LYQ
commited on
Commit
·
955a3ad
1
Parent(s):
0c3082f
init
Browse files- .gitattributes +4 -0
- 123/README.md +0 -3
- README.md +159 -3
- assets/english_menu.gif +3 -0
- assets/london_car.gif +3 -0
- assets/minicpmv-2-benchmark.png +3 -0
- assets/minicpmv-2-peformance2.png +3 -0
- assets/station.gif +3 -0
- config.json +45 -0
- configuration.json +1 -0
- configuration_minicpm.py +232 -0
- generation_config.json +6 -0
- model.safetensors.index.json +701 -0
- modeling_minicpm.py +1697 -0
- modeling_minicpmv.py +606 -0
- resampler.py +825 -0
- special_tokens_map.json +38 -0
- tokenizer_config.json +159 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets/minicpmv2-cases_2.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
123/README.md
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,3 +1,159 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
[GitHub](https://github.com/OpenBMB/MiniCPM-V) | [Demo](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)
|
3 |
+
|
4 |
+
## News <!-- omit in toc -->
|
5 |
+
|
6 |
+
* [2024.04.23] MiniCPM-V 2.0 supports [vLLM](#vllm) now!
|
7 |
+
* [2024.04.18] We create a HuggingFace Space to host the demo of MiniCPM-V 2.0 at [here](https://huggingface.co/spaces/openbmb/MiniCPM-V-2)!
|
8 |
+
* [2024.04.17] MiniCPM-V 2.0 supports deploying [WebUI Demo](https://github.com/OpenBMB/MiniCPM-V/blob/8a1f766b85595a8095651eed9a44a83a965b305b/README_en.md#minicpm-v-) now!
|
9 |
+
* [2024.04.15] MiniCPM-V 2.0 supports [fine-tuning](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) with the SWIFT framework!
|
10 |
+
* [2024.04.12] We open-source MiniCPM-V-2.0, which achieves comparable performance with Gemini Pro in understanding scene text and outperforms strong Qwen-VL-Chat 9.6B and Yi-VL 34B on <a href="https://rank.opencompass.org.cn/leaderboard-multimodal">OpenCompass</a>, a comprehensive evaluation over 11 popular benchmarks. Click <a href="https://openbmb.vercel.app/minicpm-v-2">here</a> to view the MiniCPM-V 2.0 technical blog.
|
11 |
+
|
12 |
+
## MiniCPM-V 2.0
|
13 |
+
**MiniCPM-V 2.8B** is a strong multimodal large language model for efficient end-side deployment. The model is built based on SigLip-400M and [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/), connected by a perceiver resampler. Our latest version, **MiniCPM-V 2.0** has several notable features.
|
14 |
+
|
15 |
+
- 🔥 **State-of-the-art Performance.**
|
16 |
+
|
17 |
+
MiniCPM-V 2.0 achieves **state-of-the-art performance** on multiple benchmarks (including OCRBench, TextVQA, MME, MMB, MathVista, etc) among models under 7B parameters. It even **outperforms strong Qwen-VL-Chat 9.6B, CogVLM-Chat 17.4B, and Yi-VL 34B on OpenCompass, a comprehensive evaluation over 11 popular benchmarks**. Notably, MiniCPM-V 2.0 shows **strong OCR capability**, achieving **comparable performance to Gemini Pro in scene-text understanding**, and **state-of-the-art performance on OCRBench** among open-source models.
|
18 |
+
|
19 |
+
- 🏆 **Trustworthy Behavior.**
|
20 |
+
|
21 |
+
LMMs are known for suffering from hallucination, often generating text not factually grounded in images. MiniCPM-V 2.0 is **the first end-side LMM aligned via multimodal RLHF for trustworthy behavior** (using the recent [RLHF-V](https://rlhf-v.github.io/) [CVPR'24] series technique). This allows the model to **match GPT-4V in preventing hallucinations** on Object HalBench.
|
22 |
+
|
23 |
+
- 🌟 **High-Resolution Images at Any Aspect Raito.**
|
24 |
+
|
25 |
+
MiniCPM-V 2.0 can accept **1.8 million pixels (e.g., 1344x1344) images at any aspect ratio**. This enables better perception of fine-grained visual information such as small objects and optical characters, which is achieved via a recent technique from [LLaVA-UHD](https://arxiv.org/pdf/2403.11703.pdf).
|
26 |
+
|
27 |
+
- ⚡️ **High Efficiency.**
|
28 |
+
|
29 |
+
MiniCPM-V 2.0 can be **efficiently deployed on most GPU cards and personal computers**, and **even on end devices such as mobile phones**. For visual encoding, we compress the image representations into much fewer tokens via a perceiver resampler. This allows MiniCPM-V 2.0 to operate with **favorable memory cost and speed during inference even when dealing with high-resolution images**.
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
- 🙌 **Bilingual Support.**
|
34 |
+
|
35 |
+
MiniCPM-V 2.0 **supports strong bilingual multimodal capabilities in both English and Chinese**. This is enabled by generalizing multimodal capabilities across languages, a technique from [VisCPM](https://arxiv.org/abs/2308.12038) [ICLR'24].
|
36 |
+
|
37 |
+
## Evaluation <!-- omit in toc -->
|
38 |
+
|
39 |
+
<div align="center">
|
40 |
+
<img src=assets/minicpmv-2-peformance2.png width=70% />
|
41 |
+
</div>
|
42 |
+
|
43 |
+
Results on TextVQA, DocVQA, OCRBench, OpenCompass, MME, MMBench, MMMU, MathVista, LLaVA Bench, Object HalBench.
|
44 |
+
<div align="center">
|
45 |
+
<img src=assets/minicpmv-2-benchmark.png />
|
46 |
+
</div>
|
47 |
+
|
48 |
+
|
49 |
+
## Examples <!-- omit in toc -->
|
50 |
+
|
51 |
+
<table align="center">
|
52 |
+
<p align="center">
|
53 |
+
<img src="assets/minicpmv2-cases_2.png" width=95%/>
|
54 |
+
</p>
|
55 |
+
</table>
|
56 |
+
|
57 |
+
We deploy MiniCPM-V 2.0 on end devices. The demo video is the raw screen recording on a Xiaomi 14 Pro without edition.
|
58 |
+
|
59 |
+
<table align="center">
|
60 |
+
<p align="center">
|
61 |
+
<img src="assets/station.gif" width=30% style="display:inline-block;"/>
|
62 |
+
<img src="assets/london_car.gif" width=30% style="display:inline-block;"/>
|
63 |
+
</p>
|
64 |
+
</table>
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
## Demo
|
70 |
+
Click here to try out the Demo of [MiniCPM-V 2.0](https://huggingface.co/spaces/openbmb/MiniCPM-V-2).
|
71 |
+
|
72 |
+
## Deployment on Mobile Phone
|
73 |
+
MiniCPM-V 2.0 can be deployed on mobile phones with Android and Harmony operating systems. 🚀 Try it out [here](https://github.com/OpenBMB/mlc-MiniCPM).
|
74 |
+
|
75 |
+
## Inference with vLLM<a id="vllm"></a>
|
76 |
+
|
77 |
+
<details>
|
78 |
+
<summary>Click to see how to inference with vLLM </summary>
|
79 |
+
Because our pull request to vLLM is still waiting for reviewing, we fork this repository to build and test our vLLM demo. Here are the steps:
|
80 |
+
|
81 |
+
1. Clone our version of vLLM:
|
82 |
+
```shell
|
83 |
+
git clone https://github.com/OpenBMB/vllm.git
|
84 |
+
```
|
85 |
+
2. Install vLLM:
|
86 |
+
```shell
|
87 |
+
cd vllm
|
88 |
+
pip install -e .
|
89 |
+
```
|
90 |
+
3. Install timm:
|
91 |
+
```shell
|
92 |
+
pip install timm=0.9.10
|
93 |
+
```
|
94 |
+
4. Run our demo:
|
95 |
+
```shell
|
96 |
+
python examples/minicpmv_example.py
|
97 |
+
```
|
98 |
+
</details>
|
99 |
+
|
100 |
+
## Usage
|
101 |
+
Inference using Huggingface transformers on Nivdia GPUs or Mac with MPS (Apple silicon or AMD GPUs). Requirements tested on python 3.10:
|
102 |
+
```
|
103 |
+
Pillow==10.1.0
|
104 |
+
timm==0.9.10
|
105 |
+
torch==2.1.2
|
106 |
+
torchvision==0.16.2
|
107 |
+
transformers==4.36.0
|
108 |
+
sentencepiece==0.1.99
|
109 |
+
```
|
110 |
+
|
111 |
+
```python
|
112 |
+
# test.py
|
113 |
+
import torch
|
114 |
+
from PIL import Image
|
115 |
+
from modelscope import AutoModel, AutoTokenizer
|
116 |
+
|
117 |
+
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
118 |
+
# For Nvidia GPUs support BF16 (like A100, H100, RTX3090)
|
119 |
+
model = model.to(device='cuda', dtype=torch.bfloat16)
|
120 |
+
# For Nvidia GPUs do NOT support BF16 (like V100, T4, RTX2080)
|
121 |
+
#model = model.to(device='cuda', dtype=torch.float16)
|
122 |
+
# For Mac with MPS (Apple silicon or AMD GPUs).
|
123 |
+
# Run with `PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py`
|
124 |
+
#model = model.to(device='mps', dtype=torch.float16)
|
125 |
+
|
126 |
+
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)
|
127 |
+
model.eval()
|
128 |
+
|
129 |
+
image = Image.open('xx.jpg').convert('RGB')
|
130 |
+
question = 'What is in the image?'
|
131 |
+
msgs = [{'role': 'user', 'content': question}]
|
132 |
+
|
133 |
+
answer, context, _ = model.chat(
|
134 |
+
image=image,
|
135 |
+
msgs=msgs,
|
136 |
+
context=None,
|
137 |
+
tokenizer=tokenizer,
|
138 |
+
sampling=True,
|
139 |
+
temperature=0.7
|
140 |
+
)
|
141 |
+
print(answer)
|
142 |
+
```
|
143 |
+
|
144 |
+
Please look at [GitHub](https://github.com/OpenBMB/MiniCPM-V) for more detail about usage.
|
145 |
+
|
146 |
+
|
147 |
+
## MiniCPM-V 1.0 <!-- omit in toc -->
|
148 |
+
Please see the info about MiniCPM-V 1.0 [here](https://modelscope.cn/models/OpenBMB/MiniCPM-V/summary).
|
149 |
+
|
150 |
+
## License
|
151 |
+
#### Model License
|
152 |
+
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
153 |
+
* The usage of MiniCPM-V series model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
|
154 |
+
* The models and weights of MiniCPM are completely free for academic research. after filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.
|
155 |
+
|
156 |
+
|
157 |
+
#### Statement
|
158 |
+
* As a LLM, MiniCPM-V 2.0 generates contents by learning a large mount of texts, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-V 2.0 does not represent the views and positions of the model developers
|
159 |
+
* We will not be liable for any problems arising from the use of the MinCPM-V open Source model, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.
|
assets/english_menu.gif
ADDED
![]() |
Git LFS Details
|
assets/london_car.gif
ADDED
![]() |
Git LFS Details
|
assets/minicpmv-2-benchmark.png
ADDED
![]() |
Git LFS Details
|
assets/minicpmv-2-peformance2.png
ADDED
![]() |
Git LFS Details
|
assets/station.gif
ADDED
![]() |
Git LFS Details
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openbmb/MiniCPM-V-2",
|
3 |
+
"architectures": [
|
4 |
+
"MiniCPMV"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_minicpm.MiniCPMVConfig",
|
10 |
+
"AutoModel": "modeling_minicpmv.MiniCPMV",
|
11 |
+
"AutoModelForCausalLM": "modeling_minicpmv.MiniCPMV"
|
12 |
+
},
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"dim_model_base": 256,
|
15 |
+
"drop_vision_last_layer": true,
|
16 |
+
"eos_token_id": 2,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 2304,
|
19 |
+
"image_size": 448,
|
20 |
+
"initializer_range": 0.1,
|
21 |
+
"intermediate_size": 5760,
|
22 |
+
"max_position_embeddings": 4096,
|
23 |
+
"max_slice_nums": 9,
|
24 |
+
"mm_use_im_start_end": true,
|
25 |
+
"model_type": "minicpmv",
|
26 |
+
"num_attention_heads": 36,
|
27 |
+
"num_hidden_layers": 40,
|
28 |
+
"num_key_value_heads": 36,
|
29 |
+
"patch_size": 14,
|
30 |
+
"pretraining_tp": 1,
|
31 |
+
"query_num": 64,
|
32 |
+
"rms_norm_eps": 1e-05,
|
33 |
+
"rope_scaling": null,
|
34 |
+
"rope_theta": 10000.0,
|
35 |
+
"scale_depth": 1.4,
|
36 |
+
"scale_emb": 12,
|
37 |
+
"scale_resolution": 448,
|
38 |
+
"slice_mode": true,
|
39 |
+
"tie_word_embeddings": false,
|
40 |
+
"torch_dtype": "bfloat16",
|
41 |
+
"transformers_version": "4.36.0",
|
42 |
+
"use_cache": true,
|
43 |
+
"vision_encoder": "vit_so400m_patch14_siglip_384.webli",
|
44 |
+
"vocab_size": 122753
|
45 |
+
}
|
configuration.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"framework":"Pytorch","task":"multimodal-dialogue"}
|
configuration_minicpm.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" MiniCPM model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
28 |
+
|
29 |
+
|
30 |
+
class MiniCPMConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the MiniCPM-7B.
