LYQ commited on
Commit
955a3ad
·
1 Parent(s): 0c3082f
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.gif filter=lfs diff=lfs merge=lfs -text
37
+ assets/minicpmv2-cases_2.png filter=lfs diff=lfs merge=lfs -text
38
+ *.png filter=lfs diff=lfs merge=lfs -text
39
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
123/README.md DELETED
@@ -1,3 +0,0 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
README.md CHANGED
@@ -1,3 +1,159 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ [GitHub](https://github.com/OpenBMB/MiniCPM-V) | [Demo](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)
3
+
4
+ ## News <!-- omit in toc -->
5
+
6
+ * [2024.04.23] MiniCPM-V 2.0 supports [vLLM](#vllm) now!
7
+ * [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)!
8
+ * [2024.04.17] MiniCPM-V 2.0 supports deploying [WebUI Demo](https://github.com/OpenBMB/MiniCPM-V/blob/8a1f766b85595a8095651eed9a44a83a965b305b/README_en.md#minicpm-v-) now!
9
+ * [2024.04.15] MiniCPM-V 2.0 supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) with the SWIFT framework!
10
+ * [2024.04.12] We open-source MiniCPM-V-2.0, which achieves comparable performance with Gemini Pro in understanding scene text and outperforms strong Qwen-VL-Chat 9.6B and Yi-VL 34B on <a href="https://rank.opencompass.org.cn/leaderboard-multimodal">OpenCompass</a>, a comprehensive evaluation over 11 popular benchmarks. Click <a href="https://openbmb.vercel.app/minicpm-v-2">here</a> to view the MiniCPM-V 2.0 technical blog.
11
+
12
+ ## MiniCPM-V 2.0
13
+ **MiniCPM-V 2.8B** is a strong multimodal large language model for efficient end-side deployment. The model is built based on SigLip-400M and [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/), connected by a perceiver resampler. Our latest version, **MiniCPM-V 2.0** has several notable features.
14
+
15
+ - 🔥 **State-of-the-art Performance.**
16
+
17
+ MiniCPM-V 2.0 achieves **state-of-the-art performance** on multiple benchmarks (including OCRBench, TextVQA, MME, MMB, MathVista, etc) among models under 7B parameters. It even **outperforms strong Qwen-VL-Chat 9.6B, CogVLM-Chat 17.4B, and Yi-VL 34B on OpenCompass, a comprehensive evaluation over 11 popular benchmarks**. Notably, MiniCPM-V 2.0 shows **strong OCR capability**, achieving **comparable performance to Gemini Pro in scene-text understanding**, and **state-of-the-art performance on OCRBench** among open-source models.
18
+
19
+ - 🏆 **Trustworthy Behavior.**
20
+
21
+ LMMs are known for suffering from hallucination, often generating text not factually grounded in images. MiniCPM-V 2.0 is **the first end-side LMM aligned via multimodal RLHF for trustworthy behavior** (using the recent [RLHF-V](https://rlhf-v.github.io/) [CVPR'24] series technique). This allows the model to **match GPT-4V in preventing hallucinations** on Object HalBench.
22
+
23
+ - 🌟 **High-Resolution Images at Any Aspect Raito.**
24
+
25
+ MiniCPM-V 2.0 can accept **1.8 million pixels (e.g., 1344x1344) images at any aspect ratio**. This enables better perception of fine-grained visual information such as small objects and optical characters, which is achieved via a recent technique from [LLaVA-UHD](https://arxiv.org/pdf/2403.11703.pdf).
26
+
27
+ - ⚡️ **High Efficiency.**
28
+
29
+ MiniCPM-V 2.0 can be **efficiently deployed on most GPU cards and personal computers**, and **even on end devices such as mobile phones**. For visual encoding, we compress the image representations into much fewer tokens via a perceiver resampler. This allows MiniCPM-V 2.0 to operate with **favorable memory cost and speed during inference even when dealing with high-resolution images**.
30
+
31
+
32
+
33
+ - 🙌 **Bilingual Support.**
34
+
35
+ MiniCPM-V 2.0 **supports strong bilingual multimodal capabilities in both English and Chinese**. This is enabled by generalizing multimodal capabilities across languages, a technique from [VisCPM](https://arxiv.org/abs/2308.12038) [ICLR'24].
36
+
37
+ ## Evaluation <!-- omit in toc -->
38
+
39
+ <div align="center">
40
+ <img src=assets/minicpmv-2-peformance2.png width=70% />
41
+ </div>
42
+
43
+ Results on TextVQA, DocVQA, OCRBench, OpenCompass, MME, MMBench, MMMU, MathVista, LLaVA Bench, Object HalBench.
44
+ <div align="center">
45
+ <img src=assets/minicpmv-2-benchmark.png />
46
+ </div>
47
+
48
+
49
+ ## Examples <!-- omit in toc -->
50
+
51
+ <table align="center">
52
+ <p align="center">
53
+ <img src="assets/minicpmv2-cases_2.png" width=95%/>
54
+ </p>
55
+ </table>
56
+
57
+ We deploy MiniCPM-V 2.0 on end devices. The demo video is the raw screen recording on a Xiaomi 14 Pro without edition.
58
+
59
+ <table align="center">
60
+ <p align="center">
61
+ <img src="assets/station.gif" width=30% style="display:inline-block;"/>
62
+ <img src="assets/london_car.gif" width=30% style="display:inline-block;"/>
63
+ </p>
64
+ </table>
65
+
66
+
67
+
68
+
69
+ ## Demo
70
+ Click here to try out the Demo of [MiniCPM-V 2.0](https://huggingface.co/spaces/openbmb/MiniCPM-V-2).
71
+
72
+ ## Deployment on Mobile Phone
73
+ MiniCPM-V 2.0 can be deployed on mobile phones with Android and Harmony operating systems. 🚀 Try it out [here](https://github.com/OpenBMB/mlc-MiniCPM).
74
+
75
+ ## Inference with vLLM<a id="vllm"></a>
76
+
77
+ <details>
78
+ <summary>Click to see how to inference with vLLM </summary>
79
+ Because our pull request to vLLM is still waiting for reviewing, we fork this repository to build and test our vLLM demo. Here are the steps:
80
+
81
+ 1. Clone our version of vLLM:
82
+ ```shell
83
+ git clone https://github.com/OpenBMB/vllm.git
84
+ ```
85
+ 2. Install vLLM:
86
+ ```shell
87
+ cd vllm
88
+ pip install -e .
89
+ ```
90
+ 3. Install timm:
91
+ ```shell
92
+ pip install timm=0.9.10
93
+ ```
94
+ 4. Run our demo:
95
+ ```shell
96
+ python examples/minicpmv_example.py
97
+ ```
98
+ </details>
99
+
100
+ ## Usage
101
+ Inference using Huggingface transformers on Nivdia GPUs or Mac with MPS (Apple silicon or AMD GPUs). Requirements tested on python 3.10:
102
+ ```
103
+ Pillow==10.1.0
104
+ timm==0.9.10
105
+ torch==2.1.2
106
+ torchvision==0.16.2
107
+ transformers==4.36.0
108
+ sentencepiece==0.1.99
109
+ ```
110
+
111
+ ```python
112
+ # test.py
113
+ import torch
114
+ from PIL import Image
115
+ from modelscope import AutoModel, AutoTokenizer
116
+
117
+ model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True, torch_dtype=torch.bfloat16)
118
+ # For Nvidia GPUs support BF16 (like A100, H100, RTX3090)
119
+ model = model.to(device='cuda', dtype=torch.bfloat16)
120
+ # For Nvidia GPUs do NOT support BF16 (like V100, T4, RTX2080)
121
+ #model = model.to(device='cuda', dtype=torch.float16)
122
+ # For Mac with MPS (Apple silicon or AMD GPUs).
123
+ # Run with `PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py`
124
+ #model = model.to(device='mps', dtype=torch.float16)
125
+
126
+ tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)
127
+ model.eval()
128
+
129
+ image = Image.open('xx.jpg').convert('RGB')
130
+ question = 'What is in the image?'
131
+ msgs = [{'role': 'user', 'content': question}]
132
+
133
+ answer, context, _ = model.chat(
134
+ image=image,
135
+ msgs=msgs,
136
+ context=None,
137
+ tokenizer=tokenizer,
138
+ sampling=True,
139
+ temperature=0.7
140
+ )
141
+ print(answer)
142
+ ```
143
+
144
+ Please look at [GitHub](https://github.com/OpenBMB/MiniCPM-V) for more detail about usage.
145
+
146
+
147
+ ## MiniCPM-V 1.0 <!-- omit in toc -->
148
+ Please see the info about MiniCPM-V 1.0 [here](https://modelscope.cn/models/OpenBMB/MiniCPM-V/summary).
149
+
150
+ ## License
151
+ #### Model License
152
+ * The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
153
+ * The usage of MiniCPM-V series model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
154
+ * The models and weights of MiniCPM are completely free for academic research. after filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.
155
+
156
+
157
+ #### Statement
158
+ * As a LLM, MiniCPM-V 2.0 generates contents by learning a large mount of texts, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-V 2.0 does not represent the views and positions of the model developers
159
+ * We will not be liable for any problems arising from the use of the MinCPM-V open Source model, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.
assets/english_menu.gif ADDED

Git LFS Details

  • SHA256: 7eb4ea1a179e8a17a5550806efa4fd2957a8d7226daa83a505f510aa3357cc73
  • Pointer size: 132 Bytes
  • Size of remote file: 5.61 MB
assets/london_car.gif ADDED

Git LFS Details

  • SHA256: 4556aa4b55a2175ba7e623cc36c2493e50c503d10251684e8f1b6ffb19db41ed
  • Pointer size: 132 Bytes
  • Size of remote file: 7.64 MB
assets/minicpmv-2-benchmark.png ADDED

Git LFS Details

  • SHA256: 248c1b1f6e3406760e106d05566c455aa7802442fac69302c8ac0e26a8d2e79b
  • Pointer size: 131 Bytes
  • Size of remote file: 446 kB
assets/minicpmv-2-peformance2.png ADDED

Git LFS Details

  • SHA256: 9ed9097b1f96b1551591484a784cbbe7c82eb4c09722622645677026a6a2042e
  • Pointer size: 131 Bytes
  • Size of remote file: 823 kB
assets/station.gif ADDED

Git LFS Details

  • SHA256: e7b88efb0040f31992f4069148561d4aeb46ef0cee5e60de4aed4f4be7c3e1be
  • Pointer size: 132 Bytes
  • Size of remote file: 7.42 MB
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openbmb/MiniCPM-V-2",
3
+ "architectures": [
4
+ "MiniCPMV"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_minicpm.MiniCPMVConfig",
10
+ "AutoModel": "modeling_minicpmv.MiniCPMV",
11
+ "AutoModelForCausalLM": "modeling_minicpmv.MiniCPMV"
12
+ },
13
+ "bos_token_id": 1,
14
+ "dim_model_base": 256,
15
+ "drop_vision_last_layer": true,
16
+ "eos_token_id": 2,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 2304,
19
+ "image_size": 448,
20
+ "initializer_range": 0.1,
21
+ "intermediate_size": 5760,
22
+ "max_position_embeddings": 4096,
23
+ "max_slice_nums": 9,
24
+ "mm_use_im_start_end": true,
25
+ "model_type": "minicpmv",
26
+ "num_attention_heads": 36,
27
+ "num_hidden_layers": 40,
28
+ "num_key_value_heads": 36,
29
+ "patch_size": 14,
30
+ "pretraining_tp": 1,
31
+ "query_num": 64,
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_scaling": null,
34
+ "rope_theta": 10000.0,
35
+ "scale_depth": 1.4,
36
+ "scale_emb": 12,
37
+ "scale_resolution": 448,
38
+ "slice_mode": true,
39
+ "tie_word_embeddings": false,
40
+ "torch_dtype": "bfloat16",
41
+ "transformers_version": "4.36.0",
42
+ "use_cache": true,
43
+ "vision_encoder": "vit_so400m_patch14_siglip_384.webli",
44
+ "vocab_size": 122753
45
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework":"Pytorch","task":"multimodal-dialogue"}
configuration_minicpm.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ MiniCPM model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
28
+
29
+
30
+ class MiniCPMConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
33
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
34
+ defaults will yield a similar configuration to that of the MiniCPM-7B.
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`MiniCPMModel`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer decoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer decoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
61
+ MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ pad_token_id (`int`, *optional*):
70
+ Padding token id.
71
+ bos_token_id (`int`, *optional*, defaults to 1):
72
+ Beginning of stream token id.
73
+ eos_token_id (`int`, *optional*, defaults to 2):
74
+ End of stream token id.
75
+ pretraining_tp (`int`, *optional*, defaults to 1):
76
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
77
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
78
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
79
+ issue](https://github.com/pytorch/pytorch/issues/76232).
80
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
81
+ Whether to tie weight embeddings
82
+ rope_theta (`float`, *optional*, defaults to 10000.0):
83
+ The base period of the RoPE embeddings.
84
+ rope_scaling (`Dict`, *optional*):
85
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
86
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
87
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
88
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
89
+ these scaling strategies behave:
90
+ https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
91
+ experimental feature, subject to breaking API changes in future versions.
92
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
93
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
94
+ attention_dropout (`float`, *optional*, defaults to 0.0):
95
+ The dropout ratio for the attention probabilities.
96
+ ```python
97
+ >>> from transformers import MiniCPMModel, MiniCPMConfig
98
+ >>> # Initializing a MiniCPM minicpm-7b style configuration
99
+ >>> configuration = MiniCPMConfig()
100
+ >>> # Initializing a model from the minicpm-7b style configuration
101
+ >>> model = MiniCPMModel(configuration)
102
+ >>> # Accessing the model configuration
103
+ >>> configuration = model.config
104
+ ```"""
105
+
106
+ model_type = "minicpm"
107
+ keys_to_ignore_at_inference = ["past_key_values"]
108
+
109
+ def __init__(
110
+ self,
111
+ vocab_size=32000,
112
+ hidden_size=4096,
113
+ intermediate_size=11008,
114
+ num_hidden_layers=32,
115
+ num_attention_heads=32,
116
+ num_key_value_heads=None,
117
+ hidden_act="silu",
118
+ max_position_embeddings=2048,
119
+ initializer_range=0.02,
120
+ rms_norm_eps=1e-6,
121
+ use_cache=True,
122
+ pad_token_id=None,
123
+ bos_token_id=1,
124
+ eos_token_id=2,
125
+ pretraining_tp=1,
126
+ tie_word_embeddings=False,
127
+ rope_theta=10000.0,
128
+ rope_scaling=None,
129
+ attention_bias=False,
130
+ attention_dropout=0.0,
131
+ scale_emb=1,
132
+ dim_model_base=1,
133
+ scale_depth=1,
134
+ **kwargs,
135
+ ):
136
+ self.vocab_size = vocab_size
137
+ self.max_position_embeddings = max_position_embeddings
138
+ self.hidden_size = hidden_size
139
+ self.intermediate_size = intermediate_size
140
+ self.num_hidden_layers = num_hidden_layers
141
+ self.num_attention_heads = num_attention_heads
142
+
143
+ # for backward compatibility
144
+ if num_key_value_heads is None:
145
+ num_key_value_heads = num_attention_heads
146
+
147
+ self.num_key_value_heads = num_key_value_heads
148
+ self.hidden_act = hidden_act
149
+ self.initializer_range = initializer_range
150
+ self.rms_norm_eps = rms_norm_eps
151
+ self.pretraining_tp = pretraining_tp
152
+ self.use_cache = use_cache
153
+ self.rope_theta = rope_theta
154
+ self.rope_scaling = rope_scaling
155
+ self._rope_scaling_validation()
156
+ self.attention_bias = attention_bias
157
+ self.attention_dropout = attention_dropout
158
+ self.scale_emb = scale_emb
159
+ self.dim_model_base = dim_model_base
160
+ self.scale_depth = scale_depth
161
+
162
+ super().__init__(
163
+ pad_token_id=pad_token_id,
164
+ bos_token_id=bos_token_id,
165
+ eos_token_id=eos_token_id,
166
+ tie_word_embeddings=tie_word_embeddings,
167
+ **kwargs,
168
+ )
169
+
170
+ def _rope_scaling_validation(self):
171
+ """
172
+ Validate the `rope_scaling` configuration.
