File size: 62,851 Bytes
eb2ed2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
# code adapted from https://huggingface.co/fahadh4ilyas
"""PyTorch Dbrx model."""

import math
import warnings
from copy import deepcopy
from functools import partial
from typing import Any, Callable, Dict, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import (MoeCausalLMOutputWithPast,
                                           MoeModelOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import is_flash_attn_2_available, logging

from .configuration_dbrx import DbrxAttentionConfig, DbrxConfig, DbrxFFNConfig

if is_flash_attn_2_available():
    try:
        from flash_attn import flash_attn_func, flash_attn_varlen_func
        from flash_attn.bert_padding import pad_input  # noqa
        from flash_attn.bert_padding import index_first_axis, unpad_input
    except:
        pass

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = 'DbrxConfig'

#############################################################################
# Copied from LLaMaRotaryEmbedding
#############################################################################


class DbrxRotaryEmbedding(nn.Module):

    def __init__(self,
                 dim: int,
                 max_position_embeddings: int = 2048,
                 base: float = 10000.0,
                 scaling_factor: float = 1.0):
        super().__init__()
        self.scaling_factor = scaling_factor
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base**(
            torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
        self.register_buffer('inv_freq', inv_freq, persistent=False)
        # For BC we register cos and sin cached
        self.max_seq_len_cached = max_position_embeddings

    @torch.no_grad()
    def forward(
            self, x: torch.Tensor, position_ids: torch.LongTensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # x: [bs, num_attention_heads, seq_len, head_size]
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(
            position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        # Force float32 since bfloat16 loses precision on long contexts
        # See https://github.com/huggingface/transformers/pull/29285
        device_type = x.device.type
        device_type = device_type if isinstance(
            device_type, str) and device_type != 'mps' else 'cpu'
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float()
                     @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()
        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x: torch.Tensor) -> torch.Tensor:
    """Rotates half the hidden dims of the input."""
    x1 = x[..., :x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(
        q: torch.Tensor,
        k: torch.Tensor,
        cos: torch.Tensor,
        sin: torch.Tensor,
        unsqueeze_dim: int = 1) -> Tuple[torch.Tensor, torch.Tensor]:
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos and
            sin so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos and sin have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos and sin broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.

    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """Equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).

    The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
    (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :,
                                  None, :, :].expand(batch, num_key_value_heads,
                                                     n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
                                 head_dim)


#############################################################################

#############################################################################
# Modified from modeling_mixtral
#############################################################################


def load_balancing_loss_func(
    gate_logits: torch.Tensor,
    num_experts: int,
    top_k: int,
    attention_mask: Optional[torch.Tensor],
) -> torch.Tensor:
    r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.

    See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
    function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
    experts is too unbalanced.

    Args:
        gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
            Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
            shape [batch_size X sequence_length, num_experts].
        num_experts (`int`):
            Number of experts.
        top_k (`int`):
            The number of experts each token is routed to.
        attention_mask (`torch.Tensor`, None):
            The attention_mask used in forward function
            shape [batch_size X sequence_length] if not None.

    Returns:
        The auxiliary loss.
    """
    if gate_logits is None or not isinstance(gate_logits, tuple):
        return torch.tensor(0.0)

    if isinstance(gate_logits, tuple):
        compute_device = gate_logits[0].device
        concatenated_gate_logits = torch.cat(
            [layer_gate.to(compute_device) for layer_gate in gate_logits],
            dim=0)

    routing_weights = torch.nn.functional.softmax(concatenated_gate_logits,
                                                  dim=-1)

    _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)

    expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)

    if attention_mask is None:
        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = torch.mean(expert_mask.float(), dim=0)

        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.mean(routing_weights, dim=0)
    else:
        batch_size, sequence_length = attention_mask.shape
        num_hidden_layers = concatenated_gate_logits.shape[0] // (
            batch_size * sequence_length)

        # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
        expert_attention_mask = (attention_mask[None, :, :, None, None].expand(
            (num_hidden_layers, batch_size, sequence_length, top_k,
             num_experts)).reshape(-1, top_k, num_experts).to(compute_device))