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
39 |
+
Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`MiniCPMModel`]
|
41 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
42 |
+
Dimension of the hidden representations.
|
43 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
44 |
+
Dimension of the MLP representations.
|
45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
46 |
+
Number of hidden layers in the Transformer decoder.
|
47 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
49 |
+
num_key_value_heads (`int`, *optional*):
|
50 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
51 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
52 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
53 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
54 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
55 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
56 |
+
`num_attention_heads`.
|
57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
58 |
+
The non-linear activation function (function or string) in the decoder.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
60 |
+
The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
|
61 |
+
MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
pad_token_id (`int`, *optional*):
|
70 |
+
Padding token id.
|
71 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
72 |
+
Beginning of stream token id.
|
73 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
74 |
+
End of stream token id.
|
75 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
76 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
77 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
78 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
79 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
80 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
81 |
+
Whether to tie weight embeddings
|
82 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
83 |
+
The base period of the RoPE embeddings.
|
84 |
+
rope_scaling (`Dict`, *optional*):
|
85 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
86 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
87 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
88 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
89 |
+
these scaling strategies behave:
|
90 |
+
https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
91 |
+
experimental feature, subject to breaking API changes in future versions.
|
92 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
93 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
94 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
95 |
+
The dropout ratio for the attention probabilities.
|
96 |
+
```python
|
97 |
+
>>> from transformers import MiniCPMModel, MiniCPMConfig
|
98 |
+
>>> # Initializing a MiniCPM minicpm-7b style configuration
|
99 |
+
>>> configuration = MiniCPMConfig()
|
100 |
+
>>> # Initializing a model from the minicpm-7b style configuration
|
101 |
+
>>> model = MiniCPMModel(configuration)
|
102 |
+
>>> # Accessing the model configuration
|
103 |
+
>>> configuration = model.config
|
104 |
+
```"""
|
105 |
+
|
106 |
+
model_type = "minicpm"
|
107 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
vocab_size=32000,
|
112 |
+
hidden_size=4096,
|
113 |
+
intermediate_size=11008,
|
114 |
+
num_hidden_layers=32,
|
115 |
+
num_attention_heads=32,
|
116 |
+
num_key_value_heads=None,
|
117 |
+
hidden_act="silu",
|
118 |
+
max_position_embeddings=2048,
|
119 |
+
initializer_range=0.02,
|
120 |
+
rms_norm_eps=1e-6,
|
121 |
+
use_cache=True,
|
122 |
+
pad_token_id=None,
|
123 |
+
bos_token_id=1,
|
124 |
+
eos_token_id=2,
|
125 |
+
pretraining_tp=1,
|
126 |
+
tie_word_embeddings=False,
|
127 |
+
rope_theta=10000.0,
|
128 |
+
rope_scaling=None,
|
129 |
+
attention_bias=False,
|
130 |
+
attention_dropout=0.0,
|
131 |
+
scale_emb=1,
|
132 |
+
dim_model_base=1,
|
133 |
+
scale_depth=1,
|
134 |
+
**kwargs,
|
135 |
+
):
|
136 |
+
self.vocab_size = vocab_size
|
137 |
+
self.max_position_embeddings = max_position_embeddings
|
138 |
+
self.hidden_size = hidden_size
|
139 |
+
self.intermediate_size = intermediate_size
|
140 |
+
self.num_hidden_layers = num_hidden_layers
|
141 |
+
self.num_attention_heads = num_attention_heads
|
142 |
+
|
143 |
+
# for backward compatibility
|
144 |
+
if num_key_value_heads is None:
|
145 |
+
num_key_value_heads = num_attention_heads
|
146 |
+
|
147 |
+
self.num_key_value_heads = num_key_value_heads
|
148 |
+
self.hidden_act = hidden_act
|
149 |
+
self.initializer_range = initializer_range
|
150 |
+
self.rms_norm_eps = rms_norm_eps
|
151 |
+
self.pretraining_tp = pretraining_tp
|
152 |
+
self.use_cache = use_cache
|
153 |
+
self.rope_theta = rope_theta
|
154 |
+
self.rope_scaling = rope_scaling
|
155 |
+
self._rope_scaling_validation()
|
156 |
+
self.attention_bias = attention_bias
|
157 |
+
self.attention_dropout = attention_dropout
|
158 |
+
self.scale_emb = scale_emb
|
159 |
+
self.dim_model_base = dim_model_base
|
160 |
+
self.scale_depth = scale_depth
|
161 |
+
|
162 |
+
super().__init__(
|
163 |
+
pad_token_id=pad_token_id,
|
164 |
+
bos_token_id=bos_token_id,
|
165 |
+
eos_token_id=eos_token_id,
|
166 |
+
tie_word_embeddings=tie_word_embeddings,
|
167 |
+
**kwargs,
|
168 |
+
)
|
169 |
+
|
170 |
+
def _rope_scaling_validation(self):
|
171 |
+
"""
|
172 |
+
Validate the `rope_scaling` configuration.
|
173 |
+
"""
|
174 |
+
if self.rope_scaling is None:
|
175 |
+
return
|
176 |
+
|
177 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
178 |
+
raise ValueError(
|
179 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
180 |
+
f"got {self.rope_scaling}"
|
181 |
+
)
|
182 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
183 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
184 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
185 |
+
raise ValueError(
|
186 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
187 |
+
)
|
188 |
+
if (
|
189 |
+
rope_scaling_factor is None
|
190 |
+
or not isinstance(rope_scaling_factor, float)
|
191 |
+
or rope_scaling_factor <= 1.0
|
192 |
+
):
|
193 |
+
raise ValueError(
|
194 |
+
f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}"
|
195 |
+
)
|
196 |
+
|
197 |
+
|
198 |
+
class MiniCPMVConfig(MiniCPMConfig):
|
199 |
+
model_type = "minicpmv"
|
200 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
201 |
+
|
202 |
+
def __init__(
|
203 |
+
self,
|
204 |
+
vision_encoder="vit_so400m_patch14_siglip_384.webli",
|
205 |
+
query_num=64,
|
206 |
+
image_size=448,
|
207 |
+
drop_vision_last_layer=True,
|
208 |
+
slice_mode=True,
|
209 |
+
patch_size=14,
|
210 |
+
max_slice_nums=9,
|
211 |
+
scale_resolution=448,
|
212 |
+
im_start_token_id=101,
|
213 |
+
im_end_token_id=102,
|
214 |
+
slice_start_token_id=111,
|
215 |
+
slice_end_token_id=112,
|
216 |
+
unk_token_id=0,
|
217 |
+
**kwargs,
|
218 |
+
):
|
219 |
+
self.vision_encoder = vision_encoder
|
220 |
+
self.query_num = query_num
|
221 |
+
self.image_size = image_size
|
222 |
+
self.drop_vision_last_layer = drop_vision_last_layer
|
223 |
+
self.slice_mode = slice_mode
|
224 |
+
self.patch_size = patch_size
|
225 |
+
self.max_slice_nums = max_slice_nums
|
226 |
+
self.scale_resolution = scale_resolution
|
227 |
+
self.im_start_token_id = im_start_token_id
|
228 |
+
self.im_end_token_id = im_end_token_id
|
229 |
+
self.slice_start_token_id = slice_start_token_id
|
230 |
+
self.slice_end_token_id = slice_end_token_id
|
231 |
+
self.unk_token_id = unk_token_id
|
232 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.36.0"
|
6 |
+
}
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,701 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6869931584
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"llm.lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"llm.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"llm.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"llm.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"llm.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"llm.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"llm.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"llm.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"llm.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"llm.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"llm.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"llm.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"llm.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"llm.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"llm.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"llm.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"llm.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"llm.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"llm.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"llm.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"llm.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"llm.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"llm.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"llm.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"llm.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"llm.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"llm.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"llm.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"llm.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"llm.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"llm.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"llm.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"llm.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"llm.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"llm.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"llm.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"llm.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"llm.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"llm.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"llm.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"llm.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"llm.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"llm.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"llm.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"llm.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"llm.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"llm.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"llm.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"llm.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"llm.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"llm.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"llm.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"llm.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"llm.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"llm.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"llm.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"llm.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"llm.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"llm.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"llm.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"llm.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"llm.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"llm.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"llm.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"llm.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"llm.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"llm.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"llm.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"llm.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"llm.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"llm.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"llm.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"llm.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"llm.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"llm.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"llm.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"llm.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"llm.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"llm.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"llm.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"llm.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"llm.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"llm.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"llm.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"llm.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"llm.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"llm.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"llm.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"llm.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"llm.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"llm.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"llm.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"llm.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"llm.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"llm.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"llm.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"llm.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"llm.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"llm.model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"llm.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"llm.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"llm.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"llm.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"llm.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"llm.model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"llm.model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"llm.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"llm.model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"llm.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"llm.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"llm.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"llm.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"llm.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"llm.model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"llm.model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"llm.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"llm.model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"llm.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"llm.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"llm.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"llm.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"llm.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"llm.model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"llm.model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"llm.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"llm.model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"llm.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"llm.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"llm.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"llm.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"llm.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"llm.model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"llm.model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"llm.model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"llm.model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"llm.model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"llm.model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"llm.model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"llm.model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"llm.model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"llm.model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"llm.model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"llm.model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"llm.model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"llm.model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"llm.model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"llm.model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"llm.model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"llm.model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"llm.model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"llm.model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"llm.model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"llm.model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"llm.model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"llm.model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"llm.model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"llm.model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"llm.model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"llm.model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"llm.model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"llm.model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"llm.model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"llm.model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"llm.model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"llm.model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"llm.model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"llm.model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"llm.model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"llm.model.layers.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"llm.model.layers.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"llm.model.layers.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"llm.model.layers.28.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"llm.model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"llm.model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"llm.model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"llm.model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"llm.model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"llm.model.layers.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"llm.model.layers.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"llm.model.layers.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"llm.model.layers.29.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"llm.model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"llm.model.layers.29.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"llm.model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"llm.model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"llm.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"llm.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"llm.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"llm.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"llm.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"llm.model.layers.30.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"llm.model.layers.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"llm.model.layers.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"llm.model.layers.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"llm.model.layers.30.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"llm.model.layers.30.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"llm.model.layers.30.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"llm.model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"llm.model.layers.30.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"llm.model.layers.31.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"llm.model.layers.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"llm.model.layers.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"llm.model.layers.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"llm.model.layers.31.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"llm.model.layers.31.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"llm.model.layers.31.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"llm.model.layers.31.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"llm.model.layers.31.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"llm.model.layers.32.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"llm.model.layers.32.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"llm.model.layers.32.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"llm.model.layers.32.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"llm.model.layers.32.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"llm.model.layers.32.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"llm.model.layers.32.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"llm.model.layers.32.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"llm.model.layers.32.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"llm.model.layers.33.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"llm.model.layers.33.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"llm.model.layers.33.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"llm.model.layers.33.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"llm.model.layers.33.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"llm.model.layers.33.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"llm.model.layers.33.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"llm.model.layers.33.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"llm.model.layers.33.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"llm.model.layers.34.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"llm.model.layers.34.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"llm.model.layers.34.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"llm.model.layers.34.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"llm.model.layers.34.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"llm.model.layers.34.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"llm.model.layers.34.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"llm.model.layers.34.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"llm.model.layers.34.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"llm.model.layers.35.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"llm.model.layers.35.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"llm.model.layers.35.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"llm.model.layers.35.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"llm.model.layers.35.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"llm.model.layers.35.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"llm.model.layers.35.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"llm.model.layers.35.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"llm.model.layers.35.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"llm.model.layers.36.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"llm.model.layers.36.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"llm.model.layers.36.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"llm.model.layers.36.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"llm.model.layers.36.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"llm.model.layers.36.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"llm.model.layers.36.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