173
+ """
174
+ if self.rope_scaling is None:
175
+ return
176
+
177
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
178
+ raise ValueError(
179
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
180
+ f"got {self.rope_scaling}"
181
+ )
182
+ rope_scaling_type = self.rope_scaling.get("type", None)
183
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
184
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
185
+ raise ValueError(
186
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
187
+ )
188
+ if (
189
+ rope_scaling_factor is None
190
+ or not isinstance(rope_scaling_factor, float)
191
+ or rope_scaling_factor <= 1.0
192
+ ):
193
+ raise ValueError(
194
+ f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}"
195
+ )
196
+
197
+
198
+ class MiniCPMVConfig(MiniCPMConfig):
199
+ model_type = "minicpmv"
200
+ keys_to_ignore_at_inference = ["past_key_values"]
201
+
202
+ def __init__(
203
+ self,
204
+ vision_encoder="vit_so400m_patch14_siglip_384.webli",
205
+ query_num=64,
206
+ image_size=448,
207
+ drop_vision_last_layer=True,
208
+ slice_mode=True,
209
+ patch_size=14,
210
+ max_slice_nums=9,
211
+ scale_resolution=448,
212
+ im_start_token_id=101,
213
+ im_end_token_id=102,
214
+ slice_start_token_id=111,
215
+ slice_end_token_id=112,
216
+ unk_token_id=0,
217
+ **kwargs,
218
+ ):
219
+ self.vision_encoder = vision_encoder
220
+ self.query_num = query_num
221
+ self.image_size = image_size
222
+ self.drop_vision_last_layer = drop_vision_last_layer
223
+ self.slice_mode = slice_mode
224
+ self.patch_size = patch_size
225
+ self.max_slice_nums = max_slice_nums
226
+ self.scale_resolution = scale_resolution
227
+ self.im_start_token_id = im_start_token_id
228
+ self.im_end_token_id = im_end_token_id
229
+ self.slice_start_token_id = slice_start_token_id
230
+ self.slice_end_token_id = slice_end_token_id
231
+ self.unk_token_id = unk_token_id
232
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.0"
6
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6869931584
4
+ },
5
+ "weight_map": {
6
+ "llm.lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "llm.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "llm.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "llm.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "llm.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "llm.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "llm.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "llm.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "llm.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "llm.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "llm.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "llm.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "llm.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "llm.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "llm.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "llm.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "llm.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "llm.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "llm.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "llm.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "llm.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "llm.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "llm.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "llm.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "llm.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "llm.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "llm.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "llm.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "llm.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "llm.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "llm.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "llm.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "llm.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "llm.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "llm.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "llm.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "llm.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "llm.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "llm.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "llm.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "llm.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "llm.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "llm.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "llm.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "llm.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "llm.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "llm.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "llm.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "llm.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "llm.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "llm.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "llm.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "llm.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "llm.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "llm.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "llm.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "llm.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "llm.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "llm.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "llm.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "llm.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "llm.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "llm.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "llm.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "llm.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "llm.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "llm.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "llm.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "llm.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "llm.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "llm.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "llm.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "llm.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "llm.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "llm.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "llm.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "llm.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "llm.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "llm.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "llm.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "llm.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "llm.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "llm.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "llm.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "llm.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "llm.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "llm.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
+ "llm.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
+ "llm.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "llm.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "llm.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "llm.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "llm.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
+ "llm.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "llm.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "llm.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
126
+ "llm.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
127
+ "llm.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
128
+ "llm.model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
129
+ "llm.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
130
+ "llm.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
131
+ "llm.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
132
+ "llm.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
133
+ "llm.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
134
+ "llm.model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
135
+ "llm.model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
136
+ "llm.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
137
+ "llm.model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
138
+ "llm.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
139
+ "llm.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
140
+ "llm.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
141
+ "llm.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
142
+ "llm.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
143
+ "llm.model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "llm.model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
145
+ "llm.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
146
+ "llm.model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
147
+ "llm.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
148
+ "llm.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
149
+ "llm.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
150
+ "llm.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
151
+ "llm.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "llm.model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "llm.model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "llm.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "llm.model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "llm.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "llm.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "llm.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "llm.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
160
+ "llm.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
161
+ "llm.model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
162
+ "llm.model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
163
+ "llm.model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
164
+ "llm.model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
165
+ "llm.model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
166
+ "llm.model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
167
+ "llm.model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
168
+ "llm.model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
169
+ "llm.model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
170
+ "llm.model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "llm.model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
172
+ "llm.model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
173
+ "llm.model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
174
+ "llm.model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
175
+ "llm.model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
176
+ "llm.model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
177
+ "llm.model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
178
+ "llm.model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
179
+ "llm.model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "llm.model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
181
+ "llm.model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
182
+ "llm.model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
183
+ "llm.model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
184
+ "llm.model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
185
+ "llm.model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
186
+ "llm.model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
187
+ "llm.model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "llm.model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "llm.model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "llm.model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "llm.model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "llm.model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "llm.model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "llm.model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
+ "llm.model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
196
+ "llm.model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
197
+ "llm.model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "llm.model.layers.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "llm.model.layers.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "llm.model.layers.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "llm.model.layers.28.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "llm.model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "llm.model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "llm.model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "llm.model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "llm.model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "llm.model.layers.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "llm.model.layers.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "llm.model.layers.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "llm.model.layers.29.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "llm.model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "llm.model.layers.29.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "llm.model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "llm.model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "llm.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "llm.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "llm.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "llm.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "llm.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "llm.model.layers.30.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "llm.model.layers.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "llm.model.layers.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "llm.model.layers.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "llm.model.layers.30.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "llm.model.layers.30.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "llm.model.layers.30.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "llm.model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
232
+ "llm.model.layers.30.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "llm.model.layers.31.input_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "llm.model.layers.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
235
+ "llm.model.layers.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
236
+ "llm.model.layers.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
237
+ "llm.model.layers.31.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
238
+ "llm.model.layers.31.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
+ "llm.model.layers.31.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
240
+ "llm.model.layers.31.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
+ "llm.model.layers.31.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
+ "llm.model.layers.32.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "llm.model.layers.32.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "llm.model.layers.32.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "llm.model.layers.32.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "llm.model.layers.32.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "llm.model.layers.32.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "llm.model.layers.32.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "llm.model.layers.32.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "llm.model.layers.32.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "llm.model.layers.33.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "llm.model.layers.33.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "llm.model.layers.33.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "llm.model.layers.33.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "llm.model.layers.33.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "llm.model.layers.33.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "llm.model.layers.33.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "llm.model.layers.33.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "llm.model.layers.33.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "llm.model.layers.34.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "llm.model.layers.34.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "llm.model.layers.34.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "llm.model.layers.34.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "llm.model.layers.34.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "llm.model.layers.34.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "llm.model.layers.34.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "llm.model.layers.34.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
268
+ "llm.model.layers.34.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
269
+ "llm.model.layers.35.input_layernorm.weight": "model-00001-of-00002.safetensors",
270
+ "llm.model.layers.35.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
271
+ "llm.model.layers.35.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
272
+ "llm.model.layers.35.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
273
+ "llm.model.layers.35.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
274
+ "llm.model.layers.35.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
275
+ "llm.model.layers.35.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
276
+ "llm.model.layers.35.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
277
+ "llm.model.layers.35.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
278
+ "llm.model.layers.36.input_layernorm.weight": "model-00002-of-00002.safetensors",
279
+ "llm.model.layers.36.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
280
+ "llm.model.layers.36.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
281
+ "llm.model.layers.36.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
282
+ "llm.model.layers.36.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
283
+ "llm.model.layers.36.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
284
+ "llm.model.layers.36.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
285
+ "llm.model.layers.36.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
286
+ "llm.model.layers.36.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
287
+ "llm.model.layers.37.input_layernorm.weight": "model-00002-of-00002.safetensors",
288
+ "llm.model.layers.37.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
289
+ "llm.model.layers.37.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
290
+ "llm.model.layers.37.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
291
+ "llm.model.layers.37.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
292
+ "llm.model.layers.37.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
293
+ "llm.model.layers.37.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
294
+ "llm.model.layers.37.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
295
+ "llm.model.layers.37.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
296
+ "llm.model.layers.38.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "llm.model.layers.38.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "llm.model.layers.38.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "llm.model.layers.38.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "llm.model.layers.38.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "llm.model.layers.38.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "llm.model.layers.38.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "llm.model.layers.38.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
304
+ "llm.model.layers.38.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
305
+ "llm.model.layers.39.input_layernorm.weight": "model-00002-of-00002.safetensors",
306
+ "llm.model.layers.39.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
307
+ "llm.model.layers.39.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
308
+ "llm.model.layers.39.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
309
+ "llm.model.layers.39.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
310
+ "llm.model.layers.39.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
311
+ "llm.model.layers.39.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
312
+ "llm.model.layers.39.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
313
+ "llm.model.layers.39.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
314
+ "llm.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
315
+ "llm.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
316
+ "llm.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
317
+ "llm.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
318
+ "llm.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
319
+ "llm.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
320
+ "llm.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
321
+ "llm.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
322
+ "llm.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
323
+ "llm.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
324
+ "llm.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
325
+ "llm.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
326
+ "llm.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
327
+ "llm.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
328
+ "llm.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
329
+ "llm.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
330
+ "llm.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
331
+ "llm.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
332
+ "llm.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
333
+ "llm.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
334
+ "llm.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
335
+ "llm.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
336
+ "llm.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
337
+ "llm.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
338
+ "llm.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
339
+ "llm.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
340
+ "llm.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
341
+ "llm.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
342
+ "llm.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
343
+ "llm.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
344
+ "llm.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
345
+ "llm.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
346
+ "llm.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
347
+ "llm.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
348
+ "llm.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
349
+ "llm.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
350
+ "llm.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
351
+ "llm.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
352
+ "llm.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
353
+ "llm.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
354
+ "llm.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
355
+ "llm.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
356
+ "llm.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
357
+ "llm.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
358
+ "llm.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
359
+ "llm.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
360
+ "llm.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
361
+ "llm.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
362
+ "llm.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
363
+ "llm.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
364
+ "llm.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
365
+ "llm.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
366
+ "llm.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
367
+ "llm.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
368
+ "llm.model.norm.weight": "model-00002-of-00002.safetensors",
369
+ "resampler.attn.in_proj_bias": "model-00002-of-00002.safetensors",
370
+ "resampler.attn.in_proj_weight": "model-00002-of-00002.safetensors",
371
+ "resampler.attn.out_proj.bias": "model-00002-of-00002.safetensors",
372
+ "resampler.attn.out_proj.weight": "model-00002-of-00002.safetensors",
373
+ "resampler.kv_proj.weight": "model-00002-of-00002.safetensors",
374
+ "resampler.ln_kv.bias": "model-00002-of-00002.safetensors",
375
+ "resampler.ln_kv.weight": "model-00002-of-00002.safetensors",
376
+ "resampler.ln_post.bias": "model-00002-of-00002.safetensors",
377
+ "resampler.ln_post.weight": "model-00002-of-00002.safetensors",
378
+ "resampler.ln_q.bias": "model-00002-of-00002.safetensors",
379
+ "resampler.ln_q.weight": "model-00002-of-00002.safetensors",
380
+ "resampler.pos_embed": "model-00002-of-00002.safetensors",
381
+ "resampler.proj": "model-00002-of-00002.safetensors",
382
+ "resampler.query": "model-00002-of-00002.safetensors",
383
+ "vpm.blocks.0.attn.proj.bias": "model-00002-of-00002.safetensors",
384
+ "vpm.blocks.0.attn.proj.weight": "model-00002-of-00002.safetensors",
385
+ "vpm.blocks.0.attn.qkv.bias": "model-00002-of-00002.safetensors",
386
+ "vpm.blocks.0.attn.qkv.weight": "model-00002-of-00002.safetensors",
387
+ "vpm.blocks.0.mlp.fc1.bias": "model-00002-of-00002.safetensors",
388
+ "vpm.blocks.0.mlp.fc1.weight": "model-00002-of-00002.safetensors",
389
+ "vpm.blocks.0.mlp.fc2.bias": "model-00002-of-00002.safetensors",
390
+ "vpm.blocks.0.mlp.fc2.weight": "model-00002-of-00002.safetensors",
391
+ "vpm.blocks.0.norm1.bias": "model-00002-of-00002.safetensors",
392