        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = torch.sum(
            expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
                expert_attention_mask, dim=0)

        # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
        router_per_expert_attention_mask = (
            attention_mask[None, :, :, None].expand(
                (num_hidden_layers, batch_size, sequence_length,
                 num_experts)).reshape(-1, num_experts).to(compute_device))

        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.sum(
            routing_weights * router_per_expert_attention_mask,
            dim=0) / torch.sum(router_per_expert_attention_mask, dim=0)

    overall_loss = torch.sum(tokens_per_expert *
                             router_prob_per_expert.unsqueeze(0))
    return overall_loss * num_experts


#############################################################################


def resolve_ffn_act_fn(
        ffn_act_fn: dict) -> Callable[[torch.Tensor], torch.Tensor]:
    """Resolve the activation function for the feed-forward network.

    Args:
        ffn_act_fn (dict): The configuration dictionary for the activation function.
            The dict config must specify the 'name' of a torch.nn.functional activation
            function. All of other key values pairs are bound to the function as a partial.

    Returns:
        Callable[[torch.Tensor], torch.Tensor]: The activation function.
    """
    config = deepcopy(ffn_act_fn)
    name = config.pop('name')
    if not hasattr(nn.functional, name):
        raise ValueError(f'Unrecognised activation function name ({name}).')
    act = getattr(nn.functional, name)
    return partial(act, **config)


#############################################################################
# Copied from LLaMaAttention
#############################################################################


def _get_unpad_data(attention_mask: torch.Tensor):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32),
                       (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


class DbrxAttention(nn.Module):
    """Multi-head self attention."""

    def __init__(self,
                 hidden_size: int,
                 num_heads: int,
                 max_position_embeddings: int,
                 attn_config: DbrxAttentionConfig,
                 block_idx: Optional[int] = None):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_heads = num_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.max_position_embeddings = max_position_embeddings
        self.block_idx = block_idx
        self.config = attn_config
        if block_idx is None:
            logger.warning_once(
                f'Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will '
                +
                'lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` '
                + 'when creating this class.')

        self.attn_pdrop = attn_config.attn_pdrop
        self.clip_qkv = attn_config.clip_qkv
        self.num_key_value_heads = attn_config.kv_n_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.rope_theta = attn_config.rope_theta

        self.q_proj = nn.Linear(self.hidden_size,
                              self.hidden_size,
                              bias=False)
        self.k_proj = nn.Linear(self.hidden_size,
                              self.num_key_value_heads * self.head_dim,
                              bias=False)
        self.v_proj = nn.Linear(self.hidden_size,
                              self.num_key_value_heads * self.head_dim,
                              bias=False)
        self.out_proj = nn.Linear(self.hidden_size,
                                  self.hidden_size,
                                  bias=False)
        self.rotary_emb = DbrxRotaryEmbedding(
            self.head_dim,
            max_position_embeddings=self.max_position_embeddings,
            base=self.rope_theta,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_ids: torch.LongTensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Any,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)
        if self.clip_qkv is not None:
            query_states = query_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
            key_states = key_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
            value_states = value_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)

        query_states = query_states.view(bsz, q_len, self.num_heads,
                                         self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
                                     self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
                                         self.head_dim).transpose(1, 2)

        past_key_value = getattr(self, 'past_key_value', past_key_value)
        cos, sin = self.rotary_emb(value_states, position_ids)
        query_states, key_states = apply_rotary_pos_emb(query_states,
                                                        key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; position_ids needed for the static cache
            cache_kwargs = {
                'sin': sin,
                'cos': cos,
                'cache_position': cache_position
            }
            key_states, value_states = past_key_value.update(
                key_states, value_states, self.block_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(
            2, 3)) / math.sqrt(self.head_dim)

        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, :key_states.shape[-2]]
            attn_weights = attn_weights + causal_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights,
                                             dim=-1,
                                             dtype=torch.float32).to(
                                                 query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights,
                                             p=self.attn_pdrop,
                                             training=self.training)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
                + f' {attn_output.size()}')

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class DbrxFlashAttention2(DbrxAttention):
    """Dbrx flash attention module.