285 |
+
"llm.model.layers.36.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"llm.model.layers.36.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"llm.model.layers.37.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
288 |
+
"llm.model.layers.37.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
289 |
+
"llm.model.layers.37.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
290 |
+
"llm.model.layers.37.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
291 |
+
"llm.model.layers.37.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
292 |
+
"llm.model.layers.37.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
293 |
+
"llm.model.layers.37.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
294 |
+
"llm.model.layers.37.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
295 |
+
"llm.model.layers.37.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"llm.model.layers.38.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"llm.model.layers.38.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"llm.model.layers.38.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"llm.model.layers.38.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"llm.model.layers.38.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"llm.model.layers.38.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"llm.model.layers.38.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"llm.model.layers.38.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"llm.model.layers.38.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"llm.model.layers.39.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"llm.model.layers.39.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"llm.model.layers.39.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"llm.model.layers.39.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"llm.model.layers.39.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"llm.model.layers.39.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"llm.model.layers.39.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"llm.model.layers.39.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"llm.model.layers.39.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
314 |
+
"llm.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
315 |
+
"llm.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
316 |
+
"llm.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
317 |
+
"llm.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
318 |
+
"llm.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"llm.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"llm.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"llm.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
322 |
+
"llm.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
323 |
+
"llm.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
324 |
+
"llm.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
325 |
+
"llm.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"llm.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
327 |
+
"llm.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
328 |
+
"llm.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
329 |
+
"llm.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
330 |
+
"llm.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
331 |
+
"llm.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
332 |
+
"llm.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
333 |
+
"llm.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
334 |
+
"llm.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"llm.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
336 |
+
"llm.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
337 |
+
"llm.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
338 |
+
"llm.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"llm.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
340 |
+
"llm.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"llm.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
342 |
+
"llm.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"llm.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
344 |
+
"llm.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
345 |
+
"llm.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
346 |
+
"llm.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
347 |
+
"llm.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
348 |
+
"llm.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
349 |
+
"llm.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
350 |
+
"llm.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
351 |
+
"llm.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
352 |
+
"llm.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
353 |
+
"llm.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
354 |
+
"llm.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
355 |
+
"llm.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
356 |
+
"llm.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
357 |
+
"llm.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
358 |
+
"llm.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
359 |
+
"llm.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
360 |
+
"llm.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
361 |
+
"llm.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
362 |
+
"llm.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
363 |
+
"llm.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
364 |
+
"llm.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
365 |
+
"llm.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
366 |
+
"llm.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
367 |
+
"llm.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
368 |
+
"llm.model.norm.weight": "model-00002-of-00002.safetensors",
|
369 |
+
"resampler.attn.in_proj_bias": "model-00002-of-00002.safetensors",
|
370 |
+
"resampler.attn.in_proj_weight": "model-00002-of-00002.safetensors",
|
371 |
+
"resampler.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
372 |
+
"resampler.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
373 |
+
"resampler.kv_proj.weight": "model-00002-of-00002.safetensors",
|
374 |
+
"resampler.ln_kv.bias": "model-00002-of-00002.safetensors",
|
375 |
+
"resampler.ln_kv.weight": "model-00002-of-00002.safetensors",
|
376 |
+
"resampler.ln_post.bias": "model-00002-of-00002.safetensors",
|
377 |
+
"resampler.ln_post.weight": "model-00002-of-00002.safetensors",
|
378 |
+
"resampler.ln_q.bias": "model-00002-of-00002.safetensors",
|
379 |
+
"resampler.ln_q.weight": "model-00002-of-00002.safetensors",
|
380 |
+
"resampler.pos_embed": "model-00002-of-00002.safetensors",
|
381 |
+
"resampler.proj": "model-00002-of-00002.safetensors",
|
382 |
+
"resampler.query": "model-00002-of-00002.safetensors",
|
383 |
+
"vpm.blocks.0.attn.proj.bias": "model-00002-of-00002.safetensors",
|
384 |
+
"vpm.blocks.0.attn.proj.weight": "model-00002-of-00002.safetensors",
|
385 |
+
"vpm.blocks.0.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
386 |
+
"vpm.blocks.0.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
387 |
+
"vpm.blocks.0.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
388 |
+
"vpm.blocks.0.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
389 |
+
"vpm.blocks.0.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
390 |
+
"vpm.blocks.0.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
391 |
+
"vpm.blocks.0.norm1.bias": "model-00002-of-00002.safetensors",
|
392 |
+
"vpm.blocks.0.norm1.weight": "model-00002-of-00002.safetensors",
|
393 |
+
"vpm.blocks.0.norm2.bias": "model-00002-of-00002.safetensors",
|
394 |
+
"vpm.blocks.0.norm2.weight": "model-00002-of-00002.safetensors",
|
395 |
+
"vpm.blocks.1.attn.proj.bias": "model-00002-of-00002.safetensors",
|
396 |
+
"vpm.blocks.1.attn.proj.weight": "model-00002-of-00002.safetensors",
|
397 |
+
"vpm.blocks.1.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
398 |
+
"vpm.blocks.1.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
399 |
+
"vpm.blocks.1.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
400 |
+
"vpm.blocks.1.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
401 |
+
"vpm.blocks.1.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
402 |
+
"vpm.blocks.1.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
403 |
+
"vpm.blocks.1.norm1.bias": "model-00002-of-00002.safetensors",
|
404 |
+
"vpm.blocks.1.norm1.weight": "model-00002-of-00002.safetensors",
|
405 |
+
"vpm.blocks.1.norm2.bias": "model-00002-of-00002.safetensors",
|
406 |
+
"vpm.blocks.1.norm2.weight": "model-00002-of-00002.safetensors",
|
407 |
+
"vpm.blocks.10.attn.proj.bias": "model-00002-of-00002.safetensors",
|
408 |
+
"vpm.blocks.10.attn.proj.weight": "model-00002-of-00002.safetensors",
|
409 |
+
"vpm.blocks.10.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
410 |
+
"vpm.blocks.10.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
411 |
+
"vpm.blocks.10.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
412 |
+
"vpm.blocks.10.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
413 |
+
"vpm.blocks.10.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
414 |
+
"vpm.blocks.10.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
415 |
+
"vpm.blocks.10.norm1.bias": "model-00002-of-00002.safetensors",
|
416 |
+
"vpm.blocks.10.norm1.weight": "model-00002-of-00002.safetensors",
|
417 |
+
"vpm.blocks.10.norm2.bias": "model-00002-of-00002.safetensors",
|
418 |
+
"vpm.blocks.10.norm2.weight": "model-00002-of-00002.safetensors",
|
419 |
+
"vpm.blocks.11.attn.proj.bias": "model-00002-of-00002.safetensors",
|
420 |
+
"vpm.blocks.11.attn.proj.weight": "model-00002-of-00002.safetensors",
|
421 |
+
"vpm.blocks.11.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
422 |
+
"vpm.blocks.11.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
423 |
+
"vpm.blocks.11.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
424 |
+
"vpm.blocks.11.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
425 |
+
"vpm.blocks.11.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
426 |
+
"vpm.blocks.11.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
427 |
+
"vpm.blocks.11.norm1.bias": "model-00002-of-00002.safetensors",
|
428 |
+
"vpm.blocks.11.norm1.weight": "model-00002-of-00002.safetensors",
|
429 |
+
"vpm.blocks.11.norm2.bias": "model-00002-of-00002.safetensors",
|
430 |
+
"vpm.blocks.11.norm2.weight": "model-00002-of-00002.safetensors",
|
431 |
+
"vpm.blocks.12.attn.proj.bias": "model-00002-of-00002.safetensors",
|
432 |
+
"vpm.blocks.12.attn.proj.weight": "model-00002-of-00002.safetensors",
|
433 |
+
"vpm.blocks.12.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
434 |
+
"vpm.blocks.12.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
435 |
+
"vpm.blocks.12.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
436 |
+
"vpm.blocks.12.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
437 |
+
"vpm.blocks.12.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
438 |
+
"vpm.blocks.12.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
439 |
+
"vpm.blocks.12.norm1.bias": "model-00002-of-00002.safetensors",
|
440 |
+
"vpm.blocks.12.norm1.weight": "model-00002-of-00002.safetensors",
|
441 |
+
"vpm.blocks.12.norm2.bias": "model-00002-of-00002.safetensors",
|
442 |
+
"vpm.blocks.12.norm2.weight": "model-00002-of-00002.safetensors",
|
443 |
+
"vpm.blocks.13.attn.proj.bias": "model-00002-of-00002.safetensors",
|
444 |
+
"vpm.blocks.13.attn.proj.weight": "model-00002-of-00002.safetensors",
|
445 |
+
"vpm.blocks.13.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
446 |
+
"vpm.blocks.13.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
447 |
+
"vpm.blocks.13.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
448 |
+
"vpm.blocks.13.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
449 |
+
"vpm.blocks.13.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
450 |
+
"vpm.blocks.13.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
451 |
+
"vpm.blocks.13.norm1.bias": "model-00002-of-00002.safetensors",
|
452 |
+
"vpm.blocks.13.norm1.weight": "model-00002-of-00002.safetensors",
|
453 |
+
"vpm.blocks.13.norm2.bias": "model-00002-of-00002.safetensors",
|
454 |
+
"vpm.blocks.13.norm2.weight": "model-00002-of-00002.safetensors",
|
455 |
+
"vpm.blocks.14.attn.proj.bias": "model-00002-of-00002.safetensors",
|
456 |
+
"vpm.blocks.14.attn.proj.weight": "model-00002-of-00002.safetensors",
|
457 |
+
"vpm.blocks.14.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
458 |
+
"vpm.blocks.14.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
459 |
+
"vpm.blocks.14.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
460 |
+
"vpm.blocks.14.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
461 |
+
"vpm.blocks.14.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
462 |
+
"vpm.blocks.14.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
463 |
+
"vpm.blocks.14.norm1.bias": "model-00002-of-00002.safetensors",
|
464 |
+
"vpm.blocks.14.norm1.weight": "model-00002-of-00002.safetensors",
|
465 |
+
"vpm.blocks.14.norm2.bias": "model-00002-of-00002.safetensors",
|
466 |
+
"vpm.blocks.14.norm2.weight": "model-00002-of-00002.safetensors",
|
467 |
+
"vpm.blocks.15.attn.proj.bias": "model-00002-of-00002.safetensors",
|
468 |
+
"vpm.blocks.15.attn.proj.weight": "model-00002-of-00002.safetensors",
|
469 |
+
"vpm.blocks.15.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
470 |
+
"vpm.blocks.15.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
471 |
+
"vpm.blocks.15.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
472 |
+
"vpm.blocks.15.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
473 |
+
"vpm.blocks.15.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
474 |
+
"vpm.blocks.15.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
475 |
+
"vpm.blocks.15.norm1.bias": "model-00002-of-00002.safetensors",
|
476 |
+
"vpm.blocks.15.norm1.weight": "model-00002-of-00002.safetensors",
|
477 |
+
"vpm.blocks.15.norm2.bias": "model-00002-of-00002.safetensors",
|
478 |
+
"vpm.blocks.15.norm2.weight": "model-00002-of-00002.safetensors",
|
479 |
+
"vpm.blocks.16.attn.proj.bias": "model-00002-of-00002.safetensors",
|
480 |
+
"vpm.blocks.16.attn.proj.weight": "model-00002-of-00002.safetensors",
|
481 |
+
"vpm.blocks.16.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
482 |
+
"vpm.blocks.16.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
483 |
+
"vpm.blocks.16.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
484 |
+
"vpm.blocks.16.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
485 |
+
"vpm.blocks.16.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
486 |
+
"vpm.blocks.16.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
487 |
+
"vpm.blocks.16.norm1.bias": "model-00002-of-00002.safetensors",
|
488 |
+
"vpm.blocks.16.norm1.weight": "model-00002-of-00002.safetensors",
|
489 |
+
"vpm.blocks.16.norm2.bias": "model-00002-of-00002.safetensors",
|
490 |
+
"vpm.blocks.16.norm2.weight": "model-00002-of-00002.safetensors",
|
491 |
+
"vpm.blocks.17.attn.proj.bias": "model-00002-of-00002.safetensors",
|
492 |
+
"vpm.blocks.17.attn.proj.weight": "model-00002-of-00002.safetensors",
|
493 |
+
"vpm.blocks.17.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
494 |
+
"vpm.blocks.17.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
495 |
+
"vpm.blocks.17.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
496 |
+
"vpm.blocks.17.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
497 |
+
"vpm.blocks.17.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
498 |
+
"vpm.blocks.17.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
499 |
+
"vpm.blocks.17.norm1.bias": "model-00002-of-00002.safetensors",
|
500 |
+
"vpm.blocks.17.norm1.weight": "model-00002-of-00002.safetensors",
|
501 |
+
"vpm.blocks.17.norm2.bias": "model-00002-of-00002.safetensors",
|
502 |
+
"vpm.blocks.17.norm2.weight": "model-00002-of-00002.safetensors",
|
503 |
+
"vpm.blocks.18.attn.proj.bias": "model-00002-of-00002.safetensors",
|
504 |
+
"vpm.blocks.18.attn.proj.weight": "model-00002-of-00002.safetensors",
|
505 |
+
"vpm.blocks.18.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
506 |
+
"vpm.blocks.18.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
507 |
+
"vpm.blocks.18.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
508 |
+
"vpm.blocks.18.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
509 |
+
"vpm.blocks.18.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
510 |
+
"vpm.blocks.18.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
511 |
+
"vpm.blocks.18.norm1.bias": "model-00002-of-00002.safetensors",
|
512 |
+
"vpm.blocks.18.norm1.weight": "model-00002-of-00002.safetensors",
|
513 |
+
"vpm.blocks.18.norm2.bias": "model-00002-of-00002.safetensors",
|
514 |
+
"vpm.blocks.18.norm2.weight": "model-00002-of-00002.safetensors",
|
515 |
+
"vpm.blocks.19.attn.proj.bias": "model-00002-of-00002.safetensors",
|
516 |
+
"vpm.blocks.19.attn.proj.weight": "model-00002-of-00002.safetensors",
|
517 |
+
"vpm.blocks.19.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
518 |
+
"vpm.blocks.19.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
519 |
+
"vpm.blocks.19.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
520 |
+
"vpm.blocks.19.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
521 |
+
"vpm.blocks.19.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
522 |
+
"vpm.blocks.19.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
523 |
+
"vpm.blocks.19.norm1.bias": "model-00002-of-00002.safetensors",
|
524 |
+
"vpm.blocks.19.norm1.weight": "model-00002-of-00002.safetensors",
|
525 |
+
"vpm.blocks.19.norm2.bias": "model-00002-of-00002.safetensors",
|
526 |
+
"vpm.blocks.19.norm2.weight": "model-00002-of-00002.safetensors",
|
527 |
+
"vpm.blocks.2.attn.proj.bias": "model-00002-of-00002.safetensors",
|
528 |
+
"vpm.blocks.2.attn.proj.weight": "model-00002-of-00002.safetensors",
|
529 |
+