+ "vpm.blocks.0.norm1.weight": "model-00002-of-00002.safetensors",
393
+ "vpm.blocks.0.norm2.bias": "model-00002-of-00002.safetensors",
394
+ "vpm.blocks.0.norm2.weight": "model-00002-of-00002.safetensors",
395
+ "vpm.blocks.1.attn.proj.bias": "model-00002-of-00002.safetensors",
396
+ "vpm.blocks.1.attn.proj.weight": "model-00002-of-00002.safetensors",
397
+ "vpm.blocks.1.attn.qkv.bias": "model-00002-of-00002.safetensors",
398
+ "vpm.blocks.1.attn.qkv.weight": "model-00002-of-00002.safetensors",
399
+ "vpm.blocks.1.mlp.fc1.bias": "model-00002-of-00002.safetensors",
400
+ "vpm.blocks.1.mlp.fc1.weight": "model-00002-of-00002.safetensors",
401
+ "vpm.blocks.1.mlp.fc2.bias": "model-00002-of-00002.safetensors",
402
+ "vpm.blocks.1.mlp.fc2.weight": "model-00002-of-00002.safetensors",
403
+ "vpm.blocks.1.norm1.bias": "model-00002-of-00002.safetensors",
404
+ "vpm.blocks.1.norm1.weight": "model-00002-of-00002.safetensors",
405
+ "vpm.blocks.1.norm2.bias": "model-00002-of-00002.safetensors",
406
+ "vpm.blocks.1.norm2.weight": "model-00002-of-00002.safetensors",
407
+ "vpm.blocks.10.attn.proj.bias": "model-00002-of-00002.safetensors",
408
+ "vpm.blocks.10.attn.proj.weight": "model-00002-of-00002.safetensors",
409
+ "vpm.blocks.10.attn.qkv.bias": "model-00002-of-00002.safetensors",
410
+ "vpm.blocks.10.attn.qkv.weight": "model-00002-of-00002.safetensors",
411
+ "vpm.blocks.10.mlp.fc1.bias": "model-00002-of-00002.safetensors",
412
+ "vpm.blocks.10.mlp.fc1.weight": "model-00002-of-00002.safetensors",
413
+ "vpm.blocks.10.mlp.fc2.bias": "model-00002-of-00002.safetensors",
414
+ "vpm.blocks.10.mlp.fc2.weight": "model-00002-of-00002.safetensors",
415
+ "vpm.blocks.10.norm1.bias": "model-00002-of-00002.safetensors",
416
+ "vpm.blocks.10.norm1.weight": "model-00002-of-00002.safetensors",
417
+ "vpm.blocks.10.norm2.bias": "model-00002-of-00002.safetensors",
418
+ "vpm.blocks.10.norm2.weight": "model-00002-of-00002.safetensors",
419
+ "vpm.blocks.11.attn.proj.bias": "model-00002-of-00002.safetensors",
420
+ "vpm.blocks.11.attn.proj.weight": "model-00002-of-00002.safetensors",
421
+ "vpm.blocks.11.attn.qkv.bias": "model-00002-of-00002.safetensors",
422
+ "vpm.blocks.11.attn.qkv.weight": "model-00002-of-00002.safetensors",
423
+ "vpm.blocks.11.mlp.fc1.bias": "model-00002-of-00002.safetensors",
424
+ "vpm.blocks.11.mlp.fc1.weight": "model-00002-of-00002.safetensors",
425
+ "vpm.blocks.11.mlp.fc2.bias": "model-00002-of-00002.safetensors",
426
+ "vpm.blocks.11.mlp.fc2.weight": "model-00002-of-00002.safetensors",
427
+ "vpm.blocks.11.norm1.bias": "model-00002-of-00002.safetensors",
428
+ "vpm.blocks.11.norm1.weight": "model-00002-of-00002.safetensors",
429
+ "vpm.blocks.11.norm2.bias": "model-00002-of-00002.safetensors",
430
+ "vpm.blocks.11.norm2.weight": "model-00002-of-00002.safetensors",
431
+ "vpm.blocks.12.attn.proj.bias": "model-00002-of-00002.safetensors",
432
+ "vpm.blocks.12.attn.proj.weight": "model-00002-of-00002.safetensors",
433
+ "vpm.blocks.12.attn.qkv.bias": "model-00002-of-00002.safetensors",
434
+ "vpm.blocks.12.attn.qkv.weight": "model-00002-of-00002.safetensors",
435
+ "vpm.blocks.12.mlp.fc1.bias": "model-00002-of-00002.safetensors",
436
+ "vpm.blocks.12.mlp.fc1.weight": "model-00002-of-00002.safetensors",
437
+ "vpm.blocks.12.mlp.fc2.bias": "model-00002-of-00002.safetensors",
438
+ "vpm.blocks.12.mlp.fc2.weight": "model-00002-of-00002.safetensors",
439
+ "vpm.blocks.12.norm1.bias": "model-00002-of-00002.safetensors",
440
+ "vpm.blocks.12.norm1.weight": "model-00002-of-00002.safetensors",
441
+ "vpm.blocks.12.norm2.bias": "model-00002-of-00002.safetensors",
442
+ "vpm.blocks.12.norm2.weight": "model-00002-of-00002.safetensors",
443
+ "vpm.blocks.13.attn.proj.bias": "model-00002-of-00002.safetensors",
444
+ "vpm.blocks.13.attn.proj.weight": "model-00002-of-00002.safetensors",
445
+ "vpm.blocks.13.attn.qkv.bias": "model-00002-of-00002.safetensors",
446
+ "vpm.blocks.13.attn.qkv.weight": "model-00002-of-00002.safetensors",
447
+ "vpm.blocks.13.mlp.fc1.bias": "model-00002-of-00002.safetensors",
448
+ "vpm.blocks.13.mlp.fc1.weight": "model-00002-of-00002.safetensors",
449
+ "vpm.blocks.13.mlp.fc2.bias": "model-00002-of-00002.safetensors",
450
+ "vpm.blocks.13.mlp.fc2.weight": "model-00002-of-00002.safetensors",
451
+ "vpm.blocks.13.norm1.bias": "model-00002-of-00002.safetensors",
452
+ "vpm.blocks.13.norm1.weight": "model-00002-of-00002.safetensors",
453
+ "vpm.blocks.13.norm2.bias": "model-00002-of-00002.safetensors",
454
+ "vpm.blocks.13.norm2.weight": "model-00002-of-00002.safetensors",
455
+ "vpm.blocks.14.attn.proj.bias": "model-00002-of-00002.safetensors",
456
+ "vpm.blocks.14.attn.proj.weight": "model-00002-of-00002.safetensors",
457
+ "vpm.blocks.14.attn.qkv.bias": "model-00002-of-00002.safetensors",
458
+ "vpm.blocks.14.attn.qkv.weight": "model-00002-of-00002.safetensors",
459
+ "vpm.blocks.14.mlp.fc1.bias": "model-00002-of-00002.safetensors",
460
+ "vpm.blocks.14.mlp.fc1.weight": "model-00002-of-00002.safetensors",
461
+ "vpm.blocks.14.mlp.fc2.bias": "model-00002-of-00002.safetensors",
462
+ "vpm.blocks.14.mlp.fc2.weight": "model-00002-of-00002.safetensors",
463
+ "vpm.blocks.14.norm1.bias": "model-00002-of-00002.safetensors",
464
+ "vpm.blocks.14.norm1.weight": "model-00002-of-00002.safetensors",
465
+ "vpm.blocks.14.norm2.bias": "model-00002-of-00002.safetensors",
466
+ "vpm.blocks.14.norm2.weight": "model-00002-of-00002.safetensors",
467
+ "vpm.blocks.15.attn.proj.bias": "model-00002-of-00002.safetensors",
468
+ "vpm.blocks.15.attn.proj.weight": "model-00002-of-00002.safetensors",
469
+ "vpm.blocks.15.attn.qkv.bias": "model-00002-of-00002.safetensors",
470
+ "vpm.blocks.15.attn.qkv.weight": "model-00002-of-00002.safetensors",
471
+ "vpm.blocks.15.mlp.fc1.bias": "model-00002-of-00002.safetensors",
472
+ "vpm.blocks.15.mlp.fc1.weight": "model-00002-of-00002.safetensors",
473
+ "vpm.blocks.15.mlp.fc2.bias": "model-00002-of-00002.safetensors",
474
+ "vpm.blocks.15.mlp.fc2.weight": "model-00002-of-00002.safetensors",
475
+ "vpm.blocks.15.norm1.bias": "model-00002-of-00002.safetensors",
476
+ "vpm.blocks.15.norm1.weight": "model-00002-of-00002.safetensors",
477
+ "vpm.blocks.15.norm2.bias": "model-00002-of-00002.safetensors",
478
+ "vpm.blocks.15.norm2.weight": "model-00002-of-00002.safetensors",
479
+ "vpm.blocks.16.attn.proj.bias": "model-00002-of-00002.safetensors",
480
+ "vpm.blocks.16.attn.proj.weight": "model-00002-of-00002.safetensors",
481
+ "vpm.blocks.16.attn.qkv.bias": "model-00002-of-00002.safetensors",
482
+ "vpm.blocks.16.attn.qkv.weight": "model-00002-of-00002.safetensors",
483
+ "vpm.blocks.16.mlp.fc1.bias": "model-00002-of-00002.safetensors",
484
+ "vpm.blocks.16.mlp.fc1.weight": "model-00002-of-00002.safetensors",
485
+ "vpm.blocks.16.mlp.fc2.bias": "model-00002-of-00002.safetensors",
486
+ "vpm.blocks.16.mlp.fc2.weight": "model-00002-of-00002.safetensors",
487
+ "vpm.blocks.16.norm1.bias": "model-00002-of-00002.safetensors",
488
+ "vpm.blocks.16.norm1.weight": "model-00002-of-00002.safetensors",
489
+ "vpm.blocks.16.norm2.bias": "model-00002-of-00002.safetensors",
490
+ "vpm.blocks.16.norm2.weight": "model-00002-of-00002.safetensors",
491
+ "vpm.blocks.17.attn.proj.bias": "model-00002-of-00002.safetensors",
492
+ "vpm.blocks.17.attn.proj.weight": "model-00002-of-00002.safetensors",
493
+ "vpm.blocks.17.attn.qkv.bias": "model-00002-of-00002.safetensors",
494
+ "vpm.blocks.17.attn.qkv.weight": "model-00002-of-00002.safetensors",
495
+ "vpm.blocks.17.mlp.fc1.bias": "model-00002-of-00002.safetensors",
496
+ "vpm.blocks.17.mlp.fc1.weight": "model-00002-of-00002.safetensors",
497
+ "vpm.blocks.17.mlp.fc2.bias": "model-00002-of-00002.safetensors",
498
+ "vpm.blocks.17.mlp.fc2.weight": "model-00002-of-00002.safetensors",
499
+ "vpm.blocks.17.norm1.bias": "model-00002-of-00002.safetensors",
500
+ "vpm.blocks.17.norm1.weight": "model-00002-of-00002.safetensors",
501
+ "vpm.blocks.17.norm2.bias": "model-00002-of-00002.safetensors",
502
+ "vpm.blocks.17.norm2.weight": "model-00002-of-00002.safetensors",
503
+ "vpm.blocks.18.attn.proj.bias": "model-00002-of-00002.safetensors",
504
+ "vpm.blocks.18.attn.proj.weight": "model-00002-of-00002.safetensors",
505
+ "vpm.blocks.18.attn.qkv.bias": "model-00002-of-00002.safetensors",
506
+ "vpm.blocks.18.attn.qkv.weight": "model-00002-of-00002.safetensors",
507
+ "vpm.blocks.18.mlp.fc1.bias": "model-00002-of-00002.safetensors",
508
+ "vpm.blocks.18.mlp.fc1.weight": "model-00002-of-00002.safetensors",
509
+ "vpm.blocks.18.mlp.fc2.bias": "model-00002-of-00002.safetensors",
510
+ "vpm.blocks.18.mlp.fc2.weight": "model-00002-of-00002.safetensors",
511
+ "vpm.blocks.18.norm1.bias": "model-00002-of-00002.safetensors",
512
+ "vpm.blocks.18.norm1.weight": "model-00002-of-00002.safetensors",
513
+ "vpm.blocks.18.norm2.bias": "model-00002-of-00002.safetensors",
514
+ "vpm.blocks.18.norm2.weight": "model-00002-of-00002.safetensors",
515
+ "vpm.blocks.19.attn.proj.bias": "model-00002-of-00002.safetensors",
516
+ "vpm.blocks.19.attn.proj.weight": "model-00002-of-00002.safetensors",
517
+ "vpm.blocks.19.attn.qkv.bias": "model-00002-of-00002.safetensors",
518
+ "vpm.blocks.19.attn.qkv.weight": "model-00002-of-00002.safetensors",
519
+ "vpm.blocks.19.mlp.fc1.bias": "model-00002-of-00002.safetensors",
520
+ "vpm.blocks.19.mlp.fc1.weight": "model-00002-of-00002.safetensors",
521
+ "vpm.blocks.19.mlp.fc2.bias": "model-00002-of-00002.safetensors",
522
+ "vpm.blocks.19.mlp.fc2.weight": "model-00002-of-00002.safetensors",
523
+ "vpm.blocks.19.norm1.bias": "model-00002-of-00002.safetensors",
524
+ "vpm.blocks.19.norm1.weight": "model-00002-of-00002.safetensors",
525
+ "vpm.blocks.19.norm2.bias": "model-00002-of-00002.safetensors",
526
+ "vpm.blocks.19.norm2.weight": "model-00002-of-00002.safetensors",
527
+ "vpm.blocks.2.attn.proj.bias": "model-00002-of-00002.safetensors",
528
+ "vpm.blocks.2.attn.proj.weight": "model-00002-of-00002.safetensors",
529
+ "vpm.blocks.2.attn.qkv.bias": "model-00002-of-00002.safetensors",
530
+ "vpm.blocks.2.attn.qkv.weight": "model-00002-of-00002.safetensors",
531
+ "vpm.blocks.2.mlp.fc1.bias": "model-00002-of-00002.safetensors",
532
+ "vpm.blocks.2.mlp.fc1.weight": "model-00002-of-00002.safetensors",
533
+ "vpm.blocks.2.mlp.fc2.bias": "model-00002-of-00002.safetensors",
534
+ "vpm.blocks.2.mlp.fc2.weight": "model-00002-of-00002.safetensors",
535
+ "vpm.blocks.2.norm1.bias": "model-00002-of-00002.safetensors",
536
+ "vpm.blocks.2.norm1.weight": "model-00002-of-00002.safetensors",
537
+ "vpm.blocks.2.norm2.bias": "model-00002-of-00002.safetensors",
538
+ "vpm.blocks.2.norm2.weight": "model-00002-of-00002.safetensors",
539
+ "vpm.blocks.20.attn.proj.bias": "model-00002-of-00002.safetensors",
540
+ "vpm.blocks.20.attn.proj.weight": "model-00002-of-00002.safetensors",
541
+ "vpm.blocks.20.attn.qkv.bias": "model-00002-of-00002.safetensors",
542
+ "vpm.blocks.20.attn.qkv.weight": "model-00002-of-00002.safetensors",
543
+ "vpm.blocks.20.mlp.fc1.bias": "model-00002-of-00002.safetensors",
544
+ "vpm.blocks.20.mlp.fc1.weight": "model-00002-of-00002.safetensors",
545
+ "vpm.blocks.20.mlp.fc2.bias": "model-00002-of-00002.safetensors",
546
+ "vpm.blocks.20.mlp.fc2.weight": "model-00002-of-00002.safetensors",
547
+ "vpm.blocks.20.norm1.bias": "model-00002-of-00002.safetensors",
548
+ "vpm.blocks.20.norm1.weight": "model-00002-of-00002.safetensors",
549
+ "vpm.blocks.20.norm2.bias": "model-00002-of-00002.safetensors",
550
+ "vpm.blocks.20.norm2.weight": "model-00002-of-00002.safetensors",
551
+ "vpm.blocks.21.attn.proj.bias": "model-00002-of-00002.safetensors",
552
+ "vpm.blocks.21.attn.proj.weight": "model-00002-of-00002.safetensors",
553
+ "vpm.blocks.21.attn.qkv.bias": "model-00002-of-00002.safetensors",
554
+ "vpm.blocks.21.attn.qkv.weight": "model-00002-of-00002.safetensors",
555
+ "vpm.blocks.21.mlp.fc1.bias": "model-00002-of-00002.safetensors",
556
+ "vpm.blocks.21.mlp.fc1.weight": "model-00002-of-00002.safetensors",
557
+ "vpm.blocks.21.mlp.fc2.bias": "model-00002-of-00002.safetensors",
558
+ "vpm.blocks.21.mlp.fc2.weight": "model-00002-of-00002.safetensors",
559
+ "vpm.blocks.21.norm1.bias": "model-00002-of-00002.safetensors",
560
+ "vpm.blocks.21.norm1.weight": "model-00002-of-00002.safetensors",
561
+ "vpm.blocks.21.norm2.bias": "model-00002-of-00002.safetensors",
562
+ "vpm.blocks.21.norm2.weight": "model-00002-of-00002.safetensors",
563
+ "vpm.blocks.22.attn.proj.bias": "model-00002-of-00002.safetensors",
564
+ "vpm.blocks.22.attn.proj.weight": "model-00002-of-00002.safetensors",
565
+ "vpm.blocks.22.attn.qkv.bias": "model-00002-of-00002.safetensors",
566
+ "vpm.blocks.22.attn.qkv.weight": "model-00002-of-00002.safetensors",
567
+ "vpm.blocks.22.mlp.fc1.bias": "model-00002-of-00002.safetensors",
568
+ "vpm.blocks.22.mlp.fc1.weight": "model-00002-of-00002.safetensors",
569
+ "vpm.blocks.22.mlp.fc2.bias": "model-00002-of-00002.safetensors",
570
+ "vpm.blocks.22.mlp.fc2.weight": "model-00002-of-00002.safetensors",
571
+ "vpm.blocks.22.norm1.bias": "model-00002-of-00002.safetensors",
572
+ "vpm.blocks.22.norm1.weight": "model-00002-of-00002.safetensors",
573
+ "vpm.blocks.22.norm2.bias": "model-00002-of-00002.safetensors",
574
+ "vpm.blocks.22.norm2.weight": "model-00002-of-00002.safetensors",
575
+ "vpm.blocks.23.attn.proj.bias": "model-00002-of-00002.safetensors",
576
+ "vpm.blocks.23.attn.proj.weight": "model-00002-of-00002.safetensors",
577
+ "vpm.blocks.23.attn.qkv.bias": "model-00002-of-00002.safetensors",
578
+ "vpm.blocks.23.attn.qkv.weight": "model-00002-of-00002.safetensors",
579
+ "vpm.blocks.23.mlp.fc1.bias": "model-00002-of-00002.safetensors",
580
+ "vpm.blocks.23.mlp.fc1.weight": "model-00002-of-00002.safetensors",
581
+ "vpm.blocks.23.mlp.fc2.bias": "model-00002-of-00002.safetensors",
582
+ "vpm.blocks.23.mlp.fc2.weight": "model-00002-of-00002.safetensors",
583
+ "vpm.blocks.23.norm1.bias": "model-00002-of-00002.safetensors",
584
+ "vpm.blocks.23.norm1.weight": "model-00002-of-00002.safetensors",
585
+ "vpm.blocks.23.norm2.bias": "model-00002-of-00002.safetensors",
586
+ "vpm.blocks.23.norm2.weight": "model-00002-of-00002.safetensors",
587
+ "vpm.blocks.24.attn.proj.bias": "model-00002-of-00002.safetensors",
588
+ "vpm.blocks.24.attn.proj.weight": "model-00002-of-00002.safetensors",
589
+ "vpm.blocks.24.attn.qkv.bias": "model-00002-of-00002.safetensors",
590
+ "vpm.blocks.24.attn.qkv.weight": "model-00002-of-00002.safetensors",
591
+ "vpm.blocks.24.mlp.fc1.bias": "model-00002-of-00002.safetensors",
592
+ "vpm.blocks.24.mlp.fc1.weight": "model-00002-of-00002.safetensors",
593
+ "vpm.blocks.24.mlp.fc2.bias": "model-00002-of-00002.safetensors",
594
+ "vpm.blocks.24.mlp.fc2.weight": "model-00002-of-00002.safetensors",
595
+ "vpm.blocks.24.norm1.bias": "model-00002-of-00002.safetensors",
596
+ "vpm.blocks.24.norm1.weight": "model-00002-of-00002.safetensors",
597
+ "vpm.blocks.24.norm2.bias": "model-00002-of-00002.safetensors",
598
+ "vpm.blocks.24.norm2.weight": "model-00002-of-00002.safetensors",
599
+ "vpm.blocks.25.attn.proj.bias": "model-00002-of-00002.safetensors",
600
+ "vpm.blocks.25.attn.proj.weight": "model-00002-of-00002.safetensors",
601
+ "vpm.blocks.25.attn.qkv.bias": "model-00002-of-00002.safetensors",
602
+ "vpm.blocks.25.attn.qkv.weight": "model-00002-of-00002.safetensors",
603
+ "vpm.blocks.25.mlp.fc1.bias": "model-00002-of-00002.safetensors",
604
+ "vpm.blocks.25.mlp.fc1.weight": "model-00002-of-00002.safetensors",
605
+ "vpm.blocks.25.mlp.fc2.bias": "model-00002-of-00002.safetensors",
606
+ "vpm.blocks.25.mlp.fc2.weight": "model-00002-of-00002.safetensors",
607
+ "vpm.blocks.25.norm1.bias": "model-00002-of-00002.safetensors",
608
+ "vpm.blocks.25.norm1.weight": "model-00002-of-00002.safetensors",
609
+ "vpm.blocks.25.norm2.bias": "model-00002-of-00002.safetensors",
610
+ "vpm.blocks.25.norm2.weight": "model-00002-of-00002.safetensors",
611
+ "vpm.blocks.3.attn.proj.bias": "model-00002-of-00002.safetensors",
612
+ "vpm.blocks.3.attn.proj.weight": "model-00002-of-00002.safetensors",
613
+ "vpm.blocks.3.attn.qkv.bias": "model-00002-of-00002.safetensors",
614
+ "vpm.blocks.3.attn.qkv.weight": "model-00002-of-00002.safetensors",
615
+ "vpm.blocks.3.mlp.fc1.bias": "model-00002-of-00002.safetensors",
616
+ "vpm.blocks.3.mlp.fc1.weight": "model-00002-of-00002.safetensors",
617
+ "vpm.blocks.3.mlp.fc2.bias": "model-00002-of-00002.safetensors",
618
+ "vpm.blocks.3.mlp.fc2.weight": "model-00002-of-00002.safetensors",
619
+ "vpm.blocks.3.norm1.bias": "model-00002-of-00002.safetensors",
620
+ "vpm.blocks.3.norm1.weight": "model-00002-of-00002.safetensors",
621
+ "vpm.blocks.3.norm2.bias": "model-00002-of-00002.safetensors",
622
+ "vpm.blocks.3.norm2.weight": "model-00002-of-00002.safetensors",
623
+ "vpm.blocks.4.attn.proj.bias": "model-00002-of-00002.safetensors",
624
+ "vpm.blocks.4.attn.proj.weight": "model-00002-of-00002.safetensors",
625
+ "vpm.blocks.4.attn.qkv.bias": "model-00002-of-00002.safetensors",
626
+ "vpm.blocks.4.attn.qkv.weight": "model-00002-of-00002.safetensors",
627
+ "vpm.blocks.4.mlp.fc1.bias": "model-00002-of-00002.safetensors",
628
+ "vpm.blocks.4.mlp.fc1.weight": "model-00002-of-00002.safetensors",
629
+ "vpm.blocks.4.mlp.fc2.bias": "model-00002-of-00002.safetensors",
630
+ "vpm.blocks.4.mlp.fc2.weight": "model-00002-of-00002.safetensors",
631
+ "vpm.blocks.4.norm1.bias": "model-00002-of-00002.safetensors",
632
+ "vpm.blocks.4.norm1.weight": "model-00002-of-00002.safetensors",
633
+ "vpm.blocks.4.norm2.bias": "model-00002-of-00002.safetensors",
634
+ "vpm.blocks.4.norm2.weight": "model-00002-of-00002.safetensors",
635
+ "vpm.blocks.5.attn.proj.bias": "model-00002-of-00002.safetensors",
636
+ "vpm.blocks.5.attn.proj.weight": "model-00002-of-00002.safetensors",
637
+ "vpm.blocks.5.attn.qkv.bias": "model-00002-of-00002.safetensors",
638
+ "vpm.blocks.5.attn.qkv.weight": "model-00002-of-00002.safetensors",
639
+ "vpm.blocks.5.mlp.fc1.bias": "model-00002-of-00002.safetensors",
640
+ "vpm.blocks.5.mlp.fc1.weight": "model-00002-of-00002.safetensors",
641
+ "vpm.blocks.5.mlp.fc2.bias": "model-00002-of-00002.safetensors",
642
+ "vpm.blocks.5.mlp.fc2.weight": "model-00002-of-00002.safetensors",
643
+ "vpm.blocks.5.norm1.bias": "model-00002-of-00002.safetensors",
644
+ "vpm.blocks.5.norm1.weight": "model-00002-of-00002.safetensors",
645
+ "vpm.blocks.5.norm2.bias": "model-00002-of-00002.safetensors",
646
+ "vpm.blocks.5.norm2.weight": "model-00002-of-00002.safetensors",
647
+ "vpm.blocks.6.attn.proj.bias": "model-00002-of-00002.safetensors",
648
+ "vpm.blocks.6.attn.proj.weight": "model-00002-of-00002.safetensors",
649
+ "vpm.blocks.6.attn.qkv.bias": "model-00002-of-00002.safetensors",
650
+ "vpm.blocks.6.attn.qkv.weight": "model-00002-of-00002.safetensors",
651
+ "vpm.blocks.6.mlp.fc1.bias": "model-00002-of-00002.safetensors",
652
+ "vpm.blocks.6.mlp.fc1.weight": "model-00002-of-00002.safetensors",
653
+ "vpm.blocks.6.mlp.fc2.bias": "model-00002-of-00002.safetensors",
654
+ "vpm.blocks.6.mlp.fc2.weight": "model-00002-of-00002.safetensors",
655
+ "vpm.blocks.6.norm1.bias": "model-00002-of-00002.safetensors",
656
+ "vpm.blocks.6.norm1.weight": "model-00002-of-00002.safetensors",
657
+ "vpm.blocks.6.norm2.bias": "model-00002-of-00002.safetensors",
658
+ "vpm.blocks.6.norm2.weight": "model-00002-of-00002.safetensors",
659
+ "vpm.blocks.7.attn.proj.bias": "model-00002-of-00002.safetensors",
660
+ "vpm.blocks.7.attn.proj.weight": "model-00002-of-00002.safetensors",
661
+ "vpm.blocks.7.attn.qkv.bias": "model-00002-of-00002.safetensors",
662
+ "vpm.blocks.7.attn.qkv.weight": "model-00002-of-00002.safetensors",
663
+ "vpm.blocks.7.mlp.fc1.bias": "model-00002-of-00002.safetensors",
664
+ "vpm.blocks.7.mlp.fc1.weight": "model-00002-of-00002.safetensors",
665
+ "vpm.blocks.7.mlp.fc2.bias": "model-00002-of-00002.safetensors",
666
+ "vpm.blocks.7.mlp.fc2.weight": "model-00002-of-00002.safetensors",
667
+ "vpm.blocks.7.norm1.bias": "model-00002-of-00002.safetensors",
668
+ "vpm.blocks.7.norm1.weight": "model-00002-of-00002.safetensors",
669
+ "vpm.blocks.7.norm2.bias": "model-00002-of-00002.safetensors",
670
+ "vpm.blocks.7.norm2.weight": "model-00002-of-00002.safetensors",
671
+ "vpm.blocks.8.attn.proj.bias": "model-00002-of-00002.safetensors",
672
+ "vpm.blocks.8.attn.proj.weight": "model-00002-of-00002.safetensors",
673
+ "vpm.blocks.8.attn.qkv.bias": "model-00002-of-00002.safetensors",
674
+ "vpm.blocks.8.attn.qkv.weight": "model-00002-of-00002.safetensors",
675
+ "vpm.blocks.8.mlp.fc1.bias": "model-00002-of-00002.safetensors",
676
+ "vpm.blocks.8.mlp.fc1.weight": "model-00002-of-00002.safetensors",
677
+ "vpm.blocks.8.mlp.fc2.bias": "model-00002-of-00002.safetensors",
678
+ "vpm.blocks.8.mlp.fc2.weight": "model-00002-of-00002.safetensors",
679
+ "vpm.blocks.8.norm1.bias": "model-00002-of-00002.safetensors",
680
+ "vpm.blocks.8.norm1.weight": "model-00002-of-00002.safetensors",
681
+ "vpm.blocks.8.norm2.bias": "model-00002-of-00002.safetensors",
682
+ "vpm.blocks.8.norm2.weight": "model-00002-of-00002.safetensors",
683
+ "vpm.blocks.9.attn.proj.bias": "model-00002-of-00002.safetensors",
684
+ "vpm.blocks.9.attn.proj.weight": "model-00002-of-00002.safetensors",
685
+ "vpm.blocks.9.attn.qkv.bias": "model-00002-of-00002.safetensors",
686
+ "vpm.blocks.9.attn.qkv.weight": "model-00002-of-00002.safetensors",
687
+ "vpm.blocks.9.mlp.fc1.bias": "model-00002-of-00002.safetensors",
688
+ "vpm.blocks.9.mlp.fc1.weight": "model-00002-of-00002.safetensors",
689
+ "vpm.blocks.9.mlp.fc2.bias": "model-00002-of-00002.safetensors",
690
+ "vpm.blocks.9.mlp.fc2.weight": "model-00002-of-00002.safetensors",
691
+ "vpm.blocks.9.norm1.bias": "model-00002-of-00002.safetensors",
692
+ "vpm.blocks.9.norm1.weight": "model-00002-of-00002.safetensors",
693
+ "vpm.blocks.9.norm2.bias": "model-00002-of-00002.safetensors",
694
+ "vpm.blocks.9.norm2.weight": "model-00002-of-00002.safetensors",
695
+ "vpm.norm.bias": "model-00002-of-00002.safetensors",
696
+ "vpm.norm.weight": "model-00002-of-00002.safetensors",
697
+ "vpm.patch_embed.proj.bias": "model-00002-of-00002.safetensors",
698
+ "vpm.patch_embed.proj.weight": "model-00002-of-00002.safetensors",
699
+ "vpm.pos_embed": "model-00002-of-00002.safetensors"
700
+ }
701
+ }
modeling_minicpm.py ADDED
@@ -0,0 +1,1697 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch MiniCPM model."""
21
+ import math
22
+ import re
23
+ import warnings
24
+ from typing import Dict, List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ _prepare_4d_causal_attention_mask_for_sdpa,
38
+ )
39
+ from transformers.modeling_outputs import (
40
+ BaseModelOutputWithPast,
41
+ CausalLMOutputWithPast,
42
+ SequenceClassifierOutputWithPast,
43
+ )
44
+ from transformers.modeling_utils import PreTrainedModel
45
+ from transformers.pytorch_utils import (
46
+ ALL_LAYERNORM_LAYERS,
47
+ is_torch_greater_or_equal_than_1_13,
48
+ )
49
+ from transformers.utils import (
50
+ add_start_docstrings,
51
+ add_start_docstrings_to_model_forward,
52
+ is_flash_attn_2_available,
53
+ is_flash_attn_greater_or_equal_2_10,
54
+ logging,
55
+ replace_return_docstrings,
56
+ )
57
+ from transformers.utils.import_utils import is_torch_fx_available
58
+
59
+ from .configuration_minicpm import MiniCPMConfig
60
+
61
+ try:
62
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
63
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
64
+ except:
65
+ pass
66
+
67
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
68
+ # It means that the function will not be traced through and simply appear as a node in the graph.
69
+ if is_torch_fx_available():
70
+ if not is_torch_greater_or_equal_than_1_13:
71
+ import torch.fx
72
+
73
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
74
+
75
+ logger = logging.get_logger(__name__)
76
+
77
+ _CONFIG_FOR_DOC = "MiniCPMConfig"
78
+
79
+
80
+ def _get_unpad_data(attention_mask):
81
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
84
+ cu_seqlens = F.pad(
85
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
86
+ )
87
+ return (
88
+ indices,
89
+ cu_seqlens,
90
+ max_seqlen_in_batch,
91
+ )
92
+
93
+
94
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
95
+ warnings.warn(
96
+ "Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
97
+ )
98
+ return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
99
+
100
+
101
+ def _make_causal_mask(
102
+ input_ids_shape: torch.Size,
103
+ dtype: torch.dtype,
104
+ device: torch.device,
105
+ past_key_values_length: int = 0,
106
+ ):
107
+ warnings.warn(
108
+ "Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask"
109
+ )
110
+ return AttentionMaskConverter._make_causal_mask(
111
+ input_ids_shape=input_ids_shape,
112
+ dtype=dtype,
113
+ device=device,
114
+ past_key_values_length=past_key_values_length,
115
+ )
116
+
117
+
118
+ # @torch.jit.script # type: ignore
119
+ def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
120
+ old_dtype = hidden.dtype
121
+ variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
122
+ hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype)
123
+ return hidden * weight
124
+
125
+
126
+ class MiniCPMRMSNorm(nn.Module):
127
+ def __init__(self, hidden_size, eps=1e-6):
128
+ """
129
+ MiniCPMRMSNorm is equivalent to T5LayerNorm
130
+ """
131
+ super().__init__()
132
+ self.weight = nn.Parameter(torch.ones(hidden_size))
133
+ self.variance_epsilon = eps
134
+
135
+ def forward(self, hidden_states):
136
+ return rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
137
+
138
+
139
+ ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm)
140
+
141
+
142
+ class MiniCPMRotaryEmbedding(nn.Module):
143
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
144
+ super().__init__()
145
+
146
+ self.dim = dim
147
+ self.max_position_embeddings = max_position_embeddings
148
+ self.base = base
149
+ inv_freq = 1.0 / (
150
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
151
+ )
152
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
153
+
154
+ # Build here to make `torch.jit.trace` work.