    This module inherits from `DbrxAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it
    calls the public API of flash attention.
    """

    def __init__(self, *args: Any, **kwargs: Any):
        if not is_flash_attn_2_available():
            raise ImportError(
                'Flash Attention 2 is not available. Please install it with `pip install flash-attn`.'
            )

        super().__init__(*args, **kwargs)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Any,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
               Optional[Tuple[torch.Tensor]]]:
        logger.debug(
            'Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.'
        )
        output_attentions = False

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)
        if self.clip_qkv is not None:
            query_states = query_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
            key_states = key_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
            value_states = value_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)

        # Flash attention requires the input to have the shape
        # batch_size x seq_length x head_dim x hidden_dim
        # therefore we just need to keep the original shape
        query_states = query_states.view(bsz, q_len, self.num_heads,
                                         self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
                                     self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
                                         self.head_dim).transpose(1, 2)

        cos, sin = self.rotary_emb(value_states, position_ids)
        query_states, key_states = apply_rotary_pos_emb(query_states,
                                                        key_states, cos, sin)

        past_key_value = getattr(self, 'past_key_value', past_key_value)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {
                'sin': sin,
                'cos': cos,
                'cache_position': cache_position
            }
            key_states, value_states = past_key_value.update(
                key_states, value_states, self.block_idx, cache_kwargs)

        # TODO: These transpose are quite inefficient but Flash Attention requires the layout
        # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
        # to be able to avoid many of these transpose/reshape/view.
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        dropout_rate = self.attn_pdrop if self.training else 0.0

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in the correct dtype just to be sure everything works as expected.
        # This might slowdown training & inference so it is recommended to not cast the LayerNorms
        # in fp32. (LlamaRMSNorm handles it correctly)
        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, '_pre_quantization_dtype'):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = query_states.dtype

            logger.warning_once(
                f'The input hidden states seems to be silently casted in float32, this might be '
                +
                f'related to the fact you have upcasted embedding or layer norm layers in '
                + f'float32. We will cast back the input in {target_dtype}.')

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        attn_output = self._flash_attention_forward(
            query_states,
            key_states,
            value_states,
            attention_mask,
            q_len,
            dropout=dropout_rate,
        )

        attn_output = attn_output.reshape(bsz, q_len,
                                          self.hidden_size).contiguous()
        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value  # type: ignore

    def _flash_attention_forward(
        self,
        query_states: torch.Tensor,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        attention_mask: Union[torch.LongTensor, None],
        query_length: int,
        dropout: float = 0.0,
        softmax_scale: Optional[float] = None,
    ):
        """Use FlashAttention, stripping padding tokens if necessary.

        Args:
            query_states (torch.Tensor): Input query states to be passed to Flash Attention API
            key_states (torch.Tensor): Input key states to be passed to Flash Attention API
            value_states (torch.Tensor): Input value states to be passed to Flash Attention API
            attention_mask (torch.LongTensor | None): The padding mask - corresponds to a tensor of size
                (batch_size, seq_len) where 0 stands for the position of padding tokens and 1
                for the position of non-padding tokens.
            query_length (int): The length of the query sequence
            dropout (float): Attention dropout
            softmax_scale (float, optional): The scaling of QK^T before applying softmax.
                Defaults to 1 / sqrt(head_dim)
        """
        causal = True
        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                query_states, key_states, value_states, attention_mask,
                query_length)

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            attn_output_unpad = flash_attn_varlen_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=dropout,
                softmax_scale=softmax_scale,
                causal=causal,
            )

            attn_output = pad_input(
                attn_output_unpad,
                indices_q,
                batch_size,
                query_length,
            )
        else:
            attn_output = flash_attn_func(
                query_states,
                key_states,
                value_states,
                dropout,
                softmax_scale=softmax_scale,
                causal=causal,
            )

        return attn_output

    def _upad_input(self, query_layer: torch.Tensor, key_layer: torch.Tensor,
                    value_layer: torch.Tensor, attention_mask: torch.Tensor,
                    query_length: int):
        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
            attention_mask)
        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape

        key_layer = index_first_axis(
            key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
                              head_dim), indices_k)
        value_layer = index_first_axis(
            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
                                head_dim), indices_k)
        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, self.num_heads,
                                    head_dim), indices_k)
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
                query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )


DBRX_ATTENTION_CLASSES = {
    'eager': DbrxAttention,
    'flash_attention_2': DbrxFlashAttention2,
}


class DbrxNormAttentionNorm(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        max_position_embeddings: int,
        resid_pdrop: float,
        attn_implementation: str,
        attn_config: DbrxAttentionConfig,
        block_idx: Optional[int] = None,
    ):
        super().__init__()
        self.block_idx = block_idx
        self.resid_pdrop = resid_pdrop
        self.norm_1 = nn.LayerNorm(hidden_size, bias=False)
        self.attn = DBRX_ATTENTION_CLASSES[attn_implementation](
            hidden_size=hidden_size,
            num_heads=num_heads,
            max_position_embeddings=max_position_embeddings,
            attn_config=attn_config,
            block_idx=block_idx,
        )
        self.norm_2 = nn.LayerNorm(hidden_size, bias=False)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_ids: torch.LongTensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Any,
    ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor],
               Optional[Cache]]:

        residual_states = hidden_states
        hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype)

        hidden_states, attn_weights, past_key_value = self.attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = nn.functional.dropout(hidden_states,
                                              p=self.resid_pdrop,
                                              training=self.training)
        hidden_states = hidden_states + residual_states

        residual_states = hidden_states
        hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype)

        return residual_states, hidden_states, attn_weights, past_key_value


class DbrxRouter(nn.Module):

    def __init__(self, hidden_size: int, moe_num_experts: int, moe_top_k: int,
                 moe_jitter_eps: Optional[float],
                 moe_normalize_expert_weights: Optional[float],
                 uniform_expert_assignment: bool):
        super().__init__()
        self.hidden_size = hidden_size
        self.moe_num_experts = moe_num_experts
        self.moe_top_k = moe_top_k
        self.moe_jitter_eps = moe_jitter_eps
        self.moe_normalize_expert_weights = moe_normalize_expert_weights
        self.uniform_expert_assignment = uniform_expert_assignment

        self.layer = nn.Linear(self.hidden_size,
                               self.moe_num_experts,
                               bias=False)

    def jitter(self, x: torch.Tensor) -> torch.Tensor:
        if self.moe_jitter_eps is None:
            raise RuntimeError('The router does not have moe_jitter_eps set.')
        low = 1.0 - self.moe_jitter_eps
        high = 1.0 + self.moe_jitter_eps
        noise = torch.rand(x.size(), dtype=x.dtype, device=x.device)
        return low + noise * (high - low)

    def forward(
            self, x: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
        if self.training and self.moe_jitter_eps is not None:
            x = x * self.jitter(x)

        weights = self.layer(x.view(-1,
                                    x.shape[-1])).softmax(dim=-1,
                                                          dtype=torch.float32)
        top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1)

        if self.moe_normalize_expert_weights:
            top_weights = top_weights / torch.norm(
                top_weights,
                p=self.moe_normalize_expert_weights,
                dim=-1,
                keepdim=True)

        if self.uniform_expert_assignment:
            with torch.no_grad():
                uniform_tensor = torch.arange(
                    0,
                    top_experts.numel(),
                    device=top_experts.device,
                    dtype=top_experts.dtype) % self.moe_num_experts
                top_experts = uniform_tensor.reshape(top_experts.shape)
                # Note, weights and top_weights are not changed

        weights = weights.to(x.dtype)
        top_weights = top_weights.to(x.dtype)
        return weights, top_weights, top_experts  # type: ignore


class DbrxMLP(nn.Module):

    def __init__(self, hidden_size: int, ffn_hidden_size: int, ffn_act_fn: dict):
        super().__init__()

        self.w1 = nn.Linear(hidden_size, ffn_hidden_size, bias=False)
        self.v1 = nn.Linear(hidden_size, ffn_hidden_size, bias=False)
        self.w2 = nn.Linear(ffn_hidden_size, hidden_size, bias=False)
        self.activation_fn = resolve_ffn_act_fn(ffn_act_fn)
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:

        return self.w2(self.activation_fn(self.w1(x)) * self.v1(x))