"vpm.blocks.2.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
530 |
+
"vpm.blocks.2.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
531 |
+
"vpm.blocks.2.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
532 |
+
"vpm.blocks.2.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
533 |
+
"vpm.blocks.2.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
534 |
+
"vpm.blocks.2.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
535 |
+
"vpm.blocks.2.norm1.bias": "model-00002-of-00002.safetensors",
|
536 |
+
"vpm.blocks.2.norm1.weight": "model-00002-of-00002.safetensors",
|
537 |
+
"vpm.blocks.2.norm2.bias": "model-00002-of-00002.safetensors",
|
538 |
+
"vpm.blocks.2.norm2.weight": "model-00002-of-00002.safetensors",
|
539 |
+
"vpm.blocks.20.attn.proj.bias": "model-00002-of-00002.safetensors",
|
540 |
+
"vpm.blocks.20.attn.proj.weight": "model-00002-of-00002.safetensors",
|
541 |
+
"vpm.blocks.20.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
542 |
+
"vpm.blocks.20.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
543 |
+
"vpm.blocks.20.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
544 |
+
"vpm.blocks.20.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
545 |
+
"vpm.blocks.20.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
546 |
+
"vpm.blocks.20.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
547 |
+
"vpm.blocks.20.norm1.bias": "model-00002-of-00002.safetensors",
|
548 |
+
"vpm.blocks.20.norm1.weight": "model-00002-of-00002.safetensors",
|
549 |
+
"vpm.blocks.20.norm2.bias": "model-00002-of-00002.safetensors",
|
550 |
+
"vpm.blocks.20.norm2.weight": "model-00002-of-00002.safetensors",
|
551 |
+
"vpm.blocks.21.attn.proj.bias": "model-00002-of-00002.safetensors",
|
552 |
+
"vpm.blocks.21.attn.proj.weight": "model-00002-of-00002.safetensors",
|
553 |
+
"vpm.blocks.21.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
554 |
+
"vpm.blocks.21.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
555 |
+
"vpm.blocks.21.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
556 |
+
"vpm.blocks.21.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
557 |
+
"vpm.blocks.21.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
558 |
+
"vpm.blocks.21.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
559 |
+
"vpm.blocks.21.norm1.bias": "model-00002-of-00002.safetensors",
|
560 |
+
"vpm.blocks.21.norm1.weight": "model-00002-of-00002.safetensors",
|
561 |
+
"vpm.blocks.21.norm2.bias": "model-00002-of-00002.safetensors",
|
562 |
+
"vpm.blocks.21.norm2.weight": "model-00002-of-00002.safetensors",
|
563 |
+
"vpm.blocks.22.attn.proj.bias": "model-00002-of-00002.safetensors",
|
564 |
+
"vpm.blocks.22.attn.proj.weight": "model-00002-of-00002.safetensors",
|
565 |
+
"vpm.blocks.22.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
566 |
+
"vpm.blocks.22.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
567 |
+
"vpm.blocks.22.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
568 |
+
"vpm.blocks.22.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
569 |
+
"vpm.blocks.22.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
570 |
+
"vpm.blocks.22.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
571 |
+
"vpm.blocks.22.norm1.bias": "model-00002-of-00002.safetensors",
|
572 |
+
"vpm.blocks.22.norm1.weight": "model-00002-of-00002.safetensors",
|
573 |
+
"vpm.blocks.22.norm2.bias": "model-00002-of-00002.safetensors",
|
574 |
+
"vpm.blocks.22.norm2.weight": "model-00002-of-00002.safetensors",
|
575 |
+
"vpm.blocks.23.attn.proj.bias": "model-00002-of-00002.safetensors",
|
576 |
+
"vpm.blocks.23.attn.proj.weight": "model-00002-of-00002.safetensors",
|
577 |
+
"vpm.blocks.23.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
578 |
+
"vpm.blocks.23.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
579 |
+
"vpm.blocks.23.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
580 |
+
"vpm.blocks.23.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
581 |
+
"vpm.blocks.23.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
582 |
+
"vpm.blocks.23.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
583 |
+
"vpm.blocks.23.norm1.bias": "model-00002-of-00002.safetensors",
|
584 |
+
"vpm.blocks.23.norm1.weight": "model-00002-of-00002.safetensors",
|
585 |
+
"vpm.blocks.23.norm2.bias": "model-00002-of-00002.safetensors",
|
586 |
+
"vpm.blocks.23.norm2.weight": "model-00002-of-00002.safetensors",
|
587 |
+
"vpm.blocks.24.attn.proj.bias": "model-00002-of-00002.safetensors",
|
588 |
+
"vpm.blocks.24.attn.proj.weight": "model-00002-of-00002.safetensors",
|
589 |
+
"vpm.blocks.24.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
590 |
+
"vpm.blocks.24.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
591 |
+
"vpm.blocks.24.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
592 |
+
"vpm.blocks.24.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
593 |
+
"vpm.blocks.24.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
594 |
+
"vpm.blocks.24.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
595 |
+
"vpm.blocks.24.norm1.bias": "model-00002-of-00002.safetensors",
|
596 |
+
"vpm.blocks.24.norm1.weight": "model-00002-of-00002.safetensors",
|
597 |
+
"vpm.blocks.24.norm2.bias": "model-00002-of-00002.safetensors",
|
598 |
+
"vpm.blocks.24.norm2.weight": "model-00002-of-00002.safetensors",
|
599 |
+
"vpm.blocks.25.attn.proj.bias": "model-00002-of-00002.safetensors",
|
600 |
+
"vpm.blocks.25.attn.proj.weight": "model-00002-of-00002.safetensors",
|
601 |
+
"vpm.blocks.25.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
602 |
+
"vpm.blocks.25.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
603 |
+
"vpm.blocks.25.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
604 |
+
"vpm.blocks.25.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
605 |
+
"vpm.blocks.25.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
606 |
+
"vpm.blocks.25.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
607 |
+
"vpm.blocks.25.norm1.bias": "model-00002-of-00002.safetensors",
|
608 |
+
"vpm.blocks.25.norm1.weight": "model-00002-of-00002.safetensors",
|
609 |
+
"vpm.blocks.25.norm2.bias": "model-00002-of-00002.safetensors",
|
610 |
+
"vpm.blocks.25.norm2.weight": "model-00002-of-00002.safetensors",
|
611 |
+
"vpm.blocks.3.attn.proj.bias": "model-00002-of-00002.safetensors",
|
612 |
+
"vpm.blocks.3.attn.proj.weight": "model-00002-of-00002.safetensors",
|
613 |
+
"vpm.blocks.3.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
614 |
+
"vpm.blocks.3.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
615 |
+
"vpm.blocks.3.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
616 |
+
"vpm.blocks.3.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
617 |
+
"vpm.blocks.3.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
618 |
+
"vpm.blocks.3.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
619 |
+
"vpm.blocks.3.norm1.bias": "model-00002-of-00002.safetensors",
|
620 |
+
"vpm.blocks.3.norm1.weight": "model-00002-of-00002.safetensors",
|
621 |
+
"vpm.blocks.3.norm2.bias": "model-00002-of-00002.safetensors",
|
622 |
+
"vpm.blocks.3.norm2.weight": "model-00002-of-00002.safetensors",
|
623 |
+
"vpm.blocks.4.attn.proj.bias": "model-00002-of-00002.safetensors",
|
624 |
+
"vpm.blocks.4.attn.proj.weight": "model-00002-of-00002.safetensors",
|
625 |
+
"vpm.blocks.4.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
626 |
+
"vpm.blocks.4.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
627 |
+
"vpm.blocks.4.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
628 |
+
"vpm.blocks.4.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
629 |
+
"vpm.blocks.4.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
630 |
+
"vpm.blocks.4.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
631 |
+
"vpm.blocks.4.norm1.bias": "model-00002-of-00002.safetensors",
|
632 |
+
"vpm.blocks.4.norm1.weight": "model-00002-of-00002.safetensors",
|
633 |
+
"vpm.blocks.4.norm2.bias": "model-00002-of-00002.safetensors",
|
634 |
+
"vpm.blocks.4.norm2.weight": "model-00002-of-00002.safetensors",
|
635 |
+
"vpm.blocks.5.attn.proj.bias": "model-00002-of-00002.safetensors",
|
636 |
+
"vpm.blocks.5.attn.proj.weight": "model-00002-of-00002.safetensors",
|
637 |
+
"vpm.blocks.5.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
638 |
+
"vpm.blocks.5.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
639 |
+
"vpm.blocks.5.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
640 |
+
"vpm.blocks.5.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
641 |
+
"vpm.blocks.5.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
642 |
+
"vpm.blocks.5.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
643 |
+
"vpm.blocks.5.norm1.bias": "model-00002-of-00002.safetensors",
|
644 |
+
"vpm.blocks.5.norm1.weight": "model-00002-of-00002.safetensors",
|
645 |
+
"vpm.blocks.5.norm2.bias": "model-00002-of-00002.safetensors",
|
646 |
+
"vpm.blocks.5.norm2.weight": "model-00002-of-00002.safetensors",
|
647 |
+
"vpm.blocks.6.attn.proj.bias": "model-00002-of-00002.safetensors",
|
648 |
+
"vpm.blocks.6.attn.proj.weight": "model-00002-of-00002.safetensors",
|
649 |
+
"vpm.blocks.6.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
650 |
+
"vpm.blocks.6.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
651 |
+
"vpm.blocks.6.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
652 |
+
"vpm.blocks.6.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
653 |
+
"vpm.blocks.6.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
654 |
+
"vpm.blocks.6.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
655 |
+
"vpm.blocks.6.norm1.bias": "model-00002-of-00002.safetensors",
|
656 |
+
"vpm.blocks.6.norm1.weight": "model-00002-of-00002.safetensors",
|
657 |
+
"vpm.blocks.6.norm2.bias": "model-00002-of-00002.safetensors",
|
658 |
+
"vpm.blocks.6.norm2.weight": "model-00002-of-00002.safetensors",
|
659 |
+
"vpm.blocks.7.attn.proj.bias": "model-00002-of-00002.safetensors",
|
660 |
+
"vpm.blocks.7.attn.proj.weight": "model-00002-of-00002.safetensors",
|
661 |
+
"vpm.blocks.7.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
662 |
+
"vpm.blocks.7.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
663 |
+
"vpm.blocks.7.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
664 |
+
"vpm.blocks.7.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
665 |
+
"vpm.blocks.7.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
666 |
+
"vpm.blocks.7.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
667 |
+
"vpm.blocks.7.norm1.bias": "model-00002-of-00002.safetensors",
|
668 |
+
"vpm.blocks.7.norm1.weight": "model-00002-of-00002.safetensors",
|
669 |
+
"vpm.blocks.7.norm2.bias": "model-00002-of-00002.safetensors",
|
670 |
+
"vpm.blocks.7.norm2.weight": "model-00002-of-00002.safetensors",
|
671 |
+
"vpm.blocks.8.attn.proj.bias": "model-00002-of-00002.safetensors",
|
672 |
+
"vpm.blocks.8.attn.proj.weight": "model-00002-of-00002.safetensors",
|
673 |
+
"vpm.blocks.8.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
674 |
+
"vpm.blocks.8.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
675 |
+
"vpm.blocks.8.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
676 |
+
"vpm.blocks.8.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
677 |
+
"vpm.blocks.8.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
678 |
+
"vpm.blocks.8.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
679 |
+
"vpm.blocks.8.norm1.bias": "model-00002-of-00002.safetensors",
|
680 |
+
"vpm.blocks.8.norm1.weight": "model-00002-of-00002.safetensors",
|
681 |
+
"vpm.blocks.8.norm2.bias": "model-00002-of-00002.safetensors",
|
682 |
+
"vpm.blocks.8.norm2.weight": "model-00002-of-00002.safetensors",
|
683 |
+
"vpm.blocks.9.attn.proj.bias": "model-00002-of-00002.safetensors",
|
684 |
+
"vpm.blocks.9.attn.proj.weight": "model-00002-of-00002.safetensors",
|
685 |
+
"vpm.blocks.9.attn.qkv.bias": "model-00002-of-00002.safetensors",
|
686 |
+
"vpm.blocks.9.attn.qkv.weight": "model-00002-of-00002.safetensors",
|
687 |
+
"vpm.blocks.9.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
688 |
+
"vpm.blocks.9.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
689 |
+
"vpm.blocks.9.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
690 |
+
"vpm.blocks.9.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
691 |
+
"vpm.blocks.9.norm1.bias": "model-00002-of-00002.safetensors",
|
692 |
+
"vpm.blocks.9.norm1.weight": "model-00002-of-00002.safetensors",
|
693 |
+
"vpm.blocks.9.norm2.bias": "model-00002-of-00002.safetensors",
|
694 |
+
"vpm.blocks.9.norm2.weight": "model-00002-of-00002.safetensors",
|
695 |
+
"vpm.norm.bias": "model-00002-of-00002.safetensors",
|
696 |
+
"vpm.norm.weight": "model-00002-of-00002.safetensors",
|
697 |
+
"vpm.patch_embed.proj.bias": "model-00002-of-00002.safetensors",
|
698 |
+
"vpm.patch_embed.proj.weight": "model-00002-of-00002.safetensors",
|
699 |
+
"vpm.pos_embed": "model-00002-of-00002.safetensors"
|
700 |
+
}
|
701 |
+
}
|
modeling_minicpm.py
ADDED
@@ -0,0 +1,1697 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch MiniCPM model."""
|
21 |
+
import math
|
22 |
+
import re
|
23 |
+
import warnings
|
24 |
+
from typing import Dict, List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.cache_utils import Cache, DynamicCache
|
33 |
+
from transformers.modeling_attn_mask_utils import (
|
34 |
+
AttentionMaskConverter,
|
35 |
+
_prepare_4d_attention_mask,
|
36 |
+
_prepare_4d_causal_attention_mask,
|
37 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
38 |
+
)
|
39 |
+
from transformers.modeling_outputs import (
|
40 |
+
BaseModelOutputWithPast,
|
41 |
+
CausalLMOutputWithPast,
|
42 |
+
SequenceClassifierOutputWithPast,
|
43 |
+
)
|
44 |
+
from transformers.modeling_utils import PreTrainedModel
|
45 |
+
from transformers.pytorch_utils import (
|
46 |
+
ALL_LAYERNORM_LAYERS,
|
47 |
+
is_torch_greater_or_equal_than_1_13,
|
48 |
+
)
|
49 |
+
from transformers.utils import (
|
50 |
+
add_start_docstrings,
|
51 |
+
add_start_docstrings_to_model_forward,
|
52 |
+
is_flash_attn_2_available,
|
53 |
+
is_flash_attn_greater_or_equal_2_10,
|
54 |
+
logging,
|
55 |
+
replace_return_docstrings,
|
56 |
+
)
|
57 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
58 |
+
|
59 |
+
from .configuration_minicpm import MiniCPMConfig
|
60 |
+
|
61 |
+
try:
|
62 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
63 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
64 |
+
except:
|
65 |
+
pass
|
66 |
+
|
67 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
68 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
69 |
+
if is_torch_fx_available():
|
70 |
+
if not is_torch_greater_or_equal_than_1_13:
|
71 |
+
import torch.fx
|
72 |
+
|
73 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
74 |
+
|
75 |
+
logger = logging.get_logger(__name__)
|
76 |
+
|
77 |
+
_CONFIG_FOR_DOC = "MiniCPMConfig"
|
78 |
+
|
79 |
+
|
80 |
+
def _get_unpad_data(attention_mask):
|
81 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
82 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
83 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
84 |
+
cu_seqlens = F.pad(
|
85 |
+
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
86 |
+
)
|
87 |
+
return (
|
88 |
+
indices,
|
89 |
+
cu_seqlens,
|
90 |
+
max_seqlen_in_batch,
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
95 |
+
warnings.warn(
|
96 |
+
"Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
|
97 |
+
)
|
98 |
+
return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
99 |
+
|
100 |
+
|
101 |
+
def _make_causal_mask(
|
102 |
+
input_ids_shape: torch.Size,
|
103 |
+
dtype: torch.dtype,
|
104 |
+
device: torch.device,
|
105 |
+
past_key_values_length: int = 0,
|
106 |
+
):
|
107 |
+
warnings.warn(
|
108 |
+
"Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask"
|
109 |
+
)
|
110 |
+
return AttentionMaskConverter._make_causal_mask(
|
111 |
+
input_ids_shape=input_ids_shape,
|
112 |
+
dtype=dtype,
|
113 |
+
device=device,
|
114 |
+
past_key_values_length=past_key_values_length,
|
115 |
+
)
|
116 |
+
|
117 |
+
|
118 |
+
# @torch.jit.script # type: ignore
|
119 |
+
def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
|
120 |
+
old_dtype = hidden.dtype
|
121 |
+
variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
|
122 |
+
hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype)
|
123 |
+
return hidden * weight
|
124 |
+
|
125 |
+
|
126 |
+
class MiniCPMRMSNorm(nn.Module):
|
127 |
+
def __init__(self, hidden_size, eps=1e-6):
|
128 |
+
"""
|
129 |
+
MiniCPMRMSNorm is equivalent to T5LayerNorm
|
130 |
+
"""
|
131 |
+
super().__init__()
|
132 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
133 |
+
self.variance_epsilon = eps
|
134 |
+
|
135 |
+
def forward(self, hidden_states):
|
136 |
+
return rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
|
137 |
+
|
138 |
+
|
139 |
+
ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm)
|
140 |
+
|
141 |
+
|
142 |
+
class MiniCPMRotaryEmbedding(nn.Module):
|
143 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
144 |
+
super().__init__()
|
145 |
+
|
146 |
+
self.dim = dim
|
147 |
+
self.max_position_embeddings = max_position_embeddings
|
148 |
+
self.base = base
|
149 |
+
inv_freq = 1.0 / (
|
150 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
151 |
+
)
|
152 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
153 |
+
|
154 |
+
# Build here to make `torch.jit.trace` work.
|
155 |
+
self._set_cos_sin_cache(
|
156 |
+
# seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
157 |
+
seq_len=max_position_embeddings,
|
158 |
+
device=self.inv_freq.device,
|
159 |
+
dtype=torch.float32,
|
160 |
+
)
|
161 |
+
|
162 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
163 |
+
self.max_seq_len_cached = seq_len
|
164 |
+
t = torch.arange(
|
165 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
166 |
+
)
|
167 |
+
freqs = torch.outer(t, self.inv_freq)
|
168 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
169 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
170 |
+
|
171 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
172 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
173 |
+
|
174 |
+
def forward(self, x, seq_len=None):
|
175 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
176 |
+
if seq_len > self.max_seq_len_cached:
|
177 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
178 |
+
|
179 |
+
return (
|
180 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
181 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
|
186 |
+
"""MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
dim,
|
191 |
+
max_position_embeddings=2048,
|
192 |
+
base=10000,
|
193 |
+
device=None,
|
194 |
+
scaling_factor=1.0,
|
195 |
+
):
|
196 |
+
self.scaling_factor = scaling_factor
|
197 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
198 |
+
|
199 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
200 |
+
self.max_seq_len_cached = seq_len
|
201 |
+
t = torch.arange(
|
202 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
203 |
+
)
|
204 |
+
t = t / self.scaling_factor
|
205 |
+
|
206 |
+
freqs = torch.outer(t, self.inv_freq)
|
207 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
208 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
209 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
210 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
211 |
+
|
212 |
+
|
213 |
+
class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
|
214 |
+
"""MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
215 |
+
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
dim,
|
219 |
+
max_position_embeddings=2048,
|
220 |
+
base=10000,
|
221 |
+
device=None,
|
222 |
+
scaling_factor=1.0,
|
223 |
+
):
|
224 |
+
self.scaling_factor = scaling_factor
|
225 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
226 |
+
|
227 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
228 |
+
self.max_seq_len_cached = seq_len
|
229 |
+
|
230 |
+
if seq_len > self.max_position_embeddings:
|
231 |
+
base = self.base * (
|
232 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
233 |
+
- (self.scaling_factor - 1)
|
234 |
+
) ** (self.dim / (self.dim - 2))
|
235 |
+
inv_freq = 1.0 / (
|
236 |
+
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
237 |
+
)
|
238 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
239 |
+
|
240 |
+
t = torch.arange(
|
241 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
242 |
+
)
|
243 |
+
|
244 |
+
freqs = torch.outer(t, self.inv_freq)
|
245 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
246 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
247 |
+
|
248 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
249 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
250 |
+
|
251 |
+
|
252 |
+
def rotate_half(x):
|
253 |
+
"""Rotates half the hidden dims of the input."""