155
+ self._set_cos_sin_cache(
156
+ # seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
157
+ seq_len=max_position_embeddings,
158
+ device=self.inv_freq.device,
159
+ dtype=torch.float32,
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(
165
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
166
+ )
167
+ freqs = torch.outer(t, self.inv_freq)
168
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
169
+ emb = torch.cat((freqs, freqs), dim=-1)
170
+
171
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
172
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
173
+
174
+ def forward(self, x, seq_len=None):
175
+ # x: [bs, num_attention_heads, seq_len, head_size]
176
+ if seq_len > self.max_seq_len_cached:
177
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
178
+
179
+ return (
180
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
181
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
182
+ )
183
+
184
+
185
+ class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
186
+ """MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
187
+
188
+ def __init__(
189
+ self,
190
+ dim,
191
+ max_position_embeddings=2048,
192
+ base=10000,
193
+ device=None,
194
+ scaling_factor=1.0,
195
+ ):
196
+ self.scaling_factor = scaling_factor
197
+ super().__init__(dim, max_position_embeddings, base, device)
198
+
199
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
200
+ self.max_seq_len_cached = seq_len
201
+ t = torch.arange(
202
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
203
+ )
204
+ t = t / self.scaling_factor
205
+
206
+ freqs = torch.outer(t, self.inv_freq)
207
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
208
+ emb = torch.cat((freqs, freqs), dim=-1)
209
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
210
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
211
+
212
+
213
+ class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
214
+ """MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
215
+
216
+ def __init__(
217
+ self,
218
+ dim,
219
+ max_position_embeddings=2048,
220
+ base=10000,
221
+ device=None,
222
+ scaling_factor=1.0,
223
+ ):
224
+ self.scaling_factor = scaling_factor
225
+ super().__init__(dim, max_position_embeddings, base, device)
226
+
227
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
228
+ self.max_seq_len_cached = seq_len
229
+
230
+ if seq_len > self.max_position_embeddings:
231
+ base = self.base * (
232
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
233
+ - (self.scaling_factor - 1)
234
+ ) ** (self.dim / (self.dim - 2))
235
+ inv_freq = 1.0 / (
236
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
237
+ )
238
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
239
+
240
+ t = torch.arange(
241
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
242
+ )
243
+
244
+ freqs = torch.outer(t, self.inv_freq)
245
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
246
+ emb = torch.cat((freqs, freqs), dim=-1)
247
+
248
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
249
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
250
+
251
+
252
+ def rotate_half(x):
253
+ """Rotates half the hidden dims of the input."""
254
+ x1 = x[..., : x.shape[-1] // 2]
255
+ x2 = x[..., x.shape[-1] // 2 :]
256
+ return torch.cat((-x2, x1), dim=-1)
257
+
258
+
259
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
260
+ """Applies Rotary Position Embedding to the query and key tensors.
261
+ Args:
262
+ q (`torch.Tensor`): The query tensor.
263
+ k (`torch.Tensor`): The key tensor.
264
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
265
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
266
+ position_ids (`torch.Tensor`):
267
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
268
+ used to pass offsetted position ids when working with a KV-cache.
269
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
270
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
271
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
272
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
273
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
274
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
275
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
276
+ Returns:
277
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
278
+ """
279
+ # cos = cos[position_ids].unsqueeze(unsqueeze_dim)
280
+ # sin = sin[position_ids].unsqueeze(unsqueeze_dim)
281
+ # q_embed = (q * cos) + (rotate_half(q) * sin)
282
+ # k_embed = (k * cos) + (rotate_half(k) * sin)
283
+ orig_dtype = k.dtype
284
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
285
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
286
+ q_fp32 = q.to(dtype=torch.float32, device=q.device)
287
+ k_fp32 = k.to(dtype=torch.float32, device=k.device)
288
+ q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin)
289
+ k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin)
290
+ return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype)
291
+
292
+
293
+ class MiniCPMMLP(nn.Module):
294
+ def __init__(self, config):
295
+ super().__init__()
296
+ self.config = config
297
+ self.hidden_size = config.hidden_size
298
+ self.intermediate_size = config.intermediate_size
299
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
300
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
301
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
302
+ self.act_fn = ACT2FN[config.hidden_act]
303
+
304
+ def forward(self, x):
305
+ if self.config.pretraining_tp > 1:
306
+ slice = self.intermediate_size // self.config.pretraining_tp
307
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
308
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
309
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
310
+
311
+ gate_proj = torch.cat(
312
+ [
313
+ F.linear(x, gate_proj_slices[i])
314
+ for i in range(self.config.pretraining_tp)
315
+ ],
316
+ dim=-1,
317
+ )
318
+ up_proj = torch.cat(
319
+ [
320
+ F.linear(x, up_proj_slices[i])
321
+ for i in range(self.config.pretraining_tp)
322
+ ],
323
+ dim=-1,
324
+ )
325
+
326
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
327
+ down_proj = [
328
+ F.linear(intermediate_states[i], down_proj_slices[i])
329
+ for i in range(self.config.pretraining_tp)
330
+ ]
331
+ down_proj = sum(down_proj)
332
+ else:
333
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
334
+
335
+ return down_proj
336
+
337
+
338
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
339
+ """
340
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
341
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
342
+ """
343
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
344
+ if n_rep == 1:
345
+ return hidden_states
346
+ hidden_states = hidden_states[:, :, None, :, :].expand(
347
+ batch, num_key_value_heads, n_rep, slen, head_dim
348
+ )
349
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
350
+
351
+
352
+ class MiniCPMAttention(nn.Module):
353
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
354
+
355
+ def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None):
356
+ super().__init__()
357
+ self.config = config
358
+ self.layer_idx = layer_idx
359
+ if layer_idx is None:
360
+ logger.warning_once(
361
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
362
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
363
+ "when creating this class."
364
+ )
365
+
366
+ self.attention_dropout = config.attention_dropout
367
+ self.hidden_size = config.hidden_size
368
+ self.num_heads = config.num_attention_heads
369
+ self.head_dim = self.hidden_size // self.num_heads
370
+ self.num_key_value_heads = config.num_key_value_heads
371
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
372
+ self.max_position_embeddings = config.max_position_embeddings
373
+ self.rope_theta = config.rope_theta
374
+ self.is_causal = True
375
+
376
+ if (self.head_dim * self.num_heads) != self.hidden_size:
377
+ raise ValueError(
378
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
379
+ f" and `num_heads`: {self.num_heads})."
380
+ )
381
+
382
+ self.q_proj = nn.Linear(
383
+ self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
384
+ )
385
+ self.k_proj = nn.Linear(
386
+ self.hidden_size,
387
+ self.num_key_value_heads * self.head_dim,
388
+ bias=config.attention_bias,
389
+ )
390
+ self.v_proj = nn.Linear(
391
+ self.hidden_size,
392
+ self.num_key_value_heads * self.head_dim,
393
+ bias=config.attention_bias,
394
+ )
395
+ self.o_proj = nn.Linear(
396
+ self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias
397
+ )
398
+ self._init_rope()
399
+
400
+ def _init_rope(self):
401
+ if self.config.rope_scaling is None:
402
+ self.rotary_emb = MiniCPMRotaryEmbedding(
403
+ self.head_dim,
404
+ max_position_embeddings=self.max_position_embeddings,
405
+ base=self.rope_theta,
406
+ )
407
+ else:
408
+ scaling_type = self.config.rope_scaling["type"]
409
+ scaling_factor = self.config.rope_scaling["factor"]
410
+ if scaling_type == "linear":
411
+ self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding(
412
+ self.head_dim,
413
+ max_position_embeddings=self.max_position_embeddings,
414
+ scaling_factor=scaling_factor,
415
+ base=self.rope_theta,
416
+ )
417
+ elif scaling_type == "dynamic":
418
+ self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding(
419
+ self.head_dim,
420
+ max_position_embeddings=self.max_position_embeddings,
421
+ scaling_factor=scaling_factor,
422
+ base=self.rope_theta,
423
+ )
424
+ else:
425
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
426
+
427
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
428
+ return (
429
+ tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
430
+ .transpose(1, 2)
431
+ .contiguous()
432
+ )
433
+
434
+ def forward(
435
+ self,
436
+ hidden_states: torch.Tensor,
437
+ attention_mask: Optional[torch.Tensor] = None,
438
+ position_ids: Optional[torch.LongTensor] = None,
439
+ past_key_value: Optional[Cache] = None,
440
+ output_attentions: bool = False,
441
+ use_cache: bool = False,
442
+ **kwargs,
443
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
444
+ if "padding_mask" in kwargs:
445
+ warnings.warn(
446
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
447
+ )
448
+
449
+ bsz, q_len, _ = hidden_states.size()
450
+
451
+ if self.config.pretraining_tp > 1:
452
+ key_value_slicing = (
453
+ self.num_key_value_heads * self.head_dim
454
+ ) // self.config.pretraining_tp
455
+ query_slices = self.q_proj.weight.split(
456
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
457
+ )
458
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
459
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
460
+
461
+ query_states = [
462
+ F.linear(hidden_states, query_slices[i])
463
+ for i in range(self.config.pretraining_tp)
464
+ ]
465
+ query_states = torch.cat(query_states, dim=-1)
466
+
467
+ key_states = [
468
+ F.linear(hidden_states, key_slices[i])
469
+ for i in range(self.config.pretraining_tp)
470
+ ]
471
+ key_states = torch.cat(key_states, dim=-1)
472
+
473
+ value_states = [
474
+ F.linear(hidden_states, value_slices[i])
475
+ for i in range(self.config.pretraining_tp)
476
+ ]
477
+ value_states = torch.cat(value_states, dim=-1)
478
+
479
+ else:
480
+ query_states = self.q_proj(hidden_states)
481
+ key_states = self.k_proj(hidden_states)
482
+ value_states = self.v_proj(hidden_states)
483
+
484
+ query_states = query_states.view(
485
+ bsz, q_len, self.num_heads, self.head_dim
486
+ ).transpose(1, 2)
487
+ key_states = key_states.view(
488
+ bsz, q_len, self.num_key_value_heads, self.head_dim
489
+ ).transpose(1, 2)
490
+ value_states = value_states.view(
491
+ bsz, q_len, self.num_key_value_heads, self.head_dim
492
+ ).transpose(1, 2)
493
+
494
+ kv_seq_len = key_states.shape[-2]
495
+ if past_key_value is not None:
496
+ if self.layer_idx is None:
497
+ raise ValueError(
498
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
499
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
500
+ "with a layer index."
501
+ )
502
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
503
+ cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
504
+
505
+ query_states, key_states = apply_rotary_pos_emb(
506
+ query_states, key_states, cos, sin, position_ids
507
+ )
508
+
509
+ if past_key_value is not None:
510
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
511
+ key_states, value_states = past_key_value.update(
512
+ key_states, value_states, self.layer_idx, cache_kwargs
513
+ )
514
+
515
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
516
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
517
+
518
+ attn_weights = torch.matmul(
519
+ query_states, key_states.transpose(2, 3)
520
+ ) / math.sqrt(self.head_dim)
521
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
522
+ raise ValueError(
523
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
524
+ f" {attn_weights.size()}"
525
+ )
526
+
527
+ if attention_mask is not None:
528
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
529
+ raise ValueError(
530
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
531
+ )
532
+ attn_weights = attn_weights + attention_mask
533
+
534
+ # upcast attention to fp32
535
+ attn_weights = nn.functional.softmax(
536
+ attn_weights, dim=-1, dtype=torch.float32
537
+ ).to(query_states.dtype)
538
+ attn_weights = nn.functional.dropout(
539
+ attn_weights, p=self.attention_dropout, training=self.training
540
+ )
541
+ attn_output = torch.matmul(attn_weights, value_states)
542
+
543
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
544
+ raise ValueError(
545
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
546
+ f" {attn_output.size()}"
547
+ )
548
+
549
+ attn_output = attn_output.transpose(1, 2).contiguous()
550
+
551
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
552
+
553
+ if self.config.pretraining_tp > 1:
554
+ attn_output = attn_output.split(
555
+ self.hidden_size // self.config.pretraining_tp, dim=2
556
+ )
557
+ o_proj_slices = self.o_proj.weight.split(
558
+ self.hidden_size // self.config.pretraining_tp, dim=1
559
+ )
560
+ attn_output = sum(
561
+ [
562
+ F.linear(attn_output[i], o_proj_slices[i])
563
+ for i in range(self.config.pretraining_tp)
564
+ ]
565
+ )
566
+ else:
567
+ attn_output = self.o_proj(attn_output)
568
+
569
+ if not output_attentions:
570
+ attn_weights = None
571
+
572
+ return attn_output, attn_weights, past_key_value
573
+
574
+
575
+ class MiniCPMFlashAttention2(MiniCPMAttention):
576
+ """
577
+ MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays
578
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
579
+ flash attention and deal with padding tokens in case the input contains any of them.
580
+ """
581
+
582
+ def __init__(self, *args, **kwargs):
583
+ super().__init__(*args, **kwargs)
584
+
585
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
586
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
587
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
588
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
589
+
590
+ def forward(
591
+ self,
592
+ hidden_states: torch.Tensor,
593
+ attention_mask: Optional[torch.LongTensor] = None,
594
+ position_ids: Optional[torch.LongTensor] = None,
595
+ past_key_value: Optional[Cache] = None,
596
+ output_attentions: bool = False,
597
+ use_cache: bool = False,
598
+ **kwargs,
599
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
600
+ # MiniCPMFlashAttention2 attention does not support output_attentions
601
+ if "padding_mask" in kwargs:
602
+ warnings.warn(
603
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
604
+ )
605
+
606
+ # overwrite attention_mask with padding_mask
607
+ attention_mask = kwargs.pop("padding_mask")
608
+
609
+ output_attentions = False
610
+
611
+ bsz, q_len, _ = hidden_states.size()
612
+
613
+ query_states = self.q_proj(hidden_states)
614
+ key_states = self.k_proj(hidden_states)
615
+ value_states = self.v_proj(hidden_states)
616
+
617
+ # Flash attention requires the input to have the shape
618
+ # batch_size x seq_length x head_dim x hidden_dim
619
+ # therefore we just need to keep the original shape
620
+ query_states = query_states.view(
621
+ bsz, q_len, self.num_heads, self.head_dim
622
+ ).transpose(1, 2)
623
+ key_states = key_states.view(
624
+ bsz, q_len, self.num_key_value_heads, self.head_dim
625
+ ).transpose(1, 2)
626
+ value_states = value_states.view(
627
+ bsz, q_len, self.num_key_value_heads, self.head_dim
628
+ ).transpose(1, 2)
629
+
630
+ kv_seq_len = key_states.shape[-2]
631
+ if past_key_value is not None:
632
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
633
+ cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
634
+ query_states, key_states = apply_rotary_pos_emb(
635
+ query_states, key_states, cos, sin, position_ids
636
+ )
637
+
638
+ if past_key_value is not None:
639
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
640
+ key_states, value_states = past_key_value.update(
641
+ key_states, value_states, self.layer_idx, cache_kwargs
642
+ )
643
+
644
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
645
+ # to be able to avoid many of these transpose/reshape/view.
646
+ query_states = query_states.transpose(1, 2)
647
+ key_states = key_states.transpose(1, 2)
648
+ value_states = value_states.transpose(1, 2)
649
+
650
+ dropout_rate = self.attention_dropout if self.training else 0.0
651
+
652
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
653
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
654
+ # cast them back in the correct dtype just to be sure everything works as expected.
655
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
656
+ # in fp32. (MiniCPMRMSNorm handles it correctly)
657
+
658
+ input_dtype = query_states.dtype
659
+ if input_dtype == torch.float32:
660
+ # Handle the case where the model is quantized
661
+ if hasattr(self.config, "_pre_quantization_dtype"):
662
+ target_dtype = self.config._pre_quantization_dtype
663
+ else:
664
+ target_dtype = self.q_proj.weight.dtype
665
+
666
+ logger.warning_once(
667
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
668
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
669
+ f" {target_dtype}."
670
+ )
671
+
672
+ query_states = query_states.to(target_dtype)
673
+ key_states = key_states.to(target_dtype)
674
+ value_states = value_states.to(target_dtype)
675
+
676
+ attn_output = self._flash_attention_forward(
677
+ query_states,
678
+ key_states,
679
+ value_states,
680
+ attention_mask,
681
+ q_len,
682
+ dropout=dropout_rate,
683
+ )
684
+
685
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
686
+ attn_output = self.o_proj(attn_output)
687
+
688
+ if not output_attentions:
689
+ attn_weights = None
690
+
691
+ return attn_output, attn_weights, past_key_value
692
+
693
+ def _flash_attention_forward(
694
+ self,
695
+ query_states,
696
+ key_states,
697
+ value_states,
698
+ attention_mask,
699
+ query_length,
700
+ dropout=0.0,
701
+ softmax_scale=None,
702
+ ):
703
+ """
704
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
705
+ first unpad the input, then computes the attention scores and pad the final attention scores.
706
+ Args:
707
+ query_states (`torch.Tensor`):
708
+ Input query states to be passed to Flash Attention API
709
+ key_states (`torch.Tensor`):
710
+ Input key states to be passed to Flash Attention API
711
+ value_states (`torch.Tensor`):
712
+ Input value states to be passed to Flash Attention API
713
+ attention_mask (`torch.Tensor`):
714
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
715
+ position of padding tokens and 1 for the position of non-padding tokens.
716
+ dropout (`int`, *optional*):
717
+ Attention dropout
718
+ softmax_scale (`float`, *optional*):
719
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
720
+ """
721
+ if not self._flash_attn_uses_top_left_mask:
722
+ causal = self.is_causal
723
+ else:
724
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
725
+ causal = self.is_causal and query_length != 1
726
+ # Contains at least one padding token in the sequence
727
+ if attention_mask is not None:
728
+ batch_size = query_states.shape[0]
729
+ (
730
+ query_states,
731
+ key_states,
732
+ value_states,
733
+ indices_q,
734
+ cu_seq_lens,
735
+ max_seq_lens,
736
+ ) = self._upad_input(
737
+ query_states, key_states, value_states, attention_mask, query_length
738
+ )
739
+
740
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
741
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
742
+ attn_output_unpad = flash_attn_varlen_func(
743
+ query_states,
744
+ key_states,
745
+ value_states,
746
+ cu_seqlens_q=cu_seqlens_q,
747
+ cu_seqlens_k=cu_seqlens_k,
748
+ max_seqlen_q=max_seqlen_in_batch_q,
749
+ max_seqlen_k=max_seqlen_in_batch_k,
750
+ dropout_p=dropout,
751
+ softmax_scale=softmax_scale,
752
+ causal=causal,
753
+ )
754
+
755
+ attn_output = pad_input(
756
+ attn_output_unpad, indices_q, batch_size, query_length
757
+ )
758
+ else:
759
+ attn_output = flash_attn_func(
760
+ query_states,
761
+ key_states,
762
+ value_states,
763
+ dropout,
764
+ softmax_scale=softmax_scale,
765
+ causal=causal,
766
+ )
767
+
768
+ return attn_output
769
+
770
+ def _upad_input(
771
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
772
+ ):
773
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
774
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
775
+
776
+ key_layer = index_first_axis(
777
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
778
+ indices_k,
779
+ )
780
+ value_layer = index_first_axis(
781
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
782
+ indices_k,
783
+ )
784
+ if query_length == kv_seq_len:
785
+ query_layer = index_first_axis(
786
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
787
+ indices_k,
788
+ )
789
+ cu_seqlens_q = cu_seqlens_k
790
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
791
+ indices_q = indices_k
792
+ elif query_length == 1:
793
+ max_seqlen_in_batch_q = 1
794
+ cu_seqlens_q = torch.arange(
795
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
796
+ ) # There is a memcpy here, that is very bad.
797
+ indices_q = cu_seqlens_q[:-1]
798
+ query_layer = query_layer.squeeze(1)
799
+ else:
800
+ # The -q_len: slice assumes left padding.