class DbrxExperts(nn.Module):

    def __init__(self, hidden_size: int, ffn_hidden_size: int,
                 moe_num_experts: int, ffn_act_fn: dict):
        super().__init__()
        self.moe_num_experts = moe_num_experts
        self.mlp = nn.ModuleList([DbrxMLP(hidden_size, ffn_hidden_size, ffn_act_fn) for _ in range(moe_num_experts)])

    def forward(self, x: torch.Tensor, weights: torch.Tensor,
                top_weights: torch.Tensor,
                top_experts: torch.LongTensor) -> torch.Tensor:
        bsz, q_len, hidden_size = x.shape
        x = x.view(-1, hidden_size)
        out = torch.zeros_like(x)

        expert_mask = nn.functional.one_hot(
            top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0)
        for expert_idx in range(0, self.moe_num_experts):
            topk_idx, token_idx = torch.where(expert_mask[expert_idx])
            if token_idx.shape[0] == 0:
                continue

            expert_tokens = x[None, token_idx].reshape(-1, hidden_size)
            expert_out = self.mlp[expert_idx](expert_tokens) * top_weights[token_idx, topk_idx, None]

            out.index_add_(0, token_idx, expert_out)

        out = out.reshape(bsz, q_len, hidden_size)
        return out


class DbrxFFN(nn.Module):

    def __init__(self, hidden_size: int, ffn_config: DbrxFFNConfig):
        super().__init__()

        self.router = DbrxRouter(
            hidden_size,
            moe_num_experts=ffn_config.moe_num_experts,
            moe_top_k=ffn_config.moe_top_k,
            moe_jitter_eps=ffn_config.moe_jitter_eps,
            moe_normalize_expert_weights=ffn_config.
            moe_normalize_expert_weights,
            uniform_expert_assignment=ffn_config.uniform_expert_assignment,
        )

        self.experts = DbrxExperts(
            hidden_size=hidden_size,
            ffn_hidden_size=ffn_config.ffn_hidden_size,
            moe_num_experts=ffn_config.moe_num_experts,
            ffn_act_fn=ffn_config.ffn_act_fn,
        )

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        weights, top_weights, top_experts = self.router(x)
        out = self.experts(x, weights, top_weights, top_experts)
        return out, weights


class DbrxBlock(nn.Module):

    def __init__(self, config: DbrxConfig, block_idx: int):
        super().__init__()
        self.hidden_size = config.d_model
        self.resid_pdrop = config.resid_pdrop
        self.block_idx = block_idx
        self.norm_attn_norm = DbrxNormAttentionNorm(
            hidden_size=config.d_model,
            num_heads=config.n_heads,
            max_position_embeddings=config.max_seq_len,
            resid_pdrop=config.resid_pdrop,
            attn_implementation=config._attn_implementation,
            attn_config=config.attn_config,
            block_idx=block_idx,
        )
        self.ffn = DbrxFFN(hidden_size=config.d_model,
                           ffn_config=config.ffn_config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_ids: torch.LongTensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        output_router_logits: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Any,
    ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, Optional[torch.Tensor]],
               Tuple[torch.Tensor, Optional[Cache]], Tuple[
                   torch.Tensor, Optional[torch.Tensor], Optional[Cache]],
               Tuple[torch.Tensor, Optional[torch.Tensor],
                     Optional[torch.Tensor]], Tuple[
                         torch.Tensor, Optional[Cache], Optional[torch.Tensor]],
               Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache],
                     Optional[torch.Tensor]],]:
        """Forward function for DbrxBlock.