|
254 |
+
x1 = x[..., : x.shape[-1] // 2]
|
255 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
256 |
+
return torch.cat((-x2, x1), dim=-1)
|
257 |
+
|
258 |
+
|
259 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
260 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
261 |
+
Args:
|
262 |
+
q (`torch.Tensor`): The query tensor.
|
263 |
+
k (`torch.Tensor`): The key tensor.
|
264 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
265 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
266 |
+
position_ids (`torch.Tensor`):
|
267 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
268 |
+
used to pass offsetted position ids when working with a KV-cache.
|
269 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
270 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
271 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
272 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
273 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
274 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
275 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
276 |
+
Returns:
|
277 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
278 |
+
"""
|
279 |
+
# cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
280 |
+
# sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
281 |
+
# q_embed = (q * cos) + (rotate_half(q) * sin)
|
282 |
+
# k_embed = (k * cos) + (rotate_half(k) * sin)
|
283 |
+
orig_dtype = k.dtype
|
284 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
|
285 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
|
286 |
+
q_fp32 = q.to(dtype=torch.float32, device=q.device)
|
287 |
+
k_fp32 = k.to(dtype=torch.float32, device=k.device)
|
288 |
+
q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin)
|
289 |
+
k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin)
|
290 |
+
return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype)
|
291 |
+
|
292 |
+
|
293 |
+
class MiniCPMMLP(nn.Module):
|
294 |
+
def __init__(self, config):
|
295 |
+
super().__init__()
|
296 |
+
self.config = config
|
297 |
+
self.hidden_size = config.hidden_size
|
298 |
+
self.intermediate_size = config.intermediate_size
|
299 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
300 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
301 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
302 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
303 |
+
|
304 |
+
def forward(self, x):
|
305 |
+
if self.config.pretraining_tp > 1:
|
306 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
307 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
308 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
309 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
310 |
+
|
311 |
+
gate_proj = torch.cat(
|
312 |
+
[
|
313 |
+
F.linear(x, gate_proj_slices[i])
|
314 |
+
for i in range(self.config.pretraining_tp)
|
315 |
+
],
|
316 |
+
dim=-1,
|
317 |
+
)
|
318 |
+
up_proj = torch.cat(
|
319 |
+
[
|
320 |
+
F.linear(x, up_proj_slices[i])
|
321 |
+
for i in range(self.config.pretraining_tp)
|
322 |
+
],
|
323 |
+
dim=-1,
|
324 |
+
)
|
325 |
+
|
326 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
327 |
+
down_proj = [
|
328 |
+
F.linear(intermediate_states[i], down_proj_slices[i])
|
329 |
+
for i in range(self.config.pretraining_tp)
|
330 |
+
]
|
331 |
+
down_proj = sum(down_proj)
|
332 |
+
else:
|
333 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
334 |
+
|
335 |
+
return down_proj
|
336 |
+
|
337 |
+
|
338 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
339 |
+
"""
|
340 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
341 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
342 |
+
"""
|
343 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
344 |
+
if n_rep == 1:
|
345 |
+
return hidden_states
|
346 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
347 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
348 |
+
)
|
349 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
350 |
+
|
351 |
+
|
352 |
+
class MiniCPMAttention(nn.Module):
|
353 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
354 |
+
|
355 |
+
def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None):
|
356 |
+
super().__init__()
|
357 |
+
self.config = config
|
358 |
+
self.layer_idx = layer_idx
|
359 |
+
if layer_idx is None:
|
360 |
+
logger.warning_once(
|
361 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
362 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
363 |
+
"when creating this class."
|
364 |
+
)
|
365 |
+
|
366 |
+
self.attention_dropout = config.attention_dropout
|
367 |
+
self.hidden_size = config.hidden_size
|
368 |
+
self.num_heads = config.num_attention_heads
|
369 |
+
self.head_dim = self.hidden_size // self.num_heads
|
370 |
+
self.num_key_value_heads = config.num_key_value_heads
|
371 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
372 |
+
self.max_position_embeddings = config.max_position_embeddings
|
373 |
+
self.rope_theta = config.rope_theta
|
374 |
+
self.is_causal = True
|
375 |
+
|
376 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
377 |
+
raise ValueError(
|
378 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
379 |
+
f" and `num_heads`: {self.num_heads})."
|
380 |
+
)
|
381 |
+
|
382 |
+
self.q_proj = nn.Linear(
|
383 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
|
384 |
+
)
|
385 |
+
self.k_proj = nn.Linear(
|
386 |
+
self.hidden_size,
|
387 |
+
self.num_key_value_heads * self.head_dim,
|
388 |
+
bias=config.attention_bias,
|
389 |
+
)
|
390 |
+
self.v_proj = nn.Linear(
|
391 |
+
self.hidden_size,
|
392 |
+
self.num_key_value_heads * self.head_dim,
|
393 |
+
bias=config.attention_bias,
|
394 |
+
)
|
395 |
+
self.o_proj = nn.Linear(
|
396 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias
|
397 |
+
)
|
398 |
+
self._init_rope()
|
399 |
+
|
400 |
+
def _init_rope(self):
|
401 |
+
if self.config.rope_scaling is None:
|
402 |
+
self.rotary_emb = MiniCPMRotaryEmbedding(
|
403 |
+
self.head_dim,
|
404 |
+
max_position_embeddings=self.max_position_embeddings,
|
405 |
+
base=self.rope_theta,
|
406 |
+
)
|
407 |
+
else:
|
408 |
+
scaling_type = self.config.rope_scaling["type"]
|
409 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
410 |
+
if scaling_type == "linear":
|
411 |
+
self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding(
|
412 |
+
self.head_dim,
|
413 |
+
max_position_embeddings=self.max_position_embeddings,
|
414 |
+
scaling_factor=scaling_factor,
|
415 |
+
base=self.rope_theta,
|
416 |
+
)
|
417 |
+
elif scaling_type == "dynamic":
|
418 |
+
self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding(
|
419 |
+
self.head_dim,
|
420 |
+
max_position_embeddings=self.max_position_embeddings,
|
421 |
+
scaling_factor=scaling_factor,
|
422 |
+
base=self.rope_theta,
|
423 |
+
)
|
424 |
+
else:
|
425 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
426 |
+
|
427 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
428 |
+
return (
|
429 |
+
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
430 |
+
.transpose(1, 2)
|
431 |
+
.contiguous()
|
432 |
+
)
|
433 |
+
|
434 |
+
def forward(
|
435 |
+
self,
|
436 |
+
hidden_states: torch.Tensor,
|
437 |
+
attention_mask: Optional[torch.Tensor] = None,
|
438 |
+
position_ids: Optional[torch.LongTensor] = None,
|
439 |
+
past_key_value: Optional[Cache] = None,
|
440 |
+
output_attentions: bool = False,
|
441 |
+
use_cache: bool = False,
|
442 |
+
**kwargs,
|
443 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
444 |
+
if "padding_mask" in kwargs:
|
445 |
+
warnings.warn(
|
446 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
447 |
+
)
|
448 |
+
|
449 |
+
bsz, q_len, _ = hidden_states.size()
|
450 |
+
|
451 |
+
if self.config.pretraining_tp > 1:
|
452 |
+
key_value_slicing = (
|
453 |
+
self.num_key_value_heads * self.head_dim
|
454 |
+
) // self.config.pretraining_tp
|
455 |
+
query_slices = self.q_proj.weight.split(
|
456 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
457 |
+
)
|
458 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
459 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
460 |
+
|
461 |
+
query_states = [
|
462 |
+
F.linear(hidden_states, query_slices[i])
|
463 |
+
for i in range(self.config.pretraining_tp)
|
464 |
+
]
|
465 |
+
query_states = torch.cat(query_states, dim=-1)
|
466 |
+
|
467 |
+
key_states = [
|
468 |
+
F.linear(hidden_states, key_slices[i])
|
469 |
+
for i in range(self.config.pretraining_tp)
|
470 |
+
]
|
471 |
+
key_states = torch.cat(key_states, dim=-1)
|
472 |
+
|
473 |
+
value_states = [
|
474 |
+
F.linear(hidden_states, value_slices[i])
|
475 |
+
for i in range(self.config.pretraining_tp)
|
476 |
+
]
|
477 |
+
value_states = torch.cat(value_states, dim=-1)
|
478 |
+
|
479 |
+
else:
|
480 |
+
query_states = self.q_proj(hidden_states)
|
481 |
+
key_states = self.k_proj(hidden_states)
|
482 |
+
value_states = self.v_proj(hidden_states)
|
483 |
+
|
484 |
+
query_states = query_states.view(
|
485 |
+
bsz, q_len, self.num_heads, self.head_dim
|
486 |
+
).transpose(1, 2)
|
487 |
+
key_states = key_states.view(
|
488 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
489 |
+
).transpose(1, 2)
|
490 |
+
value_states = value_states.view(
|
491 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
492 |
+
).transpose(1, 2)
|
493 |
+
|
494 |
+
kv_seq_len = key_states.shape[-2]
|
495 |
+
if past_key_value is not None:
|
496 |
+
if self.layer_idx is None:
|
497 |
+
raise ValueError(
|
498 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
499 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
500 |
+
"with a layer index."
|
501 |
+
)
|
502 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
503 |
+
cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
|
504 |
+
|
505 |
+
query_states, key_states = apply_rotary_pos_emb(
|
506 |
+
query_states, key_states, cos, sin, position_ids
|
507 |
+
)
|
508 |
+
|
509 |
+
if past_key_value is not None:
|
510 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
511 |
+
key_states, value_states = past_key_value.update(
|
512 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
513 |
+
)
|
514 |
+
|
515 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
516 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
517 |
+
|
518 |
+
attn_weights = torch.matmul(
|
519 |
+
query_states, key_states.transpose(2, 3)
|
520 |
+
) / math.sqrt(self.head_dim)
|
521 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
522 |
+
raise ValueError(
|
523 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
524 |
+
f" {attn_weights.size()}"
|
525 |
+
)
|
526 |
+
|
527 |
+
if attention_mask is not None:
|
528 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
529 |
+
raise ValueError(
|
530 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
531 |
+
)
|
532 |
+
attn_weights = attn_weights + attention_mask
|
533 |
+
|
534 |
+
# upcast attention to fp32
|
535 |
+
attn_weights = nn.functional.softmax(
|
536 |
+
attn_weights, dim=-1, dtype=torch.float32
|
537 |
+
).to(query_states.dtype)
|
538 |
+
attn_weights = nn.functional.dropout(
|
539 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
540 |
+
)
|
541 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
542 |
+
|
543 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
544 |
+
raise ValueError(
|
545 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
546 |
+
f" {attn_output.size()}"
|
547 |
+
)
|
548 |
+
|
549 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
550 |
+
|
551 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
552 |
+
|
553 |
+
if self.config.pretraining_tp > 1:
|
554 |
+
attn_output = attn_output.split(
|
555 |
+
self.hidden_size // self.config.pretraining_tp, dim=2
|
556 |
+
)
|
557 |
+
o_proj_slices = self.o_proj.weight.split(
|
558 |
+
self.hidden_size // self.config.pretraining_tp, dim=1
|
559 |
+
)
|
560 |
+
attn_output = sum(
|
561 |
+
[
|
562 |
+
F.linear(attn_output[i], o_proj_slices[i])
|
563 |
+
for i in range(self.config.pretraining_tp)
|
564 |
+
]
|
565 |
+
)
|
566 |
+
else:
|
567 |
+
attn_output = self.o_proj(attn_output)
|
568 |
+
|
569 |
+
if not output_attentions:
|
570 |
+
attn_weights = None
|
571 |
+
|
572 |
+
return attn_output, attn_weights, past_key_value
|
573 |
+
|
574 |
+
|
575 |
+
class MiniCPMFlashAttention2(MiniCPMAttention):
|
576 |
+
"""
|
577 |
+
MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays
|
578 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
579 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
580 |
+
"""
|
581 |
+
|
582 |
+
def __init__(self, *args, **kwargs):
|
583 |
+
super().__init__(*args, **kwargs)
|
584 |
+
|
585 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
586 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
587 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
588 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
589 |
+
|
590 |
+
def forward(
|
591 |
+
self,
|
592 |
+
hidden_states: torch.Tensor,
|
593 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
594 |
+
position_ids: Optional[torch.LongTensor] = None,
|
595 |
+
past_key_value: Optional[Cache] = None,
|
596 |
+
output_attentions: bool = False,
|
597 |
+
use_cache: bool = False,
|
598 |
+
**kwargs,
|
599 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
600 |
+
# MiniCPMFlashAttention2 attention does not support output_attentions
|
601 |
+
if "padding_mask" in kwargs:
|
602 |
+
warnings.warn(
|
603 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
604 |
+
)
|
605 |
+
|
606 |
+
# overwrite attention_mask with padding_mask
|
607 |
+
attention_mask = kwargs.pop("padding_mask")
|
608 |
+
|
609 |
+
output_attentions = False
|
610 |
+
|
611 |
+
bsz, q_len, _ = hidden_states.size()
|
612 |
+
|
613 |
+
query_states = self.q_proj(hidden_states)
|
614 |
+
key_states = self.k_proj(hidden_states)
|
615 |
+
value_states = self.v_proj(hidden_states)
|
616 |
+
|
617 |
+
# Flash attention requires the input to have the shape
|
618 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
619 |
+
# therefore we just need to keep the original shape
|
620 |
+
query_states = query_states.view(
|
621 |
+
bsz, q_len, self.num_heads, self.head_dim
|
622 |
+
).transpose(1, 2)
|
623 |
+
key_states = key_states.view(
|
624 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
625 |
+
).transpose(1, 2)
|
626 |
+
value_states = value_states.view(
|
627 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
628 |
+
).transpose(1, 2)
|
629 |
+
|
630 |
+
kv_seq_len = key_states.shape[-2]
|
631 |
+
if past_key_value is not None:
|
632 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
633 |
+
cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
|
634 |
+
query_states, key_states = apply_rotary_pos_emb(
|
635 |
+
query_states, key_states, cos, sin, position_ids
|
636 |
+
)
|
637 |
+
|
638 |
+
if past_key_value is not None:
|
639 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
640 |
+
key_states, value_states = past_key_value.update(
|
641 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
642 |
+
)
|
643 |
+
|
644 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
645 |
+
# to be able to avoid many of these transpose/reshape/view.
|
646 |
+
query_states = query_states.transpose(1, 2)
|
647 |
+
key_states = key_states.transpose(1, 2)
|
648 |
+
value_states = value_states.transpose(1, 2)
|
649 |
+
|
650 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
651 |
+
|
652 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
653 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
654 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
655 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
656 |
+
# in fp32. (MiniCPMRMSNorm handles it correctly)
|
657 |
+
|
658 |
+
input_dtype = query_states.dtype
|
659 |
+
if input_dtype == torch.float32:
|
660 |
+
# Handle the case where the model is quantized
|
661 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
662 |
+
target_dtype = self.config._pre_quantization_dtype
|
663 |
+
else:
|
664 |
+
target_dtype = self.q_proj.weight.dtype
|
665 |
+
|
666 |
+
logger.warning_once(
|
667 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
668 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
669 |
+
f" {target_dtype}."
