreTrainedModel):
def __init__(self, config: DbrxConfig):
super().__init__(config)
self.transformer = DbrxModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size,
config.vocab_size,
bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.ffn_config.moe_num_experts
self.num_experts_per_tok = config.ffn_config.moe_top_k
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.transformer.get_input_embeddings()
def set_input_embeddings(self, value: nn.Embedding):
self.transformer.set_input_embeddings(value)
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head
def set_output_embeddings(self, new_embeddings: nn.Linear):
self.lm_head = new_embeddings
def set_decoder(self, decoder: DbrxModel):
self.transformer = decoder
def get_decoder(self) -> DbrxModel:
return self.transformer
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""Forward function for causal language modeling.
Example:
```python
>>> from transformers import AutoTokenizer, DbrxForCausalLM
>>> model = DbrxForCausalLM.from_pretrained("databricks/dbrx")
>>> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
output_router_logits = (output_router_logits
if output_router_logits is not None else
self.config.output_router_logits)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits if return_dict else outputs[-1],
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None and loss is not None:
loss += self.router_aux_loss_coef * aux_loss.to(
loss.device) # make sure to reside in the same device
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: Any) -> Dict[str, Any]:
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[
1] > input_ids.shape[1]:
input_ids = input_ids[:,
-(attention_mask.shape[1] - past_length):]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (max_cache_length is not None and attention_mask is not None and
cache_length + input_ids.shape[1] > max_cache_length):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get('position_ids', None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
if self.generation_config.cache_implementation == 'static':
# generation with static cache
cache_position = kwargs.get('cache_position', None)
if cache_position is None:
past_length = 0
else:
past_length = cache_position[-1] + 1
input_ids = input_ids[:, past_length:]
position_ids = position_ids[:,
past_length:] if position_ids is not None else None
# TODO @gante we should only keep a `cache_position` in generate, and do +=1.
# same goes for position ids. Could also help with continued generation.
input_length = position_ids.shape[
-1] if position_ids is not None else input_ids.shape[-1]
cache_position = torch.arange(past_length,
past_length + input_length,
device=input_ids.device)
position_ids = position_ids.contiguous(
) if position_ids is not None else None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update(
{ # type: ignore
'position_ids': position_ids,
'cache_position': cache_position,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values: Cache, beam_idx: torch.LongTensor):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past),)
return reordered_past |