801
+ attention_mask = attention_mask[:, -query_length:]
802
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
803
+ query_layer, attention_mask
804
+ )
805
+
806
+ return (
807
+ query_layer,
808
+ key_layer,
809
+ value_layer,
810
+ indices_q,
811
+ (cu_seqlens_q, cu_seqlens_k),
812
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
813
+ )
814
+
815
+
816
+ class MiniCPMSdpaAttention(MiniCPMAttention):
817
+ """
818
+ MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
819
+ `MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
820
+ SDPA API.
821
+ """
822
+
823
+ # Adapted from MiniCPMAttention.forward
824
+ def forward(
825
+ self,
826
+ hidden_states: torch.Tensor,
827
+ attention_mask: Optional[torch.Tensor] = None,
828
+ position_ids: Optional[torch.LongTensor] = None,
829
+ past_key_value: Optional[Cache] = None,
830
+ output_attentions: bool = False,
831
+ use_cache: bool = False,
832
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
833
+ if output_attentions:
834
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
835
+ logger.warning_once(
836
+ "MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
837
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
838
+ )
839
+ return super().forward(
840
+ hidden_states=hidden_states,
841
+ attention_mask=attention_mask,
842
+ position_ids=position_ids,
843
+ past_key_value=past_key_value,
844
+ output_attentions=output_attentions,
845
+ use_cache=use_cache,
846
+ )
847
+
848
+ bsz, q_len, _ = hidden_states.size()
849
+
850
+ query_states = self.q_proj(hidden_states)
851
+ key_states = self.k_proj(hidden_states)
852
+ value_states = self.v_proj(hidden_states)
853
+
854
+ query_states = query_states.view(
855
+ bsz, q_len, self.num_heads, self.head_dim
856
+ ).transpose(1, 2)
857
+ key_states = key_states.view(
858
+ bsz, q_len, self.num_key_value_heads, self.head_dim
859
+ ).transpose(1, 2)
860
+ value_states = value_states.view(
861
+ bsz, q_len, self.num_key_value_heads, self.head_dim
862
+ ).transpose(1, 2)
863
+
864
+ kv_seq_len = key_states.shape[-2]
865
+ if past_key_value is not None:
866
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
867
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
868
+
869
+ query_states, key_states = apply_rotary_pos_emb(
870
+ query_states, key_states, cos, sin, position_ids
871
+ )
872
+
873
+ if past_key_value is not None:
874
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
875
+ key_states, value_states = past_key_value.update(
876
+ key_states, value_states, self.layer_idx, cache_kwargs
877
+ )
878
+
879
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
880
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
881
+
882
+ if attention_mask is not None:
883
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
884
+ raise ValueError(
885
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
886
+ )
887
+
888
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
889
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
890
+ if query_states.device.type == "cuda" and attention_mask is not None:
891
+ query_states = query_states.contiguous()
892
+ key_states = key_states.contiguous()
893
+ value_states = value_states.contiguous()
894
+
895
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
896
+ query_states,
897
+ key_states,
898
+ value_states,
899
+ attn_mask=attention_mask,
900
+ dropout_p=self.attention_dropout if self.training else 0.0,
901
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
902
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
903
+ )
904
+
905
+ attn_output = attn_output.transpose(1, 2).contiguous()
906
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
907
+
908
+ attn_output = self.o_proj(attn_output)
909
+
910
+ return attn_output, None, past_key_value
911
+
912
+
913
+ MINICPM_ATTENTION_CLASSES = {
914
+ "eager": MiniCPMAttention,
915
+ "flash_attention_2": MiniCPMFlashAttention2,
916
+ "sdpa": MiniCPMSdpaAttention,
917
+ }
918
+
919
+
920
+ class MiniCPMDecoderLayer(nn.Module):
921
+ def __init__(self, config: MiniCPMConfig, layer_idx: int):
922
+ super().__init__()
923
+ self.hidden_size = config.hidden_size
924
+ self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](
925
+ config=config, layer_idx=layer_idx
926
+ )
927
+
928
+ self.mlp = MiniCPMMLP(config)
929
+ self.input_layernorm = MiniCPMRMSNorm(
930
+ config.hidden_size, eps=config.rms_norm_eps
931
+ )
932
+ self.post_attention_layernorm = MiniCPMRMSNorm(
933
+ config.hidden_size, eps=config.rms_norm_eps
934
+ )
935
+
936
+ self.scale_depth = config.scale_depth
937
+ self.num_hidden_layers = config.num_hidden_layers
938
+
939
+ def forward(
940
+ self,
941
+ hidden_states: torch.Tensor,
942
+ attention_mask: Optional[torch.Tensor] = None,
943
+ position_ids: Optional[torch.LongTensor] = None,
944
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
945
+ output_attentions: Optional[bool] = False,
946
+ use_cache: Optional[bool] = False,
947
+ **kwargs,
948
+ ) -> Tuple[
949
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
950
+ ]:
951
+ """
952
+ Args:
953
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
954
+ attention_mask (`torch.FloatTensor`, *optional*):
955
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
956
+ query_sequence_length, key_sequence_length)` if default attention is used.
957
+ output_attentions (`bool`, *optional*):
958
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
959
+ returned tensors for more detail.
960
+ use_cache (`bool`, *optional*):
961
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
962
+ (see `past_key_values`).
963
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
964
+ """
965
+ if "padding_mask" in kwargs:
966
+ warnings.warn(
967
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
968
+ )
969
+
970
+ residual = hidden_states
971
+ hidden_states = self.input_layernorm(hidden_states)
972
+ # Self Attention
973
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
974
+ hidden_states=hidden_states,
975
+ attention_mask=attention_mask,
976
+ position_ids=position_ids,
977
+ past_key_value=past_key_value,
978
+ output_attentions=output_attentions,
979
+ use_cache=use_cache,
980
+ **kwargs,
981
+ )
982
+
983
+ hidden_states = residual + hidden_states * (
984
+ self.scale_depth / math.sqrt(self.num_hidden_layers)
985
+ )
986
+
987
+ # Fully Connected
988
+ residual = hidden_states
989
+ hidden_states = self.post_attention_layernorm(hidden_states)
990
+
991
+ hidden_states = self.mlp(hidden_states)
992
+ hidden_states = residual + hidden_states * (
993
+ self.scale_depth / math.sqrt(self.num_hidden_layers)
994
+ )
995
+
996
+ outputs = (hidden_states,)
997
+
998
+ if output_attentions:
999
+ outputs += (self_attn_weights,)
1000
+
1001
+ if use_cache:
1002
+ outputs += (present_key_value,)
1003
+
1004
+ return outputs
1005
+
1006
+
1007
+ MINICPM_START_DOCSTRING = r"""
1008
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1009
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1010
+ etc.)
1011
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1012
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1013
+ and behavior.
1014
+ Parameters:
1015
+ config ([`MiniCPMConfig`]):
1016
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1017
+ load the weights associated with the model, only the configuration. Check out the
1018
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1019
+ """
1020
+
1021
+
1022
+ @add_start_docstrings(
1023
+ "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
1024
+ MINICPM_START_DOCSTRING,
1025
+ )
1026
+ class MiniCPMPreTrainedModel(PreTrainedModel):
1027
+ config_class = MiniCPMConfig
1028
+ base_model_prefix = "model"
1029
+ supports_gradient_checkpointing = True
1030
+ _no_split_modules = ["MiniCPMDecoderLayer"]
1031
+ _skip_keys_device_placement = "past_key_values"
1032
+ _supports_flash_attn_2 = True
1033
+ _supports_sdpa = True
1034
+ _supports_cache_class = True
1035
+
1036
+ def _init_weights(self, module):
1037
+ std = self.config.initializer_range
1038
+ if isinstance(module, nn.Linear):
1039
+ module.weight.data.normal_(mean=0.0, std=std)
1040
+ if module.bias is not None:
1041
+ module.bias.data.zero_()
1042
+ elif isinstance(module, nn.Embedding):
1043
+ module.weight.data.normal_(mean=0.0, std=std)
1044
+ if module.padding_idx is not None:
1045
+ module.weight.data[module.padding_idx].zero_()
1046
+
1047
+
1048
+ MINICPM_INPUTS_DOCSTRING = r"""
1049
+ Args:
1050
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1051
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1052
+ it.
1053
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1054
+ [`PreTrainedTokenizer.__call__`] for details.
1055
+ [What are input IDs?](../glossary#input-ids)
1056
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1057
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1058
+ - 1 for tokens that are **not masked**,
1059
+ - 0 for tokens that are **masked**.
1060
+ [What are attention masks?](../glossary#attention-mask)
1061
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1062
+ [`PreTrainedTokenizer.__call__`] for details.
1063
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1064
+ `past_key_values`).
1065
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1066
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1067
+ information on the default strategy.
1068
+ - 1 indicates the head is **not masked**,
1069
+ - 0 indicates the head is **masked**.
1070
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1071
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1072
+ config.n_positions - 1]`.
1073
+ [What are position IDs?](../glossary#position-ids)
1074
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1075
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1076
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1077
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1078
+ Two formats are allowed:
1079
+ - a [`~cache_utils.Cache`] instance;
1080
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1081
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1082
+ cache format.
1083
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1084
+ legacy cache format will be returned.
1085
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1086
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1087
+ of shape `(batch_size, sequence_length)`.
1088
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1089
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1090
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1091
+ model's internal embedding lookup matrix.
1092
+ use_cache (`bool`, *optional*):
1093
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1094
+ `past_key_values`).
1095
+ output_attentions (`bool`, *optional*):
1096
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1097
+ tensors for more detail.
1098
+ output_hidden_states (`bool`, *optional*):
1099
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1100
+ more detail.
1101
+ return_dict (`bool`, *optional*):
1102
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1103
+ """
1104
+
1105
+
1106
+ @add_start_docstrings(
1107
+ "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
1108
+ MINICPM_START_DOCSTRING,
1109
+ )
1110
+ class MiniCPMModel(MiniCPMPreTrainedModel):
1111
+ """
1112
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
1113
+ Args:
1114
+ config: MiniCPMConfig
1115
+ """
1116
+
1117
+ def __init__(self, config: MiniCPMConfig):
1118
+ super().__init__(config)
1119
+ self.padding_idx = config.pad_token_id
1120
+ self.vocab_size = config.vocab_size
1121
+
1122
+ self.embed_tokens = nn.Embedding(
1123
+ config.vocab_size, config.hidden_size, self.padding_idx
1124
+ )
1125
+ self.layers = nn.ModuleList(
1126
+ [
1127
+ MiniCPMDecoderLayer(config, layer_idx)
1128
+ for layer_idx in range(config.num_hidden_layers)
1129
+ ]
1130
+ )
1131
+ self._use_sdpa = config._attn_implementation == "sdpa"
1132
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1133
+
1134
+ self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1135
+
1136
+ self.gradient_checkpointing = False
1137
+ # Initialize weights and apply final processing
1138
+ self.post_init()
1139
+
1140
+ def get_input_embeddings(self):
1141
+ return self.embed_tokens
1142
+
1143
+ def set_input_embeddings(self, value):
1144
+ self.embed_tokens = value
1145
+
1146
+ @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
1147
+ def forward(
1148
+ self,
1149
+ input_ids: torch.LongTensor = None,
1150
+ attention_mask: Optional[torch.Tensor] = None,
1151
+ position_ids: Optional[torch.LongTensor] = None,
1152
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1153
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1154
+ use_cache: Optional[bool] = None,
1155
+ output_attentions: Optional[bool] = None,
1156
+ output_hidden_states: Optional[bool] = None,
1157
+ return_dict: Optional[bool] = None,
1158
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1159
+ output_attentions = (
1160
+ output_attentions
1161
+ if output_attentions is not None
1162
+ else self.config.output_attentions
1163
+ )
1164
+ output_hidden_states = (
1165
+ output_hidden_states
1166
+ if output_hidden_states is not None
1167
+ else self.config.output_hidden_states
1168
+ )
1169
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1170
+
1171
+ return_dict = (
1172
+ return_dict if return_dict is not None else self.config.use_return_dict
1173
+ )
1174
+
1175
+ # retrieve input_ids and inputs_embeds
1176
+ if input_ids is not None and inputs_embeds is not None:
1177
+ raise ValueError(
1178
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1179
+ )
1180
+ elif input_ids is not None:
1181
+ batch_size, seq_length = input_ids.shape[:2]
1182
+ elif inputs_embeds is not None:
1183
+ batch_size, seq_length = inputs_embeds.shape[:2]
1184
+ else:
1185
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1186
+
1187
+ if self.gradient_checkpointing and self.training:
1188
+ if use_cache:
1189
+ logger.warning_once(
1190
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1191
+ )
1192
+ use_cache = False
1193
+
1194
+ past_key_values_length = 0
1195
+ if use_cache:
1196
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1197
+ if use_legacy_cache:
1198
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1199
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1200
+
1201
+ if position_ids is None:
1202
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1203
+ position_ids = torch.arange(
1204
+ past_key_values_length,
1205
+ seq_length + past_key_values_length,
1206
+ dtype=torch.long,
1207
+ device=device,
1208
+ )
1209
+ position_ids = position_ids.unsqueeze(0)
1210
+
1211
+ if inputs_embeds is None:
1212
+ inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
1213
+
1214
+ if self._use_flash_attention_2:
1215
+ # 2d mask is passed through the layers
1216
+ attention_mask = (
1217
+ attention_mask
1218
+ if (attention_mask is not None and 0 in attention_mask)
1219
+ else None
1220
+ )
1221
+ elif self._use_sdpa and not output_attentions:
1222
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1223
+ # the manual implementation that requires a 4D causal mask in all cases.
1224
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1225
+ attention_mask,
1226
+ (batch_size, seq_length),
1227
+ inputs_embeds,
1228
+ past_key_values_length,
1229
+ )
1230
+ else:
1231
+ # 4d mask is passed through the layers
1232
+ attention_mask = _prepare_4d_causal_attention_mask(
1233
+ attention_mask,
1234
+ (batch_size, seq_length),
1235
+ inputs_embeds,
1236
+ past_key_values_length,
1237
+ )
1238
+
1239
+ # embed positions
1240
+ hidden_states = inputs_embeds
1241
+
1242
+ # decoder layers
1243
+ all_hidden_states = () if output_hidden_states else None
1244
+ all_self_attns = () if output_attentions else None
1245
+ next_decoder_cache = None
1246
+
1247
+ for decoder_layer in self.layers:
1248
+ if output_hidden_states:
1249
+ all_hidden_states += (hidden_states,)
1250
+
1251
+ if self.gradient_checkpointing and self.training:
1252
+ layer_outputs = self._gradient_checkpointing_func(
1253
+ decoder_layer.__call__,
1254
+ hidden_states,
1255
+ attention_mask,
1256
+ position_ids,
1257
+ past_key_values,
1258
+ output_attentions,
1259
+ use_cache,
1260
+ )
1261
+ else:
1262
+ layer_outputs = decoder_layer(
1263
+ hidden_states,
1264
+ attention_mask=attention_mask,
1265
+ position_ids=position_ids,
1266
+ past_key_value=past_key_values,
1267
+ output_attentions=output_attentions,
1268
+ use_cache=use_cache,
1269
+ )
1270
+
1271
+ hidden_states = layer_outputs[0]
1272
+
1273
+ if use_cache:
1274
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1275
+
1276
+ if output_attentions:
1277
+ all_self_attns += (layer_outputs[1],)
1278
+
1279
+ hidden_states = self.norm(hidden_states)
1280
+
1281
+ # add hidden states from the last decoder layer
1282
+ if output_hidden_states:
1283
+ all_hidden_states += (hidden_states,)
1284
+
1285
+ next_cache = None
1286
+ if use_cache:
1287
+ next_cache = (
1288
+ next_decoder_cache.to_legacy_cache()
1289
+ if use_legacy_cache
1290
+ else next_decoder_cache
1291
+ )
1292
+ if not return_dict:
1293
+ return tuple(
1294
+ v
1295
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1296
+ if v is not None
1297
+ )
1298
+ return BaseModelOutputWithPast(
1299
+ last_hidden_state=hidden_states,
1300
+ past_key_values=next_cache,
1301
+ hidden_states=all_hidden_states,
1302
+ attentions=all_self_attns,
1303
+ )
1304
+
1305
+
1306
+ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
1307
+ _tied_weights_keys = ["lm_head.weight"]
1308
+
1309
+ def __init__(self, config):
1310
+ super().__init__(config)
1311
+ self.model = MiniCPMModel(config)
1312
+ self.vocab_size = config.vocab_size
1313
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1314
+
1315
+ # Initialize weights and apply final processing
1316
+ self.post_init()
1317
+
1318
+ def get_input_embeddings(self):
1319
+ return self.model.embed_tokens
1320
+
1321
+ def set_input_embeddings(self, value):
1322
+ self.model.embed_tokens = value
1323
+
1324
+ def get_output_embeddings(self):
1325
+ return self.lm_head
1326
+
1327
+ def set_output_embeddings(self, new_embeddings):
1328
+ self.lm_head = new_embeddings
1329
+
1330
+ def set_decoder(self, decoder):
1331
+ self.model = decoder
1332
+
1333
+ def get_decoder(self):
1334
+ return self.model
1335
+
1336
+ @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
1337
+ @replace_return_docstrings(
1338
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1339
+ )
1340
+ def forward(
1341
+ self,
1342
+ input_ids: torch.LongTensor = None,
1343
+ attention_mask: Optional[torch.Tensor] = None,
1344
+ position_ids: Optional[torch.LongTensor] = None,
1345
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1346
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1347
+ labels: Optional[torch.LongTensor] = None,
1348
+ use_cache: Optional[bool] = None,
1349
+ output_attentions: Optional[bool] = None,
1350
+ output_hidden_states: Optional[bool] = None,
1351
+ return_dict: Optional[bool] = None,
1352
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1353
+ r"""
1354
+ Args:
1355
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1356
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1357
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1358
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1359
+ Returns:
1360
+ Example:
1361
+ ```python
1362
+ >>> from transformers import AutoTokenizer, MiniCPMForCausalLM
1363
+ >>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1364
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1365
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1366
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1367
+ >>> # Generate
1368
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1369
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1370
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1371
+ ```"""
1372
+ output_attentions = (
1373
+ output_attentions
1374
+ if output_attentions is not None
1375
+ else self.config.output_attentions
1376
+ )
1377
+ output_hidden_states = (
1378
+ output_hidden_states
1379
+ if output_hidden_states is not None
1380
+ else self.config.output_hidden_states
1381
+ )
1382
+ return_dict = (
1383
+ return_dict if return_dict is not None else self.config.use_return_dict
1384
+ )
1385
+
1386
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1387
+ outputs = self.model(
1388
+ input_ids=input_ids,
1389
+ attention_mask=attention_mask,
1390
+ position_ids=position_ids,
1391
+ past_key_values=past_key_values,
1392
+ inputs_embeds=inputs_embeds,
1393
+ use_cache=use_cache,
1394
+ output_attentions=output_attentions,
1395
+ output_hidden_states=output_hidden_states,
1396
+ return_dict=return_dict,
1397
+ )
1398
+
1399
+ hidden_states = outputs[0]
1400
+ if self.config.pretraining_tp > 1:
1401
+ lm_head_slices = self.lm_head.weight.split(
1402
+ self.vocab_size // self.config.pretraining_tp, dim=0
1403
+ )
1404
+ logits = [
1405
+ F.linear(hidden_states, lm_head_slices[i])
1406
+ for i in range(self.config.pretraining_tp)
1407
+ ]
1408
+ logits = torch.cat(logits, dim=-1)
1409
+ else:
1410
+ logits = self.lm_head(
1411
+ hidden_states / (self.config.hidden_size / self.config.dim_model_base)
1412
+ )
1413
+ logits = logits.float()
1414
+
1415
+ loss = None
1416
+ if labels is not None:
1417
+ # Shift so that tokens < n predict n
1418
+ shift_logits = logits[..., :-1, :].contiguous()
1419
+ shift_labels = labels[..., 1:].contiguous()
1420
+ # Flatten the tokens
1421
+ loss_fct = CrossEntropyLoss()
1422
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1423
+ shift_labels = shift_labels.view(-1)
1424
+ # Enable model parallelism
1425
+ shift_labels = shift_labels.to(shift_logits.device)
1426
+ loss = loss_fct(shift_logits, shift_labels)
1427
+
1428
+ if not return_dict:
1429
+ output = (logits,) + outputs[1:]
1430
+ return (loss,) + output if loss is not None else output
1431
+
1432
+ return CausalLMOutputWithPast(
1433
+ loss=loss,
1434
+ logits=logits,
1435
+ past_key_values=outputs.past_key_values,
1436
+ hidden_states=outputs.hidden_states,
1437
+ attentions=outputs.attentions,
1438
+ )
1439
+
1440
+ def prepare_inputs_for_generation(
1441
+ self,
1442
+ input_ids,
1443
+ past_key_values=None,
1444
+ attention_mask=None,
1445
+ inputs_embeds=None,
1446
+ **kwargs,
1447
+ ):
1448
+ if past_key_values is not None:
1449
+ if isinstance(past_key_values, Cache):
1450
+ cache_length = past_key_values.get_seq_length()
1451
+ past_length = past_key_values.seen_tokens
1452
+ max_cache_length = past_key_values.get_max_length()
1453
+ else:
1454
+ cache_length = past_length = past_key_values[0][0].shape[2]
1455
+ max_cache_length = None
1456
+
1457
+ # Keep only the unprocessed tokens:
1458
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1459
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1460
+ # input)
1461
+ if (
1462
+ attention_mask is not None
1463
+ and attention_mask.shape[1] > input_ids.shape[1]
1464
+ ):
1465
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1466
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1467
+ # input_ids based on the past_length.