|
670 |
+
)
|
671 |
+
|
672 |
+
query_states = query_states.to(target_dtype)
|
673 |
+
key_states = key_states.to(target_dtype)
|
674 |
+
value_states = value_states.to(target_dtype)
|
675 |
+
|
676 |
+
attn_output = self._flash_attention_forward(
|
677 |
+
query_states,
|
678 |
+
key_states,
|
679 |
+
value_states,
|
680 |
+
attention_mask,
|
681 |
+
q_len,
|
682 |
+
dropout=dropout_rate,
|
683 |
+
)
|
684 |
+
|
685 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
686 |
+
attn_output = self.o_proj(attn_output)
|
687 |
+
|
688 |
+
if not output_attentions:
|
689 |
+
attn_weights = None
|
690 |
+
|
691 |
+
return attn_output, attn_weights, past_key_value
|
692 |
+
|
693 |
+
def _flash_attention_forward(
|
694 |
+
self,
|
695 |
+
query_states,
|
696 |
+
key_states,
|
697 |
+
value_states,
|
698 |
+
attention_mask,
|
699 |
+
query_length,
|
700 |
+
dropout=0.0,
|
701 |
+
softmax_scale=None,
|
702 |
+
):
|
703 |
+
"""
|
704 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
705 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
706 |
+
Args:
|
707 |
+
query_states (`torch.Tensor`):
|
708 |
+
Input query states to be passed to Flash Attention API
|
709 |
+
key_states (`torch.Tensor`):
|
710 |
+
Input key states to be passed to Flash Attention API
|
711 |
+
value_states (`torch.Tensor`):
|
712 |
+
Input value states to be passed to Flash Attention API
|
713 |
+
attention_mask (`torch.Tensor`):
|
714 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
715 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
716 |
+
dropout (`int`, *optional*):
|
717 |
+
Attention dropout
|
718 |
+
softmax_scale (`float`, *optional*):
|
719 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
720 |
+
"""
|
721 |
+
if not self._flash_attn_uses_top_left_mask:
|
722 |
+
causal = self.is_causal
|
723 |
+
else:
|
724 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
|
725 |
+
causal = self.is_causal and query_length != 1
|
726 |
+
# Contains at least one padding token in the sequence
|
727 |
+
if attention_mask is not None:
|
728 |
+
batch_size = query_states.shape[0]
|
729 |
+
(
|
730 |
+
query_states,
|
731 |
+
key_states,
|
732 |
+
value_states,
|
733 |
+
indices_q,
|
734 |
+
cu_seq_lens,
|
735 |
+
max_seq_lens,
|
736 |
+
) = self._upad_input(
|
737 |
+
query_states, key_states, value_states, attention_mask, query_length
|
738 |
+
)
|
739 |
+
|
740 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
741 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
742 |
+
attn_output_unpad = flash_attn_varlen_func(
|
743 |
+
query_states,
|
744 |
+
key_states,
|
745 |
+
value_states,
|
746 |
+
cu_seqlens_q=cu_seqlens_q,
|
747 |
+
cu_seqlens_k=cu_seqlens_k,
|
748 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
749 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
750 |
+
dropout_p=dropout,
|
751 |
+
softmax_scale=softmax_scale,
|
752 |
+
causal=causal,
|
753 |
+
)
|
754 |
+
|
755 |
+
attn_output = pad_input(
|
756 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
757 |
+
)
|
758 |
+
else:
|
759 |
+
attn_output = flash_attn_func(
|
760 |
+
query_states,
|
761 |
+
key_states,
|
762 |
+
value_states,
|
763 |
+
dropout,
|
764 |
+
softmax_scale=softmax_scale,
|
765 |
+
causal=causal,
|
766 |
+
)
|
767 |
+
|
768 |
+
return attn_output
|
769 |
+
|
770 |
+
def _upad_input(
|
771 |
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
772 |
+
):
|
773 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
774 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
775 |
+
|
776 |
+
key_layer = index_first_axis(
|
777 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
778 |
+
indices_k,
|
779 |
+
)
|
780 |
+
value_layer = index_first_axis(
|
781 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
782 |
+
indices_k,
|
783 |
+
)
|
784 |
+
if query_length == kv_seq_len:
|
785 |
+
query_layer = index_first_axis(
|
786 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
787 |
+
indices_k,
|
788 |
+
)
|
789 |
+
cu_seqlens_q = cu_seqlens_k
|
790 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
791 |
+
indices_q = indices_k
|
792 |
+
elif query_length == 1:
|
793 |
+
max_seqlen_in_batch_q = 1
|
794 |
+
cu_seqlens_q = torch.arange(
|
795 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
796 |
+
) # There is a memcpy here, that is very bad.
|
797 |
+
indices_q = cu_seqlens_q[:-1]
|
798 |
+
query_layer = query_layer.squeeze(1)
|
799 |
+
else:
|
800 |
+
# The -q_len: slice assumes left padding.
|
801 |
+
attention_mask = attention_mask[:, -query_length:]
|
802 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
803 |
+
query_layer, attention_mask
|
804 |
+
)
|
805 |
+
|
806 |
+
return (
|
807 |
+
query_layer,
|
808 |
+
key_layer,
|
809 |
+
value_layer,
|
810 |
+
indices_q,
|
811 |
+
(cu_seqlens_q, cu_seqlens_k),
|
812 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
813 |
+
)
|
814 |
+
|
815 |
+
|
816 |
+
class MiniCPMSdpaAttention(MiniCPMAttention):
|
817 |
+
"""
|
818 |
+
MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
819 |
+
`MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
820 |
+
SDPA API.
|
821 |
+
"""
|
822 |
+
|
823 |
+
# Adapted from MiniCPMAttention.forward
|
824 |
+
def forward(
|
825 |
+
self,
|
826 |
+
hidden_states: torch.Tensor,
|
827 |
+
attention_mask: Optional[torch.Tensor] = None,
|
828 |
+
position_ids: Optional[torch.LongTensor] = None,
|
829 |
+
past_key_value: Optional[Cache] = None,
|
830 |
+
output_attentions: bool = False,
|
831 |
+
use_cache: bool = False,
|
832 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
833 |
+
if output_attentions:
|
834 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
835 |
+
logger.warning_once(
|
836 |
+
"MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
837 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
838 |
+
)
|
839 |
+
return super().forward(
|
840 |
+
hidden_states=hidden_states,
|
841 |
+
attention_mask=attention_mask,
|
842 |
+
position_ids=position_ids,
|
843 |
+
past_key_value=past_key_value,
|
844 |
+
output_attentions=output_attentions,
|
845 |
+
use_cache=use_cache,
|
846 |
+
)
|
847 |
+
|
848 |
+
bsz, q_len, _ = hidden_states.size()
|
849 |
+
|
850 |
+
query_states = self.q_proj(hidden_states)
|
851 |
+
key_states = self.k_proj(hidden_states)
|
852 |
+
value_states = self.v_proj(hidden_states)
|
853 |
+
|
854 |
+
query_states = query_states.view(
|
855 |
+
bsz, q_len, self.num_heads, self.head_dim
|
856 |
+
).transpose(1, 2)
|
857 |
+
key_states = key_states.view(
|
858 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
859 |
+
).transpose(1, 2)
|
860 |
+
value_states = value_states.view(
|
861 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
862 |
+
).transpose(1, 2)
|
863 |
+
|
864 |
+
kv_seq_len = key_states.shape[-2]
|
865 |
+
if past_key_value is not None:
|
866 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
867 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
868 |
+
|
869 |
+
query_states, key_states = apply_rotary_pos_emb(
|
870 |
+
query_states, key_states, cos, sin, position_ids
|
871 |
+
)
|
872 |
+
|
873 |
+
if past_key_value is not None:
|
874 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
875 |
+
key_states, value_states = past_key_value.update(
|
876 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
877 |
+
)
|
878 |
+
|
879 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
880 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
881 |
+
|
882 |
+
if attention_mask is not None:
|
883 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
884 |
+
raise ValueError(
|
885 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
886 |
+
)
|
887 |
+
|
888 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
889 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
890 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
891 |
+
query_states = query_states.contiguous()
|
892 |
+
key_states = key_states.contiguous()
|
893 |
+
value_states = value_states.contiguous()
|
894 |
+
|
895 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
896 |
+
query_states,
|
897 |
+
key_states,
|
898 |
+
value_states,
|
899 |
+
attn_mask=attention_mask,
|
900 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
901 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
902 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
903 |
+
)
|
904 |
+
|
905 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
906 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
907 |
+
|
908 |
+
attn_output = self.o_proj(attn_output)
|
909 |
+
|
910 |
+
return attn_output, None, past_key_value
|
911 |
+
|
912 |
+
|
913 |
+
MINICPM_ATTENTION_CLASSES = {
|
914 |
+
"eager": MiniCPMAttention,
|
915 |
+
"flash_attention_2": MiniCPMFlashAttention2,
|
916 |
+
"sdpa": MiniCPMSdpaAttention,
|
917 |
+
}
|
918 |
+
|
919 |
+
|
920 |
+
class MiniCPMDecoderLayer(nn.Module):
|
921 |
+
def __init__(self, config: MiniCPMConfig, layer_idx: int):
|
922 |
+
super().__init__()
|
923 |
+
self.hidden_size = config.hidden_size
|
924 |
+
self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](
|
925 |
+
config=config, layer_idx=layer_idx
|
926 |
+
)
|
927 |
+
|
928 |
+
self.mlp = MiniCPMMLP(config)
|
929 |
+
self.input_layernorm = MiniCPMRMSNorm(
|
930 |
+
config.hidden_size, eps=config.rms_norm_eps
|
931 |
+
)
|
932 |
+
self.post_attention_layernorm = MiniCPMRMSNorm(
|
933 |
+
config.hidden_size, eps=config.rms_norm_eps
|
934 |
+
)
|
935 |
+
|
936 |
+
self.scale_depth = config.scale_depth
|
937 |
+
self.num_hidden_layers = config.num_hidden_layers
|
938 |
+
|
939 |
+
def forward(
|
940 |
+
self,
|
941 |
+
hidden_states: torch.Tensor,
|
942 |
+
attention_mask: Optional[torch.Tensor] = None,
|
943 |
+
position_ids: Optional[torch.LongTensor] = None,
|
944 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
945 |
+
output_attentions: Optional[bool] = False,
|
946 |
+
use_cache: Optional[bool] = False,
|
947 |
+
**kwargs,
|
948 |
+
) -> Tuple[
|
949 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
950 |
+
]:
|
951 |
+
"""
|
952 |
+
Args:
|
953 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
954 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
955 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
956 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
957 |
+
output_attentions (`bool`, *optional*):
|
958 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
959 |
+
returned tensors for more detail.
|
960 |
+
use_cache (`bool`, *optional*):
|
961 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
962 |
+
(see `past_key_values`).
|
963 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
964 |
+
"""
|
965 |
+
if "padding_mask" in kwargs:
|
966 |
+
warnings.warn(
|
967 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
968 |
+
)
|
969 |
+
|
970 |
+
residual = hidden_states
|
971 |
+
hidden_states = self.input_layernorm(hidden_states)
|
972 |
+
# Self Attention
|
973 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
974 |
+
hidden_states=hidden_states,
|
975 |
+
attention_mask=attention_mask,
|
976 |
+
position_ids=position_ids,
|
977 |
+
past_key_value=past_key_value,
|
978 |
+
output_attentions=output_attentions,
|
979 |
+
use_cache=use_cache,
|
980 |
+
**kwargs,
|
981 |
+
)
|
982 |
+
|
983 |
+
hidden_states = residual + hidden_states * (
|
984 |
+
self.scale_depth / math.sqrt(self.num_hidden_layers)
|
985 |
+
)
|
986 |
+
|
987 |
+
# Fully Connected
|
988 |
+
residual = hidden_states
|
989 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
990 |
+
|
991 |
+
hidden_states = self.mlp(hidden_states)
|
992 |
+
hidden_states = residual + hidden_states * (
|
993 |
+
self.scale_depth / math.sqrt(self.num_hidden_layers)
|
994 |
+
)
|
995 |
+
|
996 |
+
outputs = (hidden_states,)
|
997 |
+
|
998 |
+
if output_attentions:
|
999 |
+
outputs += (self_attn_weights,)
|
1000 |
+
|
1001 |
+
if use_cache:
|
1002 |
+
outputs += (present_key_value,)
|
1003 |
+
|
1004 |
+
return outputs
|
1005 |
+
|
1006 |
+
|
1007 |
+
MINICPM_START_DOCSTRING = r"""
|
1008 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1009 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1010 |
+
etc.)
|
1011 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1012 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1013 |
+
and behavior.
|
1014 |
+
Parameters:
|
1015 |
+
config ([`MiniCPMConfig`]):
|
1016 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1017 |
+
load the weights associated with the model, only the configuration. Check out the
|
1018 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1019 |
+
"""
|
1020 |
+
|
1021 |
+
|
1022 |
+
@add_start_docstrings(
|
1023 |
+
"The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
|
1024 |
+
MINICPM_START_DOCSTRING,
|
1025 |
+
)
|
1026 |
+
class MiniCPMPreTrainedModel(PreTrainedModel):
|
1027 |
+
config_class = MiniCPMConfig
|
1028 |
+
base_model_prefix = "model"
|
1029 |
+
supports_gradient_checkpointing = True
|
1030 |
+
_no_split_modules = ["MiniCPMDecoderLayer"]
|
1031 |
+
_skip_keys_device_placement = "past_key_values"
|
1032 |
+
_supports_flash_attn_2 = True
|
1033 |
+
_supports_sdpa = True
|
1034 |
+
_supports_cache_class = True
|
1035 |
+
|
1036 |
+
def _init_weights(self, module):
|
1037 |
+
std = self.config.initializer_range
|
1038 |
+
if isinstance(module, nn.Linear):
|
1039 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1040 |
+
if module.bias is not None:
|
1041 |
+
module.bias.data.zero_()
|
1042 |
+
elif isinstance(module, nn.Embedding):
|
1043 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1044 |
+
if module.padding_idx is not None:
|
1045 |
+
module.weight.data[module.padding_idx].zero_()
|
1046 |
+
|
1047 |
+
|
1048 |
+
MINICPM_INPUTS_DOCSTRING = r"""
|
1049 |
+
Args:
|
1050 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1051 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1052 |
+
it.