        Args:
            hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)`
            attention_mask (`torch.Tensor`, optional): attention mask of size (batch_size, sequence_length)
                if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length)
                if default attention is used.
            past_key_value (`Tuple(torch.Tensor)`, optional): cached past key and value projection states
            output_attentions (`bool`, optional): Whether or not to return the attentions tensors of all
                attention layers. See `attentions` under returned tensors for more detail.
            output_router_logits (`bool`, optional): Whether or not to return the router logits.
            use_cache (`bool`, optional): If set to `True`, `past_key_values` key value states are
                returned and can be used to speed up decoding (see `past_key_values`).
            cache_position (`torch.LongTensor`, optional): position ids of the cache
        """
        if 'padding_mask' in kwargs:
            warnings.warn(
                'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
            )

        # Norm + Attention + Norm
        resid_states, hidden_states, self_attn_weights, present_key_value = self.norm_attn_norm(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )

        # Fully Connected
        hidden_states, router_logits = self.ffn(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states,
                                              p=self.resid_pdrop,
                                              training=self.training)
        hidden_states = resid_states + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        if output_router_logits:
            outputs += (router_logits,)

        return outputs


class DbrxPreTrainedModel(PreTrainedModel):
    config_class = DbrxConfig
    base_model_prefix = 'transformer'
    supports_gradient_checkpointing = True
    _no_split_modules = ['DbrxBlock']
    _skip_keys_device_placement = ['past_key_values']
    _supports_flash_attn_2 = True
    _supports_sdpa = False
    _supports_cache_class = True

    def _init_weights(self, module: nn.Module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()

    def _setup_cache(self, cache_cls: Any, max_batch_size: int,
                     max_cache_len: int):  # TODO: how to set var type of class?
        if self.config._attn_implementation == 'flash_attention_2' and cache_cls == StaticCache:
            raise ValueError(
                '`static` cache implementation is not compatible with ' +
                '`attn_implementation==flash_attention_2`. Make sure to use ' +
                '`spda` in the mean time and open an issue at https://github.com/huggingface/transformers.'
            )

        for block in self.transformer.blocks:
            device = block.norm_attn_norm.norm_1.weight.device
            if hasattr(self.config, '_pre_quantization_dtype'):
                dtype = self.config._pre_quantization_dtype
            else:
                dtype = block.norm_attn_norm.attn.out_proj.weight.dtype
            block.norm_attn_norm.attn.past_key_value = cache_cls(self.config,
                                                                 max_batch_size,
                                                                 max_cache_len,
                                                                 device=device,
                                                                 dtype=dtype)

    def _reset_cache(self):
        for block in self.transformer.blocks:
            block.norm_attn_norm.attn.past_key_value = None


class DbrxModel(DbrxPreTrainedModel):
    """Transformer decoder consisting of *config.num_hidden_layers*

    [`DbrxBlock`] layers.

    Args:
        config: DbrxConfig
    """

    def __init__(self, config: DbrxConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.emb_pdrop = config.emb_pdrop

        self.wte = nn.Embedding(config.vocab_size, config.d_model,
                                self.padding_idx)
        self.blocks = nn.ModuleList([
            DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)
        ])
        self.norm_f = nn.LayerNorm(config.d_model, bias=False)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> nn.Embedding:
        return self.wte

    def set_input_embeddings(self, value: nn.Embedding):
        self.wte = value

    def _autocast_input_embeddings(self,
                                   inputs_embeds: torch.Tensor) -> torch.Tensor:
        if inputs_embeds.device.type == 'cuda' and torch.is_autocast_enabled():
            return inputs_embeds.to(dtype=torch.get_autocast_gpu_dtype())
        elif inputs_embeds.device.type == 'cpu' and torch.is_autocast_cpu_enabled(
        ):
            return inputs_embeds.to(dtype=torch.get_autocast_cpu_dtype())
        else:
            return inputs_embeds

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, MoeModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (output_hidden_states
                                if output_hidden_states is not None else
                                self.config.output_hidden_states)
        output_router_logits = (output_router_logits
                                if output_router_logits is not None else
                                self.config.output_router_logits)
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                'You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one'
            )

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.'
            )
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)

        inputs_embeds = self._autocast_input_embeddings(
            inputs_embeds)  # type: ignore
        inputs_embeds = nn.functional.dropout(inputs_embeds,
                                              p=self.emb_pdrop,
                                              training=self.training)

        past_seen_tokens = 0
        if use_cache:  # kept for BC (cache positions)
            if not isinstance(past_key_values, StaticCache):
                past_key_values = DynamicCache.from_legacy_cache(
                    past_key_values)
                past_seen_tokens = past_key_values.get_seq_length(  # type: ignore
                )

        if cache_position is None:
            if isinstance(past_key_values, StaticCache):
                raise ValueError(
                    'cache_position is a required argument when using StaticCache.'
                )
            cache_position = torch.arange(  # type: ignore
                past_seen_tokens,
                past_seen_tokens + inputs_embeds.shape[1],
                device=inputs_embeds.device)