1468
+ elif past_length < input_ids.shape[1]:
1469
+ input_ids = input_ids[:, past_length:]
1470
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1471
+
1472
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1473
+ if (
1474
+ max_cache_length is not None
1475
+ and attention_mask is not None
1476
+ and cache_length + input_ids.shape[1] > max_cache_length
1477
+ ):
1478
+ attention_mask = attention_mask[:, -max_cache_length:]
1479
+
1480
+ position_ids = kwargs.get("position_ids", None)
1481
+ if attention_mask is not None and position_ids is None:
1482
+ # create position_ids on the fly for batch generation
1483
+ position_ids = attention_mask.long().cumsum(-1) - 1
1484
+ position_ids.masked_fill_(attention_mask == 0, 1)
1485
+ if past_key_values:
1486
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1487
+
1488
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1489
+ if inputs_embeds is not None and past_key_values is None:
1490
+ model_inputs = {"inputs_embeds": inputs_embeds}
1491
+ else:
1492
+ model_inputs = {"input_ids": input_ids}
1493
+
1494
+ model_inputs.update(
1495
+ {
1496
+ "position_ids": position_ids,
1497
+ "past_key_values": past_key_values,
1498
+ "use_cache": kwargs.get("use_cache"),
1499
+ "attention_mask": attention_mask,
1500
+ }
1501
+ )
1502
+ return model_inputs
1503
+
1504
+ @staticmethod
1505
+ def _reorder_cache(past_key_values, beam_idx):
1506
+ reordered_past = ()
1507
+ for layer_past in past_key_values:
1508
+ reordered_past += (
1509
+ tuple(
1510
+ past_state.index_select(0, beam_idx.to(past_state.device))
1511
+ for past_state in layer_past
1512
+ ),
1513
+ )
1514
+ return reordered_past
1515
+
1516
+ @torch.inference_mode()
1517
+ def chat(
1518
+ self,
1519
+ tokenizer,
1520
+ query: str,
1521
+ history: List[Dict] = None,
1522
+ role: str = "user",
1523
+ max_length: int = 4096,
1524
+ num_beams=1,
1525
+ do_sample=True,
1526
+ top_p=0.8,
1527
+ temperature=0.3,
1528
+ logits_processor=None,
1529
+ **kwargs,
1530
+ ):
1531
+ if history is None:
1532
+ history = []
1533
+ if logits_processor:
1534
+ gen_kwargs = {
1535
+ "max_length": max_length,
1536
+ "num_beams": num_beams,
1537
+ "do_sample": do_sample,
1538
+ "top_p": top_p,
1539
+ "temperature": temperature,
1540
+ "logits_processor": logits_processor,
1541
+ **kwargs,
1542
+ }
1543
+ else:
1544
+ gen_kwargs = {
1545
+ "max_length": max_length,
1546
+ "num_beams": num_beams,
1547
+ "do_sample": do_sample,
1548
+ "top_p": top_p,
1549
+ "temperature": temperature,
1550
+ "logits_processor": logits_processor,
1551
+ **kwargs,
1552
+ }
1553
+
1554
+ history.append({"role": role, "content": query})
1555
+ history_str = tokenizer.apply_chat_template(
1556
+ history, tokenize=False, add_generation_prompt=False
1557
+ )
1558
+ inputs = tokenizer(history_str, return_tensors="pt").to(self.device)
1559
+ outputs = self.generate(**inputs, **gen_kwargs)
1560
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]) : -1]
1561
+ response = tokenizer.decode(outputs)
1562
+ pattern = re.compile(r".*?(?=<AI>|<用户>)", re.DOTALL)
1563
+ matches = pattern.findall(response)
1564
+ if len(matches) > 0:
1565
+ response = matches[0]
1566
+ history.append({"role": "assistant", "content": response})
1567
+ return response, history
1568
+
1569
+
1570
+ @add_start_docstrings(
1571
+ """
1572
+ The MiniCPM Model transformer with a sequence classification head on top (linear layer).
1573
+ [`MiniCPMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1574
+ (e.g. GPT-2) do.
1575
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1576
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1577
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1578
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1579
+ each row of the batch).
1580
+ """,
1581
+ MINICPM_START_DOCSTRING,
1582
+ )
1583
+ class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel):
1584
+ def __init__(self, config):
1585
+ super().__init__(config)
1586
+ self.num_labels = config.num_labels
1587
+ self.model = MiniCPMModel(config)
1588
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1589
+
1590
+ # Initialize weights and apply final processing
1591
+ self.post_init()
1592
+
1593
+ def get_input_embeddings(self):
1594
+ return self.model.embed_tokens
1595
+
1596
+ def set_input_embeddings(self, value):
1597
+ self.model.embed_tokens = value
1598
+
1599
+ @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
1600
+ def forward(
1601
+ self,
1602
+ input_ids: torch.LongTensor = None,
1603
+ attention_mask: Optional[torch.Tensor] = None,
1604
+ position_ids: Optional[torch.LongTensor] = None,
1605
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1606
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1607
+ labels: Optional[torch.LongTensor] = None,
1608
+ use_cache: Optional[bool] = None,
1609
+ output_attentions: Optional[bool] = None,
1610
+ output_hidden_states: Optional[bool] = None,
1611
+ return_dict: Optional[bool] = None,
1612
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1613
+ r"""
1614
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1615
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1616
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1617
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1618
+ """
1619
+ return_dict = (
1620
+ return_dict if return_dict is not None else self.config.use_return_dict
1621
+ )
1622
+
1623
+ transformer_outputs = self.model(
1624
+ input_ids,
1625
+ attention_mask=attention_mask,
1626
+ position_ids=position_ids,
1627
+ past_key_values=past_key_values,
1628
+ inputs_embeds=inputs_embeds,
1629
+ use_cache=use_cache,
1630
+ output_attentions=output_attentions,
1631
+ output_hidden_states=output_hidden_states,
1632
+ return_dict=return_dict,
1633
+ )
1634
+ hidden_states = transformer_outputs[0]
1635
+ logits = self.score(hidden_states)
1636
+
1637
+ if input_ids is not None:
1638
+ batch_size = input_ids.shape[0]
1639
+ else:
1640
+ batch_size = inputs_embeds.shape[0]
1641
+
1642
+ if self.config.pad_token_id is None and batch_size != 1:
1643
+ raise ValueError(
1644
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1645
+ )
1646
+ if self.config.pad_token_id is None:
1647
+ sequence_lengths = -1
1648
+ else:
1649
+ if input_ids is not None:
1650
+ sequence_lengths = (
1651
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1652
+ ).to(logits.device)
1653
+ else:
1654
+ sequence_lengths = -1
1655
+
1656
+ pooled_logits = logits[
1657
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1658
+ ]
1659
+
1660
+ loss = None
1661
+ if labels is not None:
1662
+ labels = labels.to(logits.device)
1663
+ if self.config.problem_type is None:
1664
+ if self.num_labels == 1:
1665
+ self.config.problem_type = "regression"
1666
+ elif self.num_labels > 1 and (
1667
+ labels.dtype == torch.long or labels.dtype == torch.int
1668
+ ):
1669
+ self.config.problem_type = "single_label_classification"
1670
+ else:
1671
+ self.config.problem_type = "multi_label_classification"
1672
+
1673
+ if self.config.problem_type == "regression":
1674
+ loss_fct = MSELoss()
1675
+ if self.num_labels == 1:
1676
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1677
+ else:
1678
+ loss = loss_fct(pooled_logits, labels)
1679
+ elif self.config.problem_type == "single_label_classification":
1680
+ loss_fct = CrossEntropyLoss()
1681
+ loss = loss_fct(
1682
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1683
+ )
1684
+ elif self.config.problem_type == "multi_label_classification":
1685
+ loss_fct = BCEWithLogitsLoss()
1686
+ loss = loss_fct(pooled_logits, labels)
1687
+ if not return_dict:
1688
+ output = (pooled_logits,) + transformer_outputs[1:]
1689
+ return ((loss,) + output) if loss is not None else output
1690
+
1691
+ return SequenceClassifierOutputWithPast(
1692
+ loss=loss,
1693
+ logits=pooled_logits,
1694
+ past_key_values=transformer_outputs.past_key_values,
1695
+ hidden_states=transformer_outputs.hidden_states,
1696
+ attentions=transformer_outputs.attentions,
1697
+ )
modeling_minicpmv.py ADDED
@@ -0,0 +1,606 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import json
3
+ import timm
4
+ import torch
5
+ import torchvision
6
+ from PIL import Image
7
+ from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
8
+ from torchvision import transforms
9
+ from transformers import LlamaTokenizer
10
+ from transformers.integrations import is_deepspeed_zero3_enabled
11
+ from .configuration_minicpm import MiniCPMVConfig
12
+ from .modeling_minicpm import MiniCPMForCausalLM, MiniCPMPreTrainedModel
13
+ from .resampler import Resampler
14
+ from functools import partial
15
+ from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
16
+ from peft.utils.other import ModulesToSaveWrapper
17
+
18
+
19
+ class MiniCPMVPreTrainedModel(MiniCPMPreTrainedModel):
20
+ config_class = MiniCPMVConfig
21
+
22
+
23
+ class MiniCPMV(MiniCPMVPreTrainedModel):
24
+ def __init__(self, config):
25
+ super().__init__(config)
26
+
27
+ self.llm = MiniCPMForCausalLM(config)
28
+ self.vpm = self.init_vision_module()
29
+ self.vision_dim = self.vpm.embed_dim
30
+ self.embed_dim = self.llm.config.hidden_size
31
+ self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
32
+ self.transform = self.init_transform()
33
+
34
+ def init_vision_module(self):
35
+ model = timm.create_model(
36
+ self.config.vision_encoder,
37
+ pretrained=False,
38
+ num_classes=0,
39
+ dynamic_img_size=True,
40
+ dynamic_img_pad=True
41
+ )
42
+
43
+ if isinstance(model, timm.models.VisionTransformer):
44
+ if model.attn_pool is not None:
45
+ model.attn_pool = torch.nn.Identity()
46
+
47
+ if self.config.drop_vision_last_layer:
48
+ model.blocks = model.blocks[:-1]
49
+
50
+ return model
51
+
52
+ def init_resampler(self, embed_dim, vision_dim):
53
+ return Resampler(
54
+ grid_size=int(math.sqrt(self.config.query_num)),
55
+ embed_dim=embed_dim,
56
+ num_heads=embed_dim // 128,
57
+ kv_dim=vision_dim,
58
+ adaptive=True
59
+ )
60
+
61
+ def init_transform(self):
62
+ return transforms.Compose(
63
+ [
64
+ transforms.ToTensor(),
65
+ transforms.Normalize(
66
+ mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
67
+ ),
68
+ ]
69
+ )
70
+
71
+ def get_input_embeddings(self):
72
+ return self.llm.get_input_embeddings()
73
+
74
+ def set_input_embeddings(self, value):
75
+ self.llm.embed_tokens = value
76
+
77
+ def vpm_forward_features(self, pixel_value):
78
+ if isinstance(self.vpm, ModulesToSaveWrapper):
79
+ if self.vpm.disable_adapters or (self.vpm.active_adapter not in self.vpm.modules_to_save):
80
+ return self.vpm.original_module.forward_features(pixel_value)
81
+ return self.vpm.modules_to_save[self.vpm.active_adapter].forward_features(pixel_value)
82
+ else:
83
+ return self.vpm.forward_features(pixel_value)
84
+
85
+ def get_vision_embedding(self, pixel_values):
86
+ res = []
87
+ dtype = self.llm.lm_head.weight.dtype
88
+ def process_each_pixel(pixel_value, dtype, config, vpm, resampler):
89
+ H, W = pixel_value.shape[-2:]
90
+ target_size = (math.ceil(H / config.patch_size), math.ceil(W / config.patch_size))
91
+ vision_embedding = self.vpm_forward_features(pixel_value.unsqueeze(0).type(dtype))
92
+
93
+ if hasattr(vpm, 'num_prefix_tokens') and vpm.num_prefix_tokens > 0:
94
+ vision_embedding = vision_embedding[:, vpm.num_prefix_tokens:]
95
+ return resampler(vision_embedding, target_size)
96
+
97
+ for pixel_value in pixel_values:
98
+ result = process_each_pixel(pixel_value, dtype, self.config, self.vpm, self.resampler)
99
+ res.append(result)
100
+ return torch.vstack(res)
101
+
102
+ def get_vllm_embedding(self, data):
103
+ if "vision_hidden_states" not in data:
104
+ pixel_values_list = data["pixel_values"]
105
+ vision_hidden_states = []
106
+ for pixel_values in pixel_values_list:
107
+ if len(pixel_values) > 0:
108
+ vision_hidden_states.append(self.get_vision_embedding(pixel_values))
109
+ elif self.training:
110
+ dtype = self.llm.lm_head.weight.dtype
111
+ device = self.llm.lm_head.weight.device
112
+ dummy_image = torch.zeros(
113
+ (1, 3, 224, 224), device=device, dtype=dtype
114
+ )
115
+ vision_hidden_states.append(self.get_vision_embedding(dummy_image))
116
+ else:
117
+ vision_hidden_states.append([])
118
+
119
+ else:
120
+ vision_hidden_states = data["vision_hidden_states"]
121
+
122
+ vllm_embedding = (
123
+ self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
124
+ )
125
+ vision_hidden_states = [
126
+ i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i
127
+ for i in vision_hidden_states
128
+ ]
129
+
130
+ bs = len(data["input_ids"])
131
+ for i in range(bs):
132
+ cur_vs_hs = vision_hidden_states[i]
133
+ if len(cur_vs_hs) > 0:
134
+ cur_vllm_emb = vllm_embedding[i]
135
+ cur_image_bound = data["image_bound"][i]
136
+ if len(cur_image_bound) > 0:
137
+ image_indices = torch.stack(
138
+ [
139
+ torch.arange(r[0], r[1], dtype=torch.long)
140
+ for r in cur_image_bound
141
+ ]
142
+ ).to(vllm_embedding.device)
143
+
144
+ cur_vllm_emb.scatter_(
145
+ 0,
146
+ image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
147
+ cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
148
+ )
149
+ elif self.training:
150
+ cur_vllm_emb += cur_vs_hs[0].mean() * 0
151
+
152
+ return vllm_embedding, vision_hidden_states
153
+
154
+ def forward(self, data, **kwargs):
155
+ vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
156
+ position_ids = data["position_ids"]
157
+ if position_ids.dtype != torch.int64:
158
+ position_ids = position_ids.long()
159
+
160
+ return self.llm(
161
+ input_ids=None,
162
+ position_ids=position_ids,
163
+ inputs_embeds=vllm_embedding,
164
+ **kwargs
165
+ )
166
+
167
+ def _convert_to_tensors(
168
+ self, tokenizer, input_str, max_inp_length: Optional[int] = None
169
+ ):
170
+ if tokenizer.add_bos_token:
171
+ input_ids = tokenizer.encode(input_str)
172
+ else:
173
+ input_ids = [tokenizer.bos_id] + tokenizer.encode(input_str)
174
+ if max_inp_length is not None:
175
+ input_ids = input_ids[:max_inp_length]
176
+ input_ids = torch.tensor(input_ids, dtype=torch.int32)
177
+
178
+ image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
179
+ # 跳过 im_start
180
+ image_start_tokens += 1
181
+ image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
182
+ valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
183
+ image_bound = torch.hstack(
184
+ [
185
+ image_start_tokens[:valid_image_nums].unsqueeze(-1),
186
+ image_end_tokens[:valid_image_nums].unsqueeze(-1),
187
+ ]
188
+ )
189
+
190
+ model_input = {}
191
+ model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
192
+ model_input["image_bound"] = image_bound
193
+
194
+ return model_input
195
+
196
+ def _process_list(
197
+ self, tokenizer, data_list: List[str], max_inp_length: Optional[int] = None
198
+ ):
199
+ pad_keys = ["input_ids"]
200
+ input_tensors = []
201
+ for data in data_list:
202
+ input_tensors.append(
203
+ self._convert_to_tensors(tokenizer, data, max_inp_length)
204
+ )
205
+ padded = {}
206
+ for key in pad_keys:
207
+ padded[key] = pad(input_tensors, key, padding_side="left").to(self.device)
208
+ padded["image_bound"] = [i["image_bound"] for i in input_tensors]
209
+ return padded
210
+
211
+ def _decode(self, inputs_embeds, tokenizer, **kwargs):
212
+ output = self.llm.generate(
213
+ inputs_embeds=inputs_embeds,
214
+ pad_token_id=0,
215
+ eos_token_id=tokenizer.eos_token_id,
216
+ **kwargs
217
+ )
218
+ return self._decode_text(output, tokenizer)
219
+
220
+ def _decode_text(self, result_ids, tokenizer):
221
+ result_text = []
222
+ for result in result_ids:
223
+ result = result[result != 0]
224
+ if result[0] == tokenizer.bos_id:
225
+ result = result[1:]
226
+ if result[-1] == tokenizer.eos_id:
227
+ result = result[:-1]
228
+ result_text.append(tokenizer.decode(result).strip())
229
+ return result_text
230
+
231
+ def slice_image(self, image):
232
+ return slice_image(
233
+ image,
234
+ self.config.max_slice_nums,
235
+ self.config.scale_resolution,
236
+ self.config.patch_size,
237
+ )
238
+
239
+ def get_slice_image_placeholder(self, image, tokenizer):
240
+ image_placeholder = (
241
+ tokenizer.im_start
242
+ + tokenizer.unk_token * self.config.query_num
243
+ + tokenizer.im_end
244
+ )
245
+
246
+ slice_images = []
247
+
248
+ source_image, patches, best_grid = slice_image(
249
+ image,
250
+ self.config.max_slice_nums,
251
+ self.config.scale_resolution,
252
+ self.config.patch_size,
253
+ )
254
+
255
+ slice_images.append(source_image)
256
+ final_placeholder = image_placeholder
257
+
258
+ if len(patches) > 0:
259
+ for i in range(len(patches)):
260
+ for j in range(len(patches[0])):
261
+ slice_images.append(patches[i][j])
262
+
263
+ final_placeholder += get_grid_placeholder(
264
+ tokenizer, best_grid, self.config.query_num
265
+ )
266
+
267
+ return slice_images, final_placeholder
268
+
269
+ def generate(
270
+ self,
271
+ data_list=None,
272
+ img_list=None,
273
+ tokenizer=None,
274
+ max_inp_length: Optional[int] = None,
275
+ vision_hidden_states=None,
276
+ return_vision_hidden_states=False,
277
+ **kwargs
278
+ ):
279
+
280
+ assert data_list is not None
281
+ bs = len(data_list)
282
+ if img_list == None:
283
+ img_list = [[] for i in range(bs)]
284
+ assert bs == len(img_list)
285
+
286
+ model_inputs = self._process_list(tokenizer, data_list, max_inp_length)
287
+
288
+ if vision_hidden_states is None:
289
+ pixel_values = []
290
+ for i in range(bs):
291
+ img_inps = []
292
+ for img in img_list[i]:
293
+ img_inps.append(self.transform(img).to(self.device))
294
+ if img_inps:
295
+ pixel_values.append(img_inps)
296
+ else:
297
+ pixel_values.append([])
298
+ model_inputs["pixel_values"] = pixel_values
299
+ else:
300
+ model_inputs["vision_hidden_states"] = vision_hidden_states
301
+
302
+ with torch.inference_mode():
303
+ (
304
+ model_inputs["inputs_embeds"],
305
+ vision_hidden_states,
306
+ ) = self.get_vllm_embedding(model_inputs)
307
+
308
+ result = self._decode(model_inputs["inputs_embeds"], tokenizer, **kwargs)