|
1053 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1054 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1055 |
+
[What are input IDs?](../glossary#input-ids)
|
1056 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1057 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1058 |
+
- 1 for tokens that are **not masked**,
|
1059 |
+
- 0 for tokens that are **masked**.
|
1060 |
+
[What are attention masks?](../glossary#attention-mask)
|
1061 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1062 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1063 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1064 |
+
`past_key_values`).
|
1065 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1066 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1067 |
+
information on the default strategy.
|
1068 |
+
- 1 indicates the head is **not masked**,
|
1069 |
+
- 0 indicates the head is **masked**.
|
1070 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1071 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1072 |
+
config.n_positions - 1]`.
|
1073 |
+
[What are position IDs?](../glossary#position-ids)
|
1074 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1075 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1076 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1077 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1078 |
+
Two formats are allowed:
|
1079 |
+
- a [`~cache_utils.Cache`] instance;
|
1080 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1081 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1082 |
+
cache format.
|
1083 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1084 |
+
legacy cache format will be returned.
|
1085 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1086 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1087 |
+
of shape `(batch_size, sequence_length)`.
|
1088 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1089 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1090 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1091 |
+
model's internal embedding lookup matrix.
|
1092 |
+
use_cache (`bool`, *optional*):
|
1093 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1094 |
+
`past_key_values`).
|
1095 |
+
output_attentions (`bool`, *optional*):
|
1096 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1097 |
+
tensors for more detail.
|
1098 |
+
output_hidden_states (`bool`, *optional*):
|
1099 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1100 |
+
more detail.
|
1101 |
+
return_dict (`bool`, *optional*):
|
1102 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1103 |
+
"""
|
1104 |
+
|
1105 |
+
|
1106 |
+
@add_start_docstrings(
|
1107 |
+
"The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
|
1108 |
+
MINICPM_START_DOCSTRING,
|
1109 |
+
)
|
1110 |
+
class MiniCPMModel(MiniCPMPreTrainedModel):
|
1111 |
+
"""
|
1112 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
|
1113 |
+
Args:
|
1114 |
+
config: MiniCPMConfig
|
1115 |
+
"""
|
1116 |
+
|
1117 |
+
def __init__(self, config: MiniCPMConfig):
|
1118 |
+
super().__init__(config)
|
1119 |
+
self.padding_idx = config.pad_token_id
|
1120 |
+
self.vocab_size = config.vocab_size
|
1121 |
+
|
1122 |
+
self.embed_tokens = nn.Embedding(
|
1123 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
1124 |
+
)
|
1125 |
+
self.layers = nn.ModuleList(
|
1126 |
+
[
|
1127 |
+
MiniCPMDecoderLayer(config, layer_idx)
|
1128 |
+
for layer_idx in range(config.num_hidden_layers)
|
1129 |
+
]
|
1130 |
+
)
|
1131 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
1132 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
1133 |
+
|
1134 |
+
self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1135 |
+
|
1136 |
+
self.gradient_checkpointing = False
|
1137 |
+
# Initialize weights and apply final processing
|
1138 |
+
self.post_init()
|
1139 |
+
|
1140 |
+
def get_input_embeddings(self):
|
1141 |
+
return self.embed_tokens
|
1142 |
+
|
1143 |
+
def set_input_embeddings(self, value):
|
1144 |
+
self.embed_tokens = value
|
1145 |
+
|
1146 |
+
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
1147 |
+
def forward(
|
1148 |
+
self,
|
1149 |
+
input_ids: torch.LongTensor = None,
|
1150 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1151 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1152 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1153 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1154 |
+
use_cache: Optional[bool] = None,
|
1155 |
+
output_attentions: Optional[bool] = None,
|
1156 |
+
output_hidden_states: Optional[bool] = None,
|
1157 |
+
return_dict: Optional[bool] = None,
|
1158 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1159 |
+
output_attentions = (
|
1160 |
+
output_attentions
|
1161 |
+
if output_attentions is not None
|
1162 |
+
else self.config.output_attentions
|
1163 |
+
)
|
1164 |
+
output_hidden_states = (
|
1165 |
+
output_hidden_states
|
1166 |
+
if output_hidden_states is not None
|
1167 |
+
else self.config.output_hidden_states
|
1168 |
+
)
|
1169 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1170 |
+
|
1171 |
+
return_dict = (
|
1172 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1173 |
+
)
|
1174 |
+
|
1175 |
+
# retrieve input_ids and inputs_embeds
|
1176 |
+
if input_ids is not None and inputs_embeds is not None:
|
1177 |
+
raise ValueError(
|
1178 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
1179 |
+
)
|
1180 |
+
elif input_ids is not None:
|
1181 |
+
batch_size, seq_length = input_ids.shape[:2]
|
1182 |
+
elif inputs_embeds is not None:
|
1183 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
1184 |
+
else:
|
1185 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1186 |
+
|
1187 |
+
if self.gradient_checkpointing and self.training:
|
1188 |
+
if use_cache:
|
1189 |
+
logger.warning_once(
|
1190 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1191 |
+
)
|
1192 |
+
use_cache = False
|
1193 |
+
|
1194 |
+
past_key_values_length = 0
|
1195 |
+
if use_cache:
|
1196 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1197 |
+
if use_legacy_cache:
|
1198 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1199 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1200 |
+
|
1201 |
+
if position_ids is None:
|
1202 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1203 |
+
position_ids = torch.arange(
|
1204 |
+
past_key_values_length,
|
1205 |
+
seq_length + past_key_values_length,
|
1206 |
+
dtype=torch.long,
|
1207 |
+
device=device,
|
1208 |
+
)
|
1209 |
+
position_ids = position_ids.unsqueeze(0)
|
1210 |
+
|
1211 |
+
if inputs_embeds is None:
|
1212 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
|
1213 |
+
|
1214 |
+
if self._use_flash_attention_2:
|
1215 |
+
# 2d mask is passed through the layers
|
1216 |
+
attention_mask = (
|
1217 |
+
attention_mask
|
1218 |
+
if (attention_mask is not None and 0 in attention_mask)
|
1219 |
+
else None
|
1220 |
+
)
|
1221 |
+
elif self._use_sdpa and not output_attentions:
|
1222 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1223 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1224 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1225 |
+
attention_mask,
|
1226 |
+
(batch_size, seq_length),
|
1227 |
+
inputs_embeds,
|
1228 |
+
past_key_values_length,
|
1229 |
+
)
|
1230 |
+
else:
|
1231 |
+
# 4d mask is passed through the layers
|
1232 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1233 |
+
attention_mask,
|
1234 |
+
(batch_size, seq_length),
|
1235 |
+
inputs_embeds,
|
1236 |
+
past_key_values_length,
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
# embed positions
|
1240 |
+
hidden_states = inputs_embeds
|
1241 |
+
|
1242 |
+
# decoder layers
|
1243 |
+
all_hidden_states = () if output_hidden_states else None
|
1244 |
+
all_self_attns = () if output_attentions else None
|
1245 |
+
next_decoder_cache = None
|
1246 |
+
|
1247 |
+
for decoder_layer in self.layers:
|
1248 |
+
if output_hidden_states:
|
1249 |
+
all_hidden_states += (hidden_states,)
|
1250 |
+
|
1251 |
+
if self.gradient_checkpointing and self.training:
|
1252 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1253 |
+
decoder_layer.__call__,
|
1254 |
+
hidden_states,
|
1255 |
+
attention_mask,
|
1256 |
+
position_ids,
|
1257 |
+
past_key_values,
|
1258 |
+
output_attentions,
|
1259 |
+
use_cache,
|
1260 |
+
)
|
1261 |
+
else:
|
1262 |
+
layer_outputs = decoder_layer(
|
1263 |
+
hidden_states,
|
1264 |
+
attention_mask=attention_mask,
|
1265 |
+
position_ids=position_ids,
|
1266 |
+
past_key_value=past_key_values,
|
1267 |
+
output_attentions=output_attentions,
|
1268 |
+
use_cache=use_cache,
|
1269 |
+
)
|
1270 |
+
|
1271 |
+
hidden_states = layer_outputs[0]
|
1272 |
+
|
1273 |
+
if use_cache:
|
1274 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1275 |
+
|
1276 |
+
if output_attentions:
|
1277 |
+
all_self_attns += (layer_outputs[1],)
|
1278 |
+
|
1279 |
+
hidden_states = self.norm(hidden_states)
|
1280 |
+
|
1281 |
+
# add hidden states from the last decoder layer
|
1282 |
+
if output_hidden_states:
|
1283 |
+
all_hidden_states += (hidden_states,)
|
1284 |
+
|
1285 |
+
next_cache = None
|
1286 |
+
if use_cache:
|
1287 |
+
next_cache = (
|
1288 |
+
next_decoder_cache.to_legacy_cache()
|
1289 |
+
if use_legacy_cache
|
1290 |
+
else next_decoder_cache
|
1291 |
+
)
|
1292 |
+
if not return_dict:
|
1293 |
+
return tuple(
|
1294 |
+
v
|
1295 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1296 |
+
if v is not None
|
1297 |
+
)
|
1298 |
+
return BaseModelOutputWithPast(
|
1299 |
+
last_hidden_state=hidden_states,
|
1300 |
+
past_key_values=next_cache,
|
1301 |
+
hidden_states=all_hidden_states,
|
1302 |
+
attentions=all_self_attns,
|
1303 |
+
)
|
1304 |
+
|
1305 |
+
|
1306 |
+
class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
1307 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1308 |
+
|
1309 |
+
def __init__(self, config):
|
1310 |
+
super().__init__(config)
|
1311 |
+
self.model = MiniCPMModel(config)
|
1312 |
+
self.vocab_size = config.vocab_size
|
1313 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1314 |
+
|
1315 |
+
# Initialize weights and apply final processing
|
1316 |
+
self.post_init()
|
1317 |
+
|
1318 |
+
def get_input_embeddings(self):
|
1319 |
+
return self.model.embed_tokens
|
1320 |
+
|
1321 |
+
def set_input_embeddings(self, value):
|
1322 |
+
self.model.embed_tokens = value
|
1323 |
+
|
1324 |
+
def get_output_embeddings(self):
|
1325 |
+
return self.lm_head
|
1326 |
+
|
1327 |
+
def set_output_embeddings(self, new_embeddings):
|
1328 |
+
self.lm_head = new_embeddings
|
1329 |
+
|
1330 |
+
def set_decoder(self, decoder):
|
1331 |
+
self.model = decoder
|
1332 |
+
|
1333 |
+
def get_decoder(self):
|
1334 |
+
return self.model
|
1335 |
+
|
1336 |
+
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
1337 |
+
@replace_return_docstrings(
|
1338 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
1339 |
+
)
|
1340 |
+
def forward(
|
1341 |
+
self,
|
1342 |
+
input_ids: torch.LongTensor = None,
|
1343 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1344 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1345 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1346 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1347 |
+
labels: Optional[torch.LongTensor] = None,
|
1348 |
+
use_cache: Optional[bool] = None,
|
1349 |
+
output_attentions: Optional[bool] = None,
|
1350 |
+
output_hidden_states: Optional[bool] = None,
|
1351 |
+
return_dict: Optional[bool] = None,
|
1352 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1353 |
+
r"""
|
1354 |
+
Args:
|
1355 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1356 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1357 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1358 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1359 |
+
Returns:
|
1360 |
+
Example:
|
1361 |
+
```python
|
1362 |
+
>>> from transformers import AutoTokenizer, MiniCPMForCausalLM
|
1363 |
+
>>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1364 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1365 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1366 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1367 |
+
>>> # Generate
|
1368 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1369 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1370 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1371 |
+
```"""
|
1372 |
+
output_attentions = (
|
1373 |
+
output_attentions
|
1374 |
+
if output_attentions is not None
|
1375 |
+
else self.config.output_attentions
|
1376 |
+
)
|
1377 |
+
output_hidden_states = (
|
1378 |
+
output_hidden_states
|
1379 |
+
if output_hidden_states is not None
|
1380 |
+
else self.config.output_hidden_states
|
1381 |
+
)
|
1382 |
+
return_dict = (
|
1383 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1387 |
+
outputs = self.model(
|
1388 |
+
input_ids=input_ids,
|
1389 |
+
attention_mask=attention_mask,
|
1390 |
+
position_ids=position_ids,
|
1391 |
+
past_key_values=past_key_values,
|
1392 |
+
inputs_embeds=inputs_embeds,
|
1393 |
+
use_cache=use_cache,
|
1394 |
+
output_attentions=output_attentions,
|
1395 |
+
output_hidden_states=output_hidden_states,
|
1396 |
+
return_dict=return_dict,
|
1397 |
+
)
|
1398 |
+
|
1399 |
+
hidden_states = outputs[0]
|
1400 |
+
if self.config.pretraining_tp > 1:
|
1401 |
+
lm_head_slices = self.lm_head.weight.split(
|
1402 |
+
self.vocab_size // self.config.pretraining_tp, dim=0
|
1403 |
+
)
|
1404 |
+
logits = [
|
1405 |
+
F.linear(hidden_states, lm_head_slices[i])
|
1406 |
+
for i in range(self.config.pretraining_tp)
|
1407 |
+
]
|
1408 |
+
logits = torch.cat(logits, dim=-1)
|
1409 |
+
else:
|
1410 |
+
logits = self.lm_head(
|
1411 |
+
hidden_states / (self.config.hidden_size / self.config.dim_model_base)
|
1412 |
+
)
|
1413 |
+
logits = logits.float()
|
1414 |
+
|
1415 |
+
loss = None
|
1416 |
+
if labels is not None:
|
1417 |
+
# Shift so that tokens < n predict n
|
1418 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1419 |
+
shift_labels = labels[..., 1:].contiguous()
|
1420 |
+
# Flatten the tokens
|
1421 |
+
loss_fct = CrossEntropyLoss()
|
1422 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1423 |
+
shift_labels = shift_labels.view(-1)
|
1424 |
+
# Enable model parallelism
|
1425 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1426 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1427 |
+
|
1428 |
+
if not return_dict:
|
1429 |
+
output = (logits,) + outputs[1:]
|
1430 |
+
return (loss,) + output if loss is not None else output
|
1431 |
+
|
1432 |
+
return CausalLMOutputWithPast(
|
1433 |
+
loss=loss,
|
1434 |
+
logits=logits,
|
1435 |
+
past_key_values=outputs.past_key_values,
|
1436 |
+
hidden_states=outputs.hidden_states,
|
1437 |
+
attentions=outputs.attentions,
|
1438 |
+
)
|
1439 |
+
|
1440 |
+
def prepare_inputs_for_generation(
|
1441 |
+
self,
|
1442 |
+
input_ids,
|
1443 |
+
past_key_values=None,
|
1444 |
+
attention_mask=None,
|
1445 |
+
inputs_embeds=None,
|
1446 |
+
**kwargs,
|
1447 |
+
):
|
1448 |
+
if past_key_values is not None:
|
1449 |
+
if isinstance(past_key_values, Cache):
|
1450 |
+
cache_length = past_key_values.get_seq_length()
|
1451 |
+
past_length = past_key_values.seen_tokens
|
1452 |
+
max_cache_length = past_key_values.get_max_length()
|
1453 |
+
else:
|
1454 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1455 |
+
max_cache_length = None
|
1456 |
+
|
1457 |
+
# Keep only the unprocessed tokens:
|
1458 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1459 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1460 |
+
# input)
|
1461 |
+
if (
|
1462 |
+
attention_mask is not None
|
1463 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
1464 |
+
):
|
1465 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1466 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1467 |