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)  # type: ignore

        causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
                                               cache_position)  # type: ignore

        # embed positions
        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_router_logits = () if output_router_logits else None
        next_decoder_cache = None

        for block in self.blocks:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)  # type: ignore

            if self.gradient_checkpointing and self.training:
                block_outputs = self._gradient_checkpointing_func(
                    block.__call__,
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_values=past_key_values,
                    output_attentions=output_attentions,
                    output_router_logits=output_router_logits,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )
            else:
                block_outputs = block(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    output_router_logits=output_router_logits,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )

            hidden_states = block_outputs[0]

            if use_cache:
                next_decoder_cache = block_outputs[
                    2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (block_outputs[1],)  # type: ignore

            if output_router_logits:
                all_router_logits += (block_outputs[-1],)  # type: ignore

        hidden_states = self.norm_f(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)  # type: ignore

        next_cache = None
        if use_cache:
            next_cache = (
                next_decoder_cache.to_legacy_cache()  # type: ignore
                if isinstance(next_decoder_cache, Cache) else
                next_decoder_cache)
        if not return_dict:
            return tuple(v for v in [
                hidden_states, next_cache, all_hidden_states, all_self_attns,
                all_router_logits
            ] if v is not None)
        return MoeModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            router_logits=all_router_logits,
        )

    # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
    # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
    # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
    # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
    def _update_causal_mask(
            self, attention_mask: Optional[torch.Tensor],
            input_tensor: torch.Tensor,
            cache_position: torch.Tensor) -> Optional[torch.Tensor]:
        if self.config._attn_implementation == 'flash_attention_2':
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        if hasattr(self.blocks[0].norm_attn_norm.attn,
                   'past_key_value'):  # static cache
            target_length = self.config.max_position_embeddings
        else:  # dynamic cache
            target_length = (attention_mask.shape[-1] if isinstance(
                attention_mask, torch.Tensor) else cache_position[-1] + 1)
        target_length = int(target_length)

        causal_mask = torch.full((sequence_length, target_length),
                                 fill_value=min_dtype,
                                 dtype=dtype,
                                 device=device)
        if sequence_length != 1:
            causal_mask = torch.triu(causal_mask, diagonal=1)
        causal_mask *= torch.arange(
            target_length, device=device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None,
                                  None, :, :].expand(input_tensor.shape[0], 1,
                                                     -1, -1)
        if attention_mask is not None:
            causal_mask = causal_mask.clone(
            )  # copy to contiguous memory for in-place edit
            if attention_mask.dim() == 2:
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[..., :mask_length].eq(
                    0.0) * attention_mask[:, None, None, :].eq(0.0)
                causal_mask[..., :mask_length] = causal_mask[
                    ..., :mask_length].masked_fill(padding_mask, min_dtype)
            elif attention_mask.dim() == 4:
                # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
                # cache. In that case, the 4D attention mask attends to the newest tokens only.
                if attention_mask.shape[
                        -2] < cache_position[0] + sequence_length:
                    offset = cache_position[0]
                else:
                    offset = 0
                mask_shape = attention_mask.shape
                mask_slice = (attention_mask.eq(0.0)).to(
                    dtype=dtype) * min_dtype
                causal_mask[:mask_shape[0], :mask_shape[1],
                            offset:mask_shape[2] +
                            offset, :mask_shape[3]] = mask_slice

        if (self.config._attn_implementation == 'sdpa' and
                attention_mask is not None and
                attention_mask.device.type == 'cuda'):
            # TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
            is_tracing = (
                torch.jit.is_tracing() or
                isinstance(input_tensor, torch.fx.Proxy) or  # type: ignore
                (hasattr(torch, '_dynamo') and torch._dynamo.is_compiling()))
            if not is_tracing and torch.any(attention_mask != 1):
                # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
                # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
                # Details: https://github.com/pytorch/pytorch/issues/110213
                causal_mask = AttentionMaskConverter._unmask_unattended(
                    causal_mask, min_dtype)

        return causal_mask


class DbrxForCausalLM(DbrxPreTrainedModel):

    def __init__(self, config: DbrxConfig):
        super().__init__(config)
        self.transformer = DbrxModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size,
                                 config.vocab_size,
                                 bias=False)
        self.router_aux_loss_coef = config.router_aux_loss_coef
        self.num_experts = config.ffn_config.moe_num_experts
        self.num_experts_per_tok = config.ffn_config.moe_top_k