309
+
310
+ if return_vision_hidden_states:
311
+ return result, vision_hidden_states
312
+
313
+ return result
314
+
315
+ def chat(
316
+ self,
317
+ image,
318
+ msgs,
319
+ context,
320
+ tokenizer,
321
+ vision_hidden_states=None,
322
+ max_new_tokens=1024,
323
+ sampling=True,
324
+ max_inp_length=2048,
325
+ **kwargs
326
+ ):
327
+ if isinstance(msgs, str):
328
+ msgs = json.loads(msgs)
329
+ # msgs to prompt
330
+ prompt = ""
331
+ for i, msg in enumerate(msgs):
332
+ role = msg["role"]
333
+ content = msg["content"]
334
+ assert role in ["user", "assistant"]
335
+ if i == 0:
336
+ assert role == "user", "The role of first msg should be user"
337
+ if self.config.slice_mode:
338
+ images, final_placeholder = self.get_slice_image_placeholder(
339
+ image, tokenizer
340
+ )
341
+ content = final_placeholder + "\n" + content
342
+ else:
343
+ images = [image]
344
+ content = (
345
+ tokenizer.im_start
346
+ + tokenizer.unk_token * self.config.query_num
347
+ + tokenizer.im_end
348
+ + "\n"
349
+ + content
350
+ )
351
+ prompt += "<用户>" if role == "user" else "<AI>"
352
+ prompt += content
353
+ prompt += "<AI>"
354
+ final_input = prompt
355
+
356
+ if sampling:
357
+ generation_config = {
358
+ "top_p": 0.8,
359
+ "top_k": 100,
360
+ "temperature": 0.7,
361
+ "do_sample": True,
362
+ "repetition_penalty": 1.05
363
+ }
364
+ else:
365
+ generation_config = {
366
+ "num_beams": 3,
367
+ "repetition_penalty": 1.2,
368
+ }
369
+
370
+ generation_config.update(
371
+ (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
372
+ )
373
+
374
+ with torch.inference_mode():
375
+ res, vision_hidden_states = self.generate(
376
+ data_list=[final_input],
377
+ max_inp_length=max_inp_length,
378
+ img_list=[images],
379
+ tokenizer=tokenizer,
380
+ max_new_tokens=max_new_tokens,
381
+ vision_hidden_states=vision_hidden_states,
382
+ return_vision_hidden_states=True,
383
+ **generation_config
384
+ )
385
+ answer = res[0]
386
+ context = msgs.copy()
387
+ context.append({"role": "assistant", "content": answer})
388
+
389
+ return answer, context, generation_config
390
+
391
+
392
+
393
+
394
+ class LlamaTokenizerWrapper(LlamaTokenizer):
395
+ def __init__(self, **kwargs):
396
+ super().__init__(**kwargs)
397
+ self.im_start = "<image>"
398
+ self.im_end = "</image>"
399
+ self.ref_start = "<ref>"
400
+ self.ref_end = "</ref>"
401
+ self.box_start = "<box>"
402
+ self.box_end = "</box>"
403
+ self.quad_start = "<quad>"
404
+ self.quad_end = "</quad>"
405
+ self.point_start = "<point>"
406
+ self.point_end = "</point>"
407
+ self.slice_start = "<slice>"
408
+ self.slice_end = "</slice>"
409
+
410
+ @property
411
+ def eos_id(self):
412
+ return self.sp_model.eos_id()
413
+
414
+ @property
415
+ def bos_id(self):
416
+ return self.sp_model.bos_id()
417
+
418
+ @property
419
+ def unk_id(self):
420
+ return self.sp_model.unk_id()
421
+
422
+ @property
423
+ def im_start_id(self):
424
+ return self._convert_token_to_id(self.im_start)
425
+
426
+ @property
427
+ def im_end_id(self):
428
+ return self._convert_token_to_id(self.im_end)
429
+
430
+
431
+ def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
432
+ items = []
433
+ if isinstance(orig_items[0][key], list):
434
+ assert isinstance(orig_items[0][key][0], torch.Tensor)
435
+ for it in orig_items:
436
+ for tr in it[key]:
437
+ items.append({key: tr})
438
+ else:
439
+ assert isinstance(orig_items[0][key], torch.Tensor)
440
+ items = orig_items
441
+
442
+ batch_size = len(items)
443
+ shape = items[0][key].shape
444
+ dim = len(shape)
445
+ assert dim <= 3
446
+ if max_length is None:
447
+ max_length = 0
448
+ max_length = max(max_length, max(item[key].shape[-1] for item in items))
449
+ min_length = min(item[key].shape[-1] for item in items)
450
+ dtype = items[0][key].dtype
451
+
452
+ if dim == 1:
453
+ return torch.cat([item[key] for item in items], dim=0)
454
+ elif dim == 2:
455
+ if max_length == min_length:
456
+ return torch.cat([item[key] for item in items], dim=0)
457
+ tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
458
+ else:
459
+ tensor = (
460
+ torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
461
+ + padding_value
462
+ )
463
+
464
+ for i, item in enumerate(items):
465
+ if dim == 2:
466
+ if padding_side == "left":
467
+ tensor[i, -len(item[key][0]) :] = item[key][0].clone()
468
+ else:
469
+ tensor[i, : len(item[key][0])] = item[key][0].clone()
470
+ elif dim == 3:
471
+ if padding_side == "left":
472
+ tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
473
+ else:
474
+ tensor[i, : len(item[key][0]), :] = item[key][0].clone()
475
+
476
+ return tensor
477
+
478
+
479
+ def slice_image(
480
+ image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
481
+ ):
482
+ original_size = image.size
483
+ original_width, original_height = original_size
484
+ log_ratio = math.log(original_width / original_height)
485
+ ratio = original_width * original_height / (scale_resolution * scale_resolution)
486
+ multiple = min(math.ceil(ratio), max_slice_nums)
487
+
488
+ source_image = None
489
+ best_grid = None
490
+ patches = []
491
+
492
+ if multiple <= 1 or never_split:
493
+ # dont need to slice, upsample
494
+ best_size = find_best_resize(
495
+ original_size, scale_resolution, patch_size, allow_upscale=True
496
+ )
497
+ source_image = image.resize(best_size, Image.Resampling.BICUBIC)
498
+ else:
499
+ candidate_split_grids_nums = []
500
+ for i in [multiple - 1, multiple, multiple + 1]:
501
+ if i == 1 or i > max_slice_nums:
502
+ continue
503
+ candidate_split_grids_nums.append(i)
504
+
505
+ # source image, down-sampling and ensure divided by patch_size
506
+ best_resize = find_best_resize(original_size, scale_resolution, patch_size)
507
+ source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
508
+ candidate_grids = []
509
+
510
+ # find best grid
511
+ for split_grids_nums in candidate_split_grids_nums:
512
+ m = 1
513
+ while m <= split_grids_nums:
514
+ if split_grids_nums % m == 0:
515
+ candidate_grids.append([m, split_grids_nums // m])
516
+ m += 1
517
+
518
+ best_grid = [1, 1]
519
+ min_error = float("inf")
520
+ for grid in candidate_grids:
521
+ error = abs(log_ratio - math.log(grid[0] / grid[1]))
522
+ if error < min_error:
523
+ best_grid = grid
524
+ min_error = error
525
+
526
+ refine_size = get_refine_size(
527
+ original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
528
+ )
529
+
530
+ refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
531
+ patches = split_to_patches(refine_image, best_grid)
532
+
533
+ return source_image, patches, best_grid
534
+
535
+
536
+ def ensure_divide(length, patch_size):
537
+ return max(round(length / patch_size) * patch_size, patch_size)
538
+
539
+
540
+ def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
541
+ width, height = original_size
542
+ if (width * height > scale_resolution * scale_resolution) or allow_upscale:
543
+ r = width / height
544
+ height = int(scale_resolution / math.sqrt(r))
545
+ width = int(height * r)
546
+ best_width = ensure_divide(width, patch_size)
547
+ best_height = ensure_divide(height, patch_size)
548
+ return (best_width, best_height)
549
+
550
+
551
+ def get_refine_size(
552
+ original_size, grid, scale_resolution, patch_size, allow_upscale=False
553
+ ):
554
+ width, height = original_size
555
+ grid_x, grid_y = grid
556
+
557
+ refine_width = ensure_divide(width, grid_x)
558
+ refine_height = ensure_divide(height, grid_y)
559
+
560
+ grid_width = refine_width / grid_x
561
+ grid_height = refine_height / grid_y
562
+
563
+ best_grid_size = find_best_resize(
564
+ (grid_width, grid_height),
565
+ scale_resolution,
566
+ patch_size,
567
+ allow_upscale=allow_upscale,
568
+ )
569
+
570
+ refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
571
+
572
+ return refine_size
573
+
574
+
575
+ def split_to_patches(image, grid):
576
+ patches = []
577
+ width, height = image.size
578
+ grid_x = int(width / grid[0])
579
+ grid_y = int(height / grid[1])
580
+
581
+ for i in range(0, height, grid_y):
582
+ images = []
583
+ for j in range(0, width, grid_x):
584
+ box = (j, i, j + grid_x, i + grid_y)
585
+ patch = image.crop(box)
586
+ images.append(patch)
587
+ patches.append(images)
588
+
589
+ return patches
590
+
591
+
592
+ def get_grid_placeholder(tokenizer, grid, query_num):
593
+ image_placeholder = (
594
+ tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
595
+ )
596
+
597
+ cols = grid[0]
598
+ rows = grid[1]
599
+ slices = []
600
+ for i in range(rows):
601
+ lines = []
602
+ for j in range(cols):
603
+ lines.append(image_placeholder)
604
+ slices.append("".join(lines))
605
+ slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
606
+ return slice_placeholder
resampler.py ADDED
@@ -0,0 +1,825 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from collections import OrderedDict
7
+ import math
8
+ import requests
9
+ from io import BytesIO
10
+ from functools import partial
11
+ from PIL import Image
12
+ from typing import Callable, Optional, Sequence, Tuple, List, Union
13
+ import numpy as np
14
+
15
+ import torch
16
+ from torch import nn
17
+ from torch.nn import functional as F
18
+ from torch.nn.init import trunc_normal_
19
+ from torchvision import transforms
20
+ from torchvision.transforms import InterpolationMode
21
+
22
+ from functools import partial
23
+ import numpy as np
24
+ import warnings
25
+ from typing import Optional, Tuple
26
+ import torch
27
+ from torch import nn
28
+ from torch import Tensor
29
+ import torch.nn.functional as F
30
+ from torch.nn.functional import *
31
+ from torch.nn.modules.activation import *
32
+ from torch.nn.init import trunc_normal_
33
+ from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
34
+ from transformers import PreTrainedModel
35
+ from transformers.integrations import is_deepspeed_zero3_enabled
36
+ def get_abs_pos(abs_pos, tgt_size):
37
+ # abs_pos: L, C
38
+ # tgt_size: (H, W)
39
+ # return: M, C
40
+ src_size = int(math.sqrt(abs_pos.size(0)))
41
+ # tgt_size = int(math.sqrt(tgt_size))
42
+ dtype = abs_pos.dtype
43
+
44
+ return F.interpolate(
45
+ abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
46
+ size=(tgt_size[0], tgt_size[1]),
47
+ mode="bicubic",
48
+ align_corners=False,
49
+ ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
50
+
51
+
52
+ # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
53
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
54
+ """
55
+ grid_size: int of the grid height and width
56
+ return:
57
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
58
+ """
59
+ if isinstance(grid_size, int):
60
+ grid_h_size, grid_w_size = grid_size, grid_size
61
+ else:
62
+ grid_h_size, grid_w_size = grid_size[0], grid_size[1]
63
+
64
+ grid_h = np.arange(grid_h_size, dtype=np.float32)
65
+ grid_w = np.arange(grid_w_size, dtype=np.float32)
66
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
67
+ grid = np.stack(grid, axis=0)
68
+
69
+ grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
70
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
71
+ if cls_token:
72
+ pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
73
+ return pos_embed
74
+
75
+
76
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
77
+ assert embed_dim % 2 == 0
78
+
79
+ # use half of dimensions to encode grid_h
80
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
81
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
82
+
83
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
84
+ return emb
85
+
86
+
87
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
88
+ """
89
+ embed_dim: output dimension for each position
90
+ pos: a list of positions to be encoded: size (M,)
91
+ out: (M, D)
92
+ """
93
+ assert embed_dim % 2 == 0
94
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
95
+ omega /= embed_dim / 2.
96
+ omega = 1. / 10000 ** omega # (D/2,)
97
+
98
+ pos = pos.reshape(-1) # (M,)
99
+ out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
100
+
101
+ emb_sin = np.sin(out) # (M, D/2)
102
+ emb_cos = np.cos(out) # (M, D/2)
103
+
104
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
105
+ return emb
106
+
107
+
108
+ class Resampler(nn.Module):
109
+ """
110
+ A 2D perceiver-resampler network with one cross attention layers by
111
+ (grid_size**2) learnable queries and 2d sincos pos_emb
112
+ Outputs:
113
+ A tensor with the shape of (grid_size**2, embed_dim)
114
+ """
115
+
116
+ def __init__(
117
+ self,
118
+ grid_size,
119
+ embed_dim,
120
+ num_heads,
121
+ kv_dim=None,
122
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
123
+ adaptive=False
124
+ ):
125
+ super().__init__()
126
+ self.num_queries = grid_size ** 2
127
+ self.embed_dim = embed_dim
128
+ self.num_heads = num_heads
129
+ self.adaptive = adaptive
130
+
131
+ self.pos_embed = nn.Parameter(
132
+ torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float()
133
+ ).requires_grad_(False)
134
+ self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
135
+
136
+ if kv_dim is not None and kv_dim != embed_dim:
137
+ self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
138
+ else:
139
+ self.kv_proj = nn.Identity()
140
+
141
+ self.attn = MultiheadAttention(embed_dim, num_heads)
142
+ self.ln_q = norm_layer(embed_dim)
143
+ self.ln_kv = norm_layer(embed_dim)
144
+
145
+ self.ln_post = norm_layer(embed_dim)
146
+ self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
147
+
148
+ def _init_weights(self, m):
149
+ if isinstance(m, nn.Linear):
150
+ trunc_normal_(m.weight, std=.02)
151
+ if isinstance(m, nn.Linear) and m.bias is not None:
152
+ nn.init.constant_(m.bias, 0)
153
+ elif isinstance(m, nn.LayerNorm):
154
+ nn.init.constant_(m.bias, 0)
155
+ nn.init.constant_(m.weight, 1.0)
156
+
157
+ def forward(self, x, tgt_size=None, attn_mask=None):
158
+ if self.adaptive:
159
+ pos_embed = torch.Tensor(get_2d_sincos_pos_embed(self.embed_dim, tgt_size)).float().to(device=x.device, dtype=x.dtype)
160
+ else:
161
+ pos_embed = get_abs_pos(self.pos_embed, tgt_size)
162
+
163
+ x = self.kv_proj(x)
164
+ x = self.ln_kv(x).permute(1, 0, 2)
165
+
166
+ N = x.shape[1]
167
+ q = self.ln_q(self.query)
168
+
169
+ out = self.attn(
170
+ self._repeat(q, N) + self.pos_embed.unsqueeze(1),
171
+ x + pos_embed.unsqueeze(1),
172
+ x,
173
+ attn_mask=attn_mask)[0]
174
+ x = out.permute(1, 0, 2)
175
+ x = self.ln_post(x)
176
+ x = x @ self.proj
177
+ return x
178
+
179
+ def _repeat(self, query, N: int):
180
+ return query.unsqueeze(1).repeat(1, N, 1)
181
+
182
+
183
+
184
+ class MultiheadAttention(nn.MultiheadAttention):
185
+ def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False,
186
+ add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):
187
+ super().__init__(embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype)
188
+
189
+ # rewrite out_proj layer,with nn.Linear
190
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias,)
191
+
192
+ def forward(
193
+ self,
194
+ query: Tensor,
195
+ key: Tensor,
196
+ value: Tensor,
197
+ key_padding_mask: Optional[Tensor] = None,
198
+ need_weights: bool = True,
199
+ attn_mask: Optional[Tensor] = None,
200
+ average_attn_weights: bool = True,
201
+ is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
202
+ why_not_fast_path = ''
203
+ if ((attn_mask is not None and torch.is_floating_point(attn_mask))
204
+ or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
205
+ why_not_fast_path = "floating-point masks are not supported for fast path."
206
+
207
+ is_batched = query.dim() == 3
208
+
209
+ key_padding_mask = F._canonical_mask(
210
+ mask=key_padding_mask,
211
+ mask_name="key_padding_mask",
212
+ other_type=F._none_or_dtype(attn_mask),
213
+ other_name="attn_mask",
214
+ target_type=query.dtype
215
+ )
216
+ # _canonical_mask
217
+ attn_mask = F._canonical_mask(
218
+ mask=attn_mask,
219
+ mask_name="attn_mask",
220
+ other_type=None,
221
+ other_name="",
222
+ target_type=query.dtype,
223
+ check_other=False,
224
+ )
225
+
226
+
227
+ if not is_batched:
228
+ why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
229
+ elif query is not key or key is not value:
230
+ # When lifting this restriction, don't forget to either
231
+ # enforce that the dtypes all match or test cases where
232
+ # they don't!
233
+ why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
234
+ elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
235
+ why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
236
+ elif self.in_proj_weight is None:
237
+ why_not_fast_path = "in_proj_weight was None"
238
+ elif query.dtype != self.in_proj_weight.dtype:
239
+ # this case will fail anyway, but at least they'll get a useful error message.
240
+ why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
241
+ elif self.training:
242
+ why_not_fast_path = "training is enabled"
243
+ elif (self.num_heads % 2) != 0:
244
+ why_not_fast_path = "self.num_heads is not even"
245
+ elif not self.batch_first:
246
+ why_not_fast_path = "batch_first was not True"
247
+ elif self.bias_k is not None:
248
+ why_not_fast_path = "self.bias_k was not None"
249
+ elif self.bias_v is not None:
250
+ why_not_fast_path = "self.bias_v was not None"
251
+ elif self.add_zero_attn:
252
+ why_not_fast_path = "add_zero_attn was enabled"
253
+ elif not self._qkv_same_embed_dim:
254
+ why_not_fast_path = "_qkv_same_embed_dim was not True"
255
+ elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
256
+ why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
257
+ is not supported with NestedTensor input"
258
+ elif torch.is_autocast_enabled():
259
+ why_not_fast_path = "autocast is enabled"
260
+
261
+ if not why_not_fast_path:
262
+ tensor_args = (
263
+ query,
264
+ key,
265
+ value,
266
+ self.in_proj_weight,
267
+ self.in_proj_bias,
268
+ self.out_proj.weight,
269
+ self.out_proj.bias,
270
+ )
271
+ # We have to use list comprehensions below because TorchScript does not support
272
+ # generator expressions.