+
# input_ids based on the past_length.
|
1468 |
+
elif past_length < input_ids.shape[1]:
|
1469 |
+
input_ids = input_ids[:, past_length:]
|
1470 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1471 |
+
|
1472 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1473 |
+
if (
|
1474 |
+
max_cache_length is not None
|
1475 |
+
and attention_mask is not None
|
1476 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1477 |
+
):
|
1478 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1479 |
+
|
1480 |
+
position_ids = kwargs.get("position_ids", None)
|
1481 |
+
if attention_mask is not None and position_ids is None:
|
1482 |
+
# create position_ids on the fly for batch generation
|
1483 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1484 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1485 |
+
if past_key_values:
|
1486 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1487 |
+
|
1488 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1489 |
+
if inputs_embeds is not None and past_key_values is None:
|
1490 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1491 |
+
else:
|
1492 |
+
model_inputs = {"input_ids": input_ids}
|
1493 |
+
|
1494 |
+
model_inputs.update(
|
1495 |
+
{
|
1496 |
+
"position_ids": position_ids,
|
1497 |
+
"past_key_values": past_key_values,
|
1498 |
+
"use_cache": kwargs.get("use_cache"),
|
1499 |
+
"attention_mask": attention_mask,
|
1500 |
+
}
|
1501 |
+
)
|
1502 |
+
return model_inputs
|
1503 |
+
|
1504 |
+
@staticmethod
|
1505 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1506 |
+
reordered_past = ()
|
1507 |
+
for layer_past in past_key_values:
|
1508 |
+
reordered_past += (
|
1509 |
+
tuple(
|
1510 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1511 |
+
for past_state in layer_past
|
1512 |
+
),
|
1513 |
+
)
|
1514 |
+
return reordered_past
|
1515 |
+
|
1516 |
+
@torch.inference_mode()
|
1517 |
+
def chat(
|
1518 |
+
self,
|
1519 |
+
tokenizer,
|
1520 |
+
query: str,
|
1521 |
+
history: List[Dict] = None,
|
1522 |
+
role: str = "user",
|
1523 |
+
max_length: int = 4096,
|
1524 |
+
num_beams=1,
|
1525 |
+
do_sample=True,
|
1526 |
+
top_p=0.8,
|
1527 |
+
temperature=0.3,
|
1528 |
+
logits_processor=None,
|
1529 |
+
**kwargs,
|
1530 |
+
):
|
1531 |
+
if history is None:
|
1532 |
+
history = []
|
1533 |
+
if logits_processor:
|
1534 |
+
gen_kwargs = {
|
1535 |
+
"max_length": max_length,
|
1536 |
+
"num_beams": num_beams,
|
1537 |
+
"do_sample": do_sample,
|
1538 |
+
"top_p": top_p,
|
1539 |
+
"temperature": temperature,
|
1540 |
+
"logits_processor": logits_processor,
|
1541 |
+
**kwargs,
|
1542 |
+
}
|
1543 |
+
else:
|
1544 |
+
gen_kwargs = {
|
1545 |
+
"max_length": max_length,
|
1546 |
+
"num_beams": num_beams,
|
1547 |
+
"do_sample": do_sample,
|
1548 |
+
"top_p": top_p,
|
1549 |
+
"temperature": temperature,
|
1550 |
+
"logits_processor": logits_processor,
|
1551 |
+
**kwargs,
|
1552 |
+
}
|
1553 |
+
|
1554 |
+
history.append({"role": role, "content": query})
|
1555 |
+
history_str = tokenizer.apply_chat_template(
|
1556 |
+
history, tokenize=False, add_generation_prompt=False
|
1557 |
+
)
|
1558 |
+
inputs = tokenizer(history_str, return_tensors="pt").to(self.device)
|
1559 |
+
outputs = self.generate(**inputs, **gen_kwargs)
|
1560 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]) : -1]
|
1561 |
+
response = tokenizer.decode(outputs)
|
1562 |
+
pattern = re.compile(r".*?(?=<AI>|<用户>)", re.DOTALL)
|
1563 |
+
matches = pattern.findall(response)
|
1564 |
+
if len(matches) > 0:
|
1565 |
+
response = matches[0]
|
1566 |
+
history.append({"role": "assistant", "content": response})
|
1567 |
+
return response, history
|
1568 |
+
|
1569 |
+
|
1570 |
+
@add_start_docstrings(
|
1571 |
+
"""
|
1572 |
+
The MiniCPM Model transformer with a sequence classification head on top (linear layer).
|
1573 |
+
[`MiniCPMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1574 |
+
(e.g. GPT-2) do.
|
1575 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1576 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1577 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1578 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1579 |
+
each row of the batch).
|
1580 |
+
""",
|
1581 |
+
MINICPM_START_DOCSTRING,
|
1582 |
+
)
|
1583 |
+
class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel):
|
1584 |
+
def __init__(self, config):
|
1585 |
+
super().__init__(config)
|
1586 |
+
self.num_labels = config.num_labels
|
1587 |
+
self.model = MiniCPMModel(config)
|
1588 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1589 |
+
|
1590 |
+
# Initialize weights and apply final processing
|
1591 |
+
self.post_init()
|
1592 |
+
|
1593 |
+
def get_input_embeddings(self):
|
1594 |
+
return self.model.embed_tokens
|
1595 |
+
|
1596 |
+
def set_input_embeddings(self, value):
|
1597 |
+
self.model.embed_tokens = value
|
1598 |
+
|
1599 |
+
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
1600 |
+
def forward(
|
1601 |
+
self,
|
1602 |
+
input_ids: torch.LongTensor = None,
|
1603 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1604 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1605 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1606 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1607 |
+
labels: Optional[torch.LongTensor] = None,
|
1608 |
+
use_cache: Optional[bool] = None,
|
1609 |
+
output_attentions: Optional[bool] = None,
|
1610 |
+
output_hidden_states: Optional[bool] = None,
|
1611 |
+
return_dict: Optional[bool] = None,
|
1612 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1613 |
+
r"""
|
1614 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1615 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1616 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1617 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1618 |
+
"""
|
1619 |
+
return_dict = (
|
1620 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1621 |
+
)
|
1622 |
+
|
1623 |
+
transformer_outputs = self.model(
|
1624 |
+
input_ids,
|
1625 |
+
attention_mask=attention_mask,
|
1626 |
+
position_ids=position_ids,
|
1627 |
+
past_key_values=past_key_values,
|
1628 |
+
inputs_embeds=inputs_embeds,
|
1629 |
+
use_cache=use_cache,
|
1630 |
+
output_attentions=output_attentions,
|
1631 |
+
output_hidden_states=output_hidden_states,
|
1632 |
+
return_dict=return_dict,
|
1633 |
+
)
|
1634 |
+
hidden_states = transformer_outputs[0]
|
1635 |
+
logits = self.score(hidden_states)
|
1636 |
+
|
1637 |
+
if input_ids is not None:
|
1638 |
+
batch_size = input_ids.shape[0]
|
1639 |
+
else:
|
1640 |
+
batch_size = inputs_embeds.shape[0]
|
1641 |
+
|
1642 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1643 |
+
raise ValueError(
|
1644 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
1645 |
+
)
|
1646 |
+
if self.config.pad_token_id is None:
|
1647 |
+
sequence_lengths = -1
|
1648 |
+
else:
|
1649 |
+
if input_ids is not None:
|
1650 |
+
sequence_lengths = (
|
1651 |
+
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1652 |
+
).to(logits.device)
|
1653 |
+
else:
|
1654 |
+
sequence_lengths = -1
|
1655 |
+
|
1656 |
+
pooled_logits = logits[
|
1657 |
+
torch.arange(batch_size, device=logits.device), sequence_lengths
|
1658 |
+
]
|
1659 |
+
|
1660 |
+
loss = None
|
1661 |
+
if labels is not None:
|
1662 |
+
labels = labels.to(logits.device)
|
1663 |
+
if self.config.problem_type is None:
|
1664 |
+
if self.num_labels == 1:
|
1665 |
+
self.config.problem_type = "regression"
|
1666 |
+
elif self.num_labels > 1 and (
|
1667 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1668 |
+
):
|
1669 |
+
self.config.problem_type = "single_label_classification"
|
1670 |
+
else:
|
1671 |
+
self.config.problem_type = "multi_label_classification"
|
1672 |
+
|
1673 |
+
if self.config.problem_type == "regression":
|
1674 |
+
loss_fct = MSELoss()
|
1675 |
+
if self.num_labels == 1:
|
1676 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1677 |
+
else:
|
1678 |
+
loss = loss_fct(pooled_logits, labels)
|
1679 |
+
elif self.config.problem_type == "single_label_classification":
|
1680 |
+
loss_fct = CrossEntropyLoss()
|
1681 |
+
loss = loss_fct(
|
1682 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
1683 |
+
)
|
1684 |
+
elif self.config.problem_type == "multi_label_classification":
|
1685 |
+
loss_fct = BCEWithLogitsLoss()
|
1686 |
+
loss = loss_fct(pooled_logits, labels)
|
1687 |
+
if not return_dict:
|
1688 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1689 |
+
return ((loss,) + output) if loss is not None else output
|
1690 |
+
|
1691 |
+
return SequenceClassifierOutputWithPast(
|
1692 |
+
loss=loss,
|
1693 |
+
logits=pooled_logits,
|
1694 |
+
past_key_values=transformer_outputs.past_key_values,
|
1695 |
+
hidden_states=transformer_outputs.hidden_states,
|
1696 |
+
attentions=transformer_outputs.attentions,
|
1697 |
+
)
|
modeling_minicpmv.py
ADDED
@@ -0,0 +1,606 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import json
|
3 |
+
import timm
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
from PIL import Image
|
7 |
+
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
|
8 |
+
from torchvision import transforms
|
9 |
+
from transformers import LlamaTokenizer
|
10 |
+
from transformers.integrations import is_deepspeed_zero3_enabled
|
11 |
+
from .configuration_minicpm import MiniCPMVConfig
|
12 |
+
from .modeling_minicpm import MiniCPMForCausalLM, MiniCPMPreTrainedModel
|
13 |
+
from .resampler import Resampler
|
14 |
+
from functools import partial
|
15 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
16 |
+
from peft.utils.other import ModulesToSaveWrapper
|
17 |
+
|
18 |
+
|
19 |
+
class MiniCPMVPreTrainedModel(MiniCPMPreTrainedModel):
|
20 |
+
config_class = MiniCPMVConfig
|
21 |
+
|
22 |
+
|
23 |
+
class MiniCPMV(MiniCPMVPreTrainedModel):
|
24 |
+
def __init__(self, config):
|
25 |
+
super().__init__(config)
|
26 |
+
|
27 |
+
self.llm = MiniCPMForCausalLM(config)
|
28 |
+
self.vpm = self.init_vision_module()
|
29 |
+
self.vision_dim = self.vpm.embed_dim
|
30 |
+
self.embed_dim = self.llm.config.hidden_size
|
31 |
+
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
|
32 |
+
self.transform = self.init_transform()
|
33 |
+
|
34 |
+
def init_vision_module(self):
|
35 |
+
model = timm.create_model(
|
36 |
+
self.config.vision_encoder,
|
37 |
+
pretrained=False,
|
38 |
+
num_classes=0,
|
39 |
+
dynamic_img_size=True,
|
40 |
+
dynamic_img_pad=True
|
41 |
+
)
|
42 |
+
|
43 |
+
if isinstance(model, timm.models.VisionTransformer):
|
44 |
+
if model.attn_pool is not None:
|
45 |
+
model.attn_pool = torch.nn.Identity()
|
46 |
+
|
47 |
+
if self.config.drop_vision_last_layer:
|
48 |
+
model.blocks = model.blocks[:-1]
|
49 |
+
|
50 |
+
return model
|
51 |
+
|
52 |
+
def init_resampler(self, embed_dim, vision_dim):
|
53 |
+
return Resampler(
|
54 |
+
grid_size=int(math.sqrt(self.config.query_num)),
|
55 |
+
embed_dim=embed_dim,
|
56 |
+
num_heads=embed_dim // 128,
|
57 |
+
kv_dim=vision_dim,
|
58 |
+
adaptive=True
|
59 |
+
)
|
60 |
+
|
61 |
+
def init_transform(self):
|
62 |
+
return transforms.Compose(
|
63 |
+
[
|
64 |
+
transforms.ToTensor(),
|
65 |
+
transforms.Normalize(
|
66 |
+
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
|
67 |
+
),
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
def get_input_embeddings(self):
|
72 |
+
return self.llm.get_input_embeddings()
|
73 |
+
|
74 |
+
def set_input_embeddings(self, value):
|
75 |
+
self.llm.embed_tokens = value
|
76 |
+
|
77 |
+
def vpm_forward_features(self, pixel_value):
|
78 |
+
if isinstance(self.vpm, ModulesToSaveWrapper):
|
79 |
+
if self.vpm.disable_adapters or (self.vpm.active_adapter not in self.vpm.modules_to_save):
|
80 |
+
return self.vpm.original_module.forward_features(pixel_value)
|
81 |
+
return self.vpm.modules_to_save[self.vpm.active_adapter].forward_features(pixel_value)
|
82 |
+
else:
|
83 |
+
return self.vpm.forward_features(pixel_value)
|
84 |
+
|
85 |
+
def get_vision_embedding(self, pixel_values):
|
86 |
+
res = []
|
87 |
+
dtype = self.llm.lm_head.weight.dtype
|
88 |
+
def process_each_pixel(pixel_value, dtype, config, vpm, resampler):
|
89 |
+
H, W = pixel_value.shape[-2:]
|
90 |
+
target_size = (math.ceil(H / config.patch_size), math.ceil(W / config.patch_size))
|
91 |
+
vision_embedding = self.vpm_forward_features(pixel_value.unsqueeze(0).type(dtype))
|
92 |
+
|
93 |
+
if hasattr(vpm, 'num_prefix_tokens') and vpm.num_prefix_tokens > 0:
|
94 |
+
vision_embedding = vision_embedding[:, vpm.num_prefix_tokens:]
|
95 |
+
return resampler(vision_embedding, target_size)
|
96 |
+
|
97 |
+
for pixel_value in pixel_values:
|
98 |
+
result = process_each_pixel(pixel_value, dtype, self.config, self.vpm, self.resampler)
|
99 |
+
res.append(result)
|
100 |
+
return torch.vstack(res)
|
101 |
+
|
102 |
+
def get_vllm_embedding(self, data):
|
103 |
+
if "vision_hidden_states" not in data:
|
104 |
+
pixel_values