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> nn.Embedding:
        return self.transformer.get_input_embeddings()

    def set_input_embeddings(self, value: nn.Embedding):
        self.transformer.set_input_embeddings(value)

    def get_output_embeddings(self) -> nn.Linear:
        return self.lm_head

    def set_output_embeddings(self, new_embeddings: nn.Linear):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder: DbrxModel):
        self.transformer = decoder

    def get_decoder(self) -> DbrxModel:
        return self.transformer

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_router_logits: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
        r"""Forward function for causal language modeling.

        Example:
        ```python
        >>> from transformers import AutoTokenizer, DbrxForCausalLM

        >>> model = DbrxForCausalLM.from_pretrained("databricks/dbrx")
        >>> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (output_hidden_states
                                if output_hidden_states is not None else
                                self.config.output_hidden_states)
        output_router_logits = (output_router_logits
                                if output_router_logits is not None else
                                self.config.output_router_logits)
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.transformer(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_router_logits=output_router_logits,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        aux_loss = None
        if output_router_logits:
            aux_loss = load_balancing_loss_func(
                outputs.router_logits if return_dict else outputs[-1],
                self.num_experts,
                self.num_experts_per_tok,
                attention_mask,
            )
            if labels is not None and loss is not None:
                loss += self.router_aux_loss_coef * aux_loss.to(
                    loss.device)  # make sure to reside in the same device

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return MoeCausalLMOutputWithPast(
            loss=loss,
            aux_loss=aux_loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_logits=outputs.router_logits,
        )

    def prepare_inputs_for_generation(
            self,
            input_ids: torch.Tensor,
            past_key_values: Optional[Cache] = None,
            attention_mask: Optional[torch.Tensor] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            **kwargs: Any) -> Dict[str, Any]:
        past_length = 0
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
                max_cache_length = past_key_values.get_max_length()
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[
                    1] > input_ids.shape[1]:
                input_ids = input_ids[:,
                                      -(attention_mask.shape[1] - past_length):]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (max_cache_length is not None and attention_mask is not None and
                    cache_length + input_ids.shape[1] > max_cache_length):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get('position_ids', None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1]:]

        if self.generation_config.cache_implementation == 'static':
            # generation with static cache
            cache_position = kwargs.get('cache_position', None)
            if cache_position is None:
                past_length = 0
            else:
                past_length = cache_position[-1] + 1
            input_ids = input_ids[:, past_length:]
            position_ids = position_ids[:,
                                        past_length:] if position_ids is not None else None

        # TODO @gante we should only keep a `cache_position` in generate, and do +=1.
        # same goes for position ids. Could also help with continued generation.
        input_length = position_ids.shape[
            -1] if position_ids is not None else input_ids.shape[-1]
        cache_position = torch.arange(past_length,
                                      past_length + input_length,
                                      device=input_ids.device)
        position_ids = position_ids.contiguous(
        ) if position_ids is not None else None

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {'inputs_embeds': inputs_embeds}
        else:
            # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
            # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
            # TODO: use `next_tokens` directly instead.
            model_inputs = {'input_ids': input_ids.contiguous()}

        model_inputs.update(
            { # type: ignore
                'position_ids': position_ids,
                'cache_position': cache_position,
                'past_key_values': past_key_values,
                'use_cache': kwargs.get('use_cache'),
                'attention_mask': attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values: Cache, beam_idx: torch.LongTensor):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (tuple(
                past_state.index_select(0, beam_idx.to(past_state.device))
                for past_state in layer_past),)
        return reordered_past