273
+ if torch.overrides.has_torch_function(tensor_args):
274
+ why_not_fast_path = "some Tensor argument has_torch_function"
275
+ elif _is_make_fx_tracing():
276
+ why_not_fast_path = "we are running make_fx tracing"
277
+ elif not all(_check_arg_device(x) for x in tensor_args):
278
+ why_not_fast_path = ("some Tensor argument's device is neither one of "
279
+ f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
280
+ elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
281
+ why_not_fast_path = ("grad is enabled and at least one of query or the "
282
+ "input/output projection weights or biases requires_grad")
283
+ if not why_not_fast_path:
284
+ merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
285
+
286
+ if self.in_proj_bias is not None and self.in_proj_weight is not None:
287
+ return torch._native_multi_head_attention(
288
+ query,
289
+ key,
290
+ value,
291
+ self.embed_dim,
292
+ self.num_heads,
293
+ self.in_proj_weight,
294
+ self.in_proj_bias,
295
+ self.out_proj.weight,
296
+ self.out_proj.bias,
297
+ merged_mask,
298
+ need_weights,
299
+ average_attn_weights,
300
+ mask_type)
301
+
302
+ any_nested = query.is_nested or key.is_nested or value.is_nested
303
+ assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
304
+ f"The fast path was not hit because {why_not_fast_path}")
305
+
306
+ if self.batch_first and is_batched:
307
+ # make sure that the transpose op does not affect the "is" property
308
+ if key is value:
309
+ if query is key:
310
+ query = key = value = query.transpose(1, 0)
311
+ else:
312
+ query, key = (x.transpose(1, 0) for x in (query, key))
313
+ value = key
314
+ else:
315
+ query, key, value = (x.transpose(1, 0) for x in (query, key, value))
316
+
317
+ if not self._qkv_same_embed_dim:
318
+ attn_output, attn_output_weights = self.multi_head_attention_forward(
319
+ query, key, value, self.embed_dim, self.num_heads,
320
+ self.in_proj_weight, self.in_proj_bias,
321
+ self.bias_k, self.bias_v, self.add_zero_attn,
322
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
323
+ training=self.training,
324
+ key_padding_mask=key_padding_mask, need_weights=need_weights,
325
+ attn_mask=attn_mask,
326
+ use_separate_proj_weight=True,
327
+ q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
328
+ v_proj_weight=self.v_proj_weight,
329
+ average_attn_weights=average_attn_weights,
330
+ is_causal=is_causal)
331
+ else:
332
+ attn_output, attn_output_weights = self.multi_head_attention_forward(
333
+ query, key, value, self.embed_dim, self.num_heads,
334
+ self.in_proj_weight, self.in_proj_bias,
335
+ self.bias_k, self.bias_v, self.add_zero_attn,
336
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
337
+ training=self.training,
338
+ key_padding_mask=key_padding_mask,
339
+ need_weights=need_weights,
340
+ attn_mask=attn_mask,
341
+ average_attn_weights=average_attn_weights,
342
+ is_causal=is_causal)
343
+ if self.batch_first and is_batched:
344
+ return attn_output.transpose(1, 0), attn_output_weights
345
+ else:
346
+ return attn_output, attn_output_weights
347
+
348
+ def multi_head_attention_forward(
349
+ self,
350
+ query: Tensor,
351
+ key: Tensor,
352
+ value: Tensor,
353
+ embed_dim_to_check: int,
354
+ num_heads: int,
355
+ in_proj_weight: Optional[Tensor],
356
+ in_proj_bias: Optional[Tensor],
357
+ bias_k: Optional[Tensor],
358
+ bias_v: Optional[Tensor],
359
+ add_zero_attn: bool,
360
+ dropout_p: float,
361
+ out_proj_weight: Tensor,
362
+ out_proj_bias: Optional[Tensor],
363
+ training: bool = True,
364
+ key_padding_mask: Optional[Tensor] = None,
365
+ need_weights: bool = True,
366
+ attn_mask: Optional[Tensor] = None,
367
+ use_separate_proj_weight: bool = False,
368
+ q_proj_weight: Optional[Tensor] = None,
369
+ k_proj_weight: Optional[Tensor] = None,
370
+ v_proj_weight: Optional[Tensor] = None,
371
+ static_k: Optional[Tensor] = None,
372
+ static_v: Optional[Tensor] = None,
373
+ average_attn_weights: bool = True,
374
+ is_causal: bool = False,
375
+ ) -> Tuple[Tensor, Optional[Tensor]]:
376
+ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
377
+ if has_torch_function(tens_ops):
378
+ return handle_torch_function(
379
+ multi_head_attention_forward,
380
+ tens_ops,
381
+ query,
382
+ key,
383
+ value,
384
+ embed_dim_to_check,
385
+ num_heads,
386
+ in_proj_weight,
387
+ in_proj_bias,
388
+ bias_k,
389
+ bias_v,
390
+ add_zero_attn,
391
+ dropout_p,
392
+ out_proj_weight,
393
+ out_proj_bias,
394
+ training=training,
395
+ key_padding_mask=key_padding_mask,
396
+ need_weights=need_weights,
397
+ attn_mask=attn_mask,
398
+ is_causal=is_causal,
399
+ use_separate_proj_weight=use_separate_proj_weight,
400
+ q_proj_weight=q_proj_weight,
401
+ k_proj_weight=k_proj_weight,
402
+ v_proj_weight=v_proj_weight,
403
+ static_k=static_k,
404
+ static_v=static_v,
405
+ average_attn_weights=average_attn_weights,
406
+ )
407
+
408
+ is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
409
+
410
+ # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
411
+ # is batched, run the computation and before returning squeeze the
412
+ # batch dimension so that the output doesn't carry this temporary batch dimension.
413
+ if not is_batched:
414
+ # unsqueeze if the input is unbatched
415
+ query = query.unsqueeze(1)
416
+ key = key.unsqueeze(1)
417
+ value = value.unsqueeze(1)
418
+ if key_padding_mask is not None:
419
+ key_padding_mask = key_padding_mask.unsqueeze(0)
420
+
421
+ # set up shape vars
422
+ tgt_len, bsz, embed_dim = query.shape
423
+ src_len, _, _ = key.shape
424
+
425
+ key_padding_mask = _canonical_mask(
426
+ mask=key_padding_mask,
427
+ mask_name="key_padding_mask",
428
+ other_type=_none_or_dtype(attn_mask),
429
+ other_name="attn_mask",
430
+ target_type=query.dtype
431
+ )
432
+
433
+ if is_causal and attn_mask is None:
434
+ raise RuntimeError(
435
+ "Need attn_mask if specifying the is_causal hint. "
436
+ "You may use the Transformer module method "
437
+ "`generate_square_subsequent_mask` to create this mask."
438
+ )
439
+
440
+ if is_causal and key_padding_mask is None and not need_weights:
441
+ # when we have a kpm or need weights, we need attn_mask
442
+ # Otherwise, we use the is_causal hint go as is_causal
443
+ # indicator to SDPA.
444
+ attn_mask = None
445
+ else:
446
+ attn_mask = _canonical_mask(
447
+ mask=attn_mask,
448
+ mask_name="attn_mask",
449
+ other_type=None,
450
+ other_name="",
451
+ target_type=query.dtype,
452
+ check_other=False,
453
+ )
454
+
455
+ if key_padding_mask is not None:
456
+ # We have the attn_mask, and use that to merge kpm into it.
457
+ # Turn off use of is_causal hint, as the merged mask is no
458
+ # longer causal.
459
+ is_causal = False
460
+
461
+ assert embed_dim == embed_dim_to_check, \
462
+ f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
463
+ if isinstance(embed_dim, torch.Tensor):
464
+ # embed_dim can be a tensor when JIT tracing
465
+ head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
466
+ else:
467
+ head_dim = embed_dim // num_heads
468
+ assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
469
+ if use_separate_proj_weight:
470
+ # allow MHA to have different embedding dimensions when separate projection weights are used
471
+ assert key.shape[:2] == value.shape[:2], \
472
+ f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
473
+ else:
474
+ assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
475
+
476
+ #
477
+ # compute in-projection
478
+ #
479
+
480
+ if not use_separate_proj_weight:
481
+ assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
482
+ q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
483
+ else:
484
+ assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
485
+ assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
486
+ assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
487
+ if in_proj_bias is None:
488
+ b_q = b_k = b_v = None
489
+ else:
490
+ b_q, b_k, b_v = in_proj_bias.chunk(3)
491
+ q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
492
+
493
+ # prep attention mask
494
+
495
+ if attn_mask is not None:
496
+ # ensure attn_mask's dim is 3
497
+ if attn_mask.dim() == 2:
498
+ correct_2d_size = (tgt_len, src_len)
499
+ if attn_mask.shape != correct_2d_size:
500
+ raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
501
+ attn_mask = attn_mask.unsqueeze(0)
502
+ elif attn_mask.dim() == 3:
503
+ correct_3d_size = (bsz * num_heads, tgt_len, src_len)
504
+ if attn_mask.shape != correct_3d_size:
505
+ raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
506
+ else:
507
+ raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
508
+
509
+ # add bias along batch dimension (currently second)
510
+ if bias_k is not None and bias_v is not None:
511
+ assert static_k is None, "bias cannot be added to static key."
512
+ assert static_v is None, "bias cannot be added to static value."
513
+ k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
514
+ v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
515
+ if attn_mask is not None:
516
+ attn_mask = pad(attn_mask, (0, 1))
517
+ if key_padding_mask is not None:
518
+ key_padding_mask = pad(key_padding_mask, (0, 1))
519
+ else:
520
+ assert bias_k is None
521
+ assert bias_v is None
522
+
523
+ #
524
+ # reshape q, k, v for multihead attention and make em batch first
525
+ #
526
+ q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
527
+ if static_k is None:
528
+ k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
529
+ else:
530
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
531
+ assert static_k.size(0) == bsz * num_heads, \
532
+ f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
533
+ assert static_k.size(2) == head_dim, \
534
+ f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
535
+ k = static_k
536
+ if static_v is None:
537
+ v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
538
+ else:
539
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
540
+ assert static_v.size(0) == bsz * num_heads, \
541
+ f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
542
+ assert static_v.size(2) == head_dim, \
543
+ f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
544
+ v = static_v
545
+
546
+ # add zero attention along batch dimension (now first)
547
+ if add_zero_attn:
548
+ zero_attn_shape = (bsz * num_heads, 1, head_dim)
549
+ k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
550
+ v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
551
+ if attn_mask is not None:
552
+ attn_mask = pad(attn_mask, (0, 1))
553
+ if key_padding_mask is not None:
554
+ key_padding_mask = pad(key_padding_mask, (0, 1))
555
+
556
+ # update source sequence length after adjustments
557
+ src_len = k.size(1)
558
+
559
+ # merge key padding and attention masks
560
+ if key_padding_mask is not None:
561
+ assert key_padding_mask.shape == (bsz, src_len), \
562
+ f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
563
+ key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
564
+ expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
565
+ if attn_mask is None:
566
+ attn_mask = key_padding_mask
567
+ else:
568
+ attn_mask = attn_mask + key_padding_mask
569
+
570
+ # adjust dropout probability
571
+ if not training:
572
+ dropout_p = 0.0
573
+
574
+ #
575
+ # (deep breath) calculate attention and out projection
576
+ #
577
+
578
+ if need_weights:
579
+ B, Nt, E = q.shape
580
+ q_scaled = q / math.sqrt(E)
581
+
582
+ assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
583
+
584
+ if attn_mask is not None:
585
+ attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
586
+ else:
587
+ attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
588
+ attn_output_weights = softmax(attn_output_weights, dim=-1)
589
+ if dropout_p > 0.0:
590
+ attn_output_weights = dropout(attn_output_weights, p=dropout_p)
591
+
592
+ attn_output = torch.bmm(attn_output_weights, v)
593
+
594
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
595
+ attn_output = self.out_proj(attn_output)
596
+
597
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
598
+
599
+ # optionally average attention weights over heads
600
+ attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
601
+ if average_attn_weights:
602
+ attn_output_weights = attn_output_weights.mean(dim=1)
603
+
604
+ if not is_batched:
605
+ # squeeze the output if input was unbatched
606
+ attn_output = attn_output.squeeze(1)
607
+ attn_output_weights = attn_output_weights.squeeze(0)
608
+ return attn_output, attn_output_weights
609
+ else:
610
+ # attn_mask can be either (L,S) or (N*num_heads, L, S)
611
+ # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
612
+ # in order to match the input for SDPA of (N, num_heads, L, S)
613
+ if attn_mask is not None:
614
+ if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
615
+ attn_mask = attn_mask.unsqueeze(0)
616
+ else:
617
+ attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
618
+
619
+ q = q.view(bsz, num_heads, tgt_len, head_dim)
620
+ k = k.view(bsz, num_heads, src_len, head_dim)
621
+ v = v.view(bsz, num_heads, src_len, head_dim)
622
+
623
+ attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
624
+ attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
625
+
626
+ attn_output = self.out_proj(attn_output)
627
+
628
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
629
+ if not is_batched:
630
+ # squeeze the output if input was unbatched
631
+ attn_output = attn_output.squeeze(1)
632
+ return attn_output, None
633
+
634
+
635
+ def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,
636
+ key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
637
+ # Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
638
+ # and returns if the input is batched or not.
639
+ # Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
640
+
641
+ # Shape check.
642
+ if query.dim() == 3:
643
+ # Batched Inputs
644
+ is_batched = True
645
+ assert key.dim() == 3 and value.dim() == 3, \
646
+ ("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
647
+ f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
648
+ if key_padding_mask is not None:
649
+ assert key_padding_mask.dim() == 2, \
650
+ ("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
651
+ f" but found {key_padding_mask.dim()}-D tensor instead")
652
+ if attn_mask is not None:
653
+ assert attn_mask.dim() in (2, 3), \
654
+ ("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
655
+ f" but found {attn_mask.dim()}-D tensor instead")
656
+ elif query.dim() == 2:
657
+ # Unbatched Inputs
658
+ is_batched = False
659
+ assert key.dim() == 2 and value.dim() == 2, \
660
+ ("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
661
+ f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
662
+
663
+ if key_padding_mask is not None:
664
+ assert key_padding_mask.dim() == 1, \
665
+ ("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
666
+ f" but found {key_padding_mask.dim()}-D tensor instead")
667
+
668
+ if attn_mask is not None:
669
+ assert attn_mask.dim() in (2, 3), \
670
+ ("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
671
+ f" but found {attn_mask.dim()}-D tensor instead")
672
+ if attn_mask.dim() == 3:
673
+ expected_shape = (num_heads, query.shape[0], key.shape[0])
674
+ assert attn_mask.shape == expected_shape, \
675
+ (f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
676
+ else:
677
+ raise AssertionError(
678
+ f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
679
+
680
+ return is_batched
681
+
682
+
683
+ def _canonical_mask(
684
+ mask: Optional[Tensor],
685
+ mask_name: str,
686
+ other_type: Optional[DType],
687
+ other_name: str,
688
+ target_type: DType,
689
+ check_other: bool = True,
690
+ ) -> Optional[Tensor]:
691
+
692
+ if mask is not None:
693
+ _mask_dtype = mask.dtype
694
+ _mask_is_float = torch.is_floating_point(mask)
695
+ if _mask_dtype != torch.bool and not _mask_is_float:
696
+ raise AssertionError(
697
+ f"only bool and floating types of {mask_name} are supported")
698
+ if check_other and other_type is not None:
699
+ if _mask_dtype != other_type:
700
+ warnings.warn(
701
+ f"Support for mismatched {mask_name} and {other_name} "
702
+ "is deprecated. Use same type for both instead."
703
+ )
704
+ if not _mask_is_float:
705
+ mask = (
706
+ torch.zeros_like(mask, dtype=target_type)
707
+ .masked_fill_(mask, float("-inf"))
708
+ )
709
+ return mask
710
+
711
+
712
+ def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
713
+ if input is None:
714
+ return None
715
+ elif isinstance(input, torch.Tensor):
716
+ return input.dtype
717
+ raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
718
+
719
+ def _in_projection_packed(
720
+ q: Tensor,
721
+ k: Tensor,
722
+ v: Tensor,
723
+ w: Tensor,
724
+ b: Optional[Tensor] = None,
725
+ ) -> List[Tensor]:
726
+ r"""
727
+ Performs the in-projection step of the attention operation, using packed weights.
728
+ Output is a triple containing projection tensors for query, key and value.
729
+ Args:
730
+ q, k, v: query, key and value tensors to be projected. For self-attention,
731
+ these are typically the same tensor; for encoder-decoder attention,
732
+ k and v are typically the same tensor. (We take advantage of these
733
+ identities for performance if they are present.) Regardless, q, k and v
734
+ must share a common embedding dimension; otherwise their shapes may vary.
735
+ w: projection weights for q, k and v, packed into a single tensor. Weights
736
+ are packed along dimension 0, in q, k, v order.
737
+ b: optional projection biases for q, k and v, packed into a single tensor
738
+ in q, k, v order.
739
+ Shape:
740
+ Inputs:
741
+ - q: :math:`(..., E)` where E is the embedding dimension
742
+ - k: :math:`(..., E)` where E is the embedding dimension
743
+ - v: :math:`(..., E)` where E is the embedding dimension
744
+ - w: :math:`(E * 3, E)` where E is the embedding dimension
745
+ - b: :math:`E * 3` where E is the embedding dimension
746
+ Output:
747
+ - in output list :math:`[q', k', v']`, each output tensor will have the
748
+ same shape as the corresponding input tensor.
749
+ """
750
+ E = q.size(-1)
751
+ if k is v:
752
+ if q is k:
753
+ # self-attention
754
+ proj = linear(q, w, b)
755
+ # reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
756
+ proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
757
+ return proj[0], proj[1], proj[2]
758
+ else:
759
+ # encoder-decoder attention
760
+ w_q, w_kv = w.split([E, E * 2])
761
+ if b is None:
762
+ b_q = b_kv = None
763
+ else:
764
+ b_q, b_kv = b.split([E, E * 2])
765
+ q_proj = linear(q, w_q, b_q)
766
+ kv_proj = linear(k, w_kv, b_kv)
767
+ # reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
768
+ kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
769
+ return (q_proj, kv_proj[0], kv_proj[1])
770
+ else:
771
+ w_q, w_k, w_v = w.chunk(3)
772
+ if b is None:
773
+ b_q = b_k = b_v = None
774
+ else:
775
+ b_q, b_k, b_v = b.chunk(3)
776
+ return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
777
+
778
+
779
+ def _in_projection(
780
+ q: Tensor,
781
+ k: Tensor,
782
+ v: Tensor,
783
+ w_q: Tensor,
784
+ w_k: Tensor,
785
+ w_v: Tensor,
786
+ b_q: Optional[Tensor] = None,
787
+ b_k: Optional[Tensor] = None,
788
+ b_v: Optional[Tensor] = None,
789
+ ) -> Tuple[Tensor, Tensor, Tensor]:
790
+ r"""
791
+ Performs the in-projection step of the attention operation. This is simply
792
+ a triple of linear projections, with shape constraints on the weights which
793
+ ensure embedding dimension uniformity in the projected outputs.
794
+ Output is a triple containing projection tensors for query, key and value.
795
+ Args:
796
+ q, k, v: query, key and value tensors to be projected.
797
+ w_q, w_k, w_v: weights for q, k and v, respectively.
798
+ b_q, b_k, b_v: optional biases for q, k and v, respectively.
799
+ Shape:
800
+ Inputs:
801
+ - q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
802
+ number of leading dimensions.
803
+ - k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
804
+ number of leading dimensions.
805
+ - v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
806
+ number of leading dimensions.
807
+ - w_q: :math:`(Eq, Eq)`
808
+ - w_k: :math:`(Eq, Ek)`
809
+ - w_v: :math:`(Eq, Ev)`
810
+ - b_q: :math:`(Eq)`
811
+ - b_k: :math:`(Eq)`
812
+ - b_v: :math:`(Eq)`
813
+ Output: in output triple :math:`(q', k', v')`,
814
+ - q': :math:`[Qdims..., Eq]`
815
+ - k': :math:`[Kdims..., Eq]`
816
+ - v': :math:`[Vdims..., Eq]`
817
+ """
818
+ Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
819
+ assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
820
+ assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
821
+ assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
822
+ assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
823
+ assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
824
+ assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
825
+ return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
special_tokens_map.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<image>",
4
+ "</image>",
5
+ "<ref>",
6
+ "</ref>",
7
+ "<box>",
8
+ "</box>",
9
+ "<quad>",
10
+ "</quad>",
11
+ "<point>",
12
+ "</point>",
13
+ "<slice>",
14
+ "</slice>"
15
+ ],
16
+ "bos_token": {
17
+ "content": "<s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "eos_token": {
24
+ "content": "</s>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": "<unk>",
31
+ "unk_token": {
32
+ "content": "<unk>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ }
38
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "101": {
30
+ "content": "<image>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "102": {
38
+ "content": "</image>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "103": {
46
+ "content": "<ref>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "104": {
54
+ "content": "</ref>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "105": {
62
+ "content": "<box>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "106": {
70
+ "content": "</box>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "107": {
78
+ "content": "<quad>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "108": {
86
+ "content": "</quad>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "109": {
94
+ "content": "<point>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "110": {
102
+ "content": "</point>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "111": {
110
+ "content": "<slice>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "112": {
118
+ "content": "</slice>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ }
125
+ },
126
+ "additional_special_tokens": [
127
+ "<image>",
128
+ "</image>",
129
+ "<ref>",
130
+ "</ref>",
131
+ "<box>",
132
+ "</box>",
133
+ "<quad>",
134
+ "</quad>",
135
+ "<point>",
136
+ "</point>",
137
+ "<slice>",
138
+ "</slice>"
139
+ ],
140
+ "auto_map": {
141
+ "AutoTokenizer": [
142
+ "modeling_minicpmv.LlamaTokenizerWrapper",
143
+ null
144
+ ]
145
+ },
146
+ "bos_token": "<s>",
147
+ "clean_up_tokenization_spaces": false,
148
+ "eos_token": "</s>",
149
+ "legacy": true,
150
+ "model_max_length": 1000000000000000019884624838656,
151
+ "pad_token": "<unk>",
152
+ "padding_side": "right",
153
+ "sp_model_kwargs": {},
154
+ "spaces_between_special_tokens": false,
155
+ "tokenizer_class": "LlamaTokenizerWrapper",
156
+ "truncation_side": "right",
157
+ "unk_token": "<unk>",
158
+ "use_default_system_prompt": false
159
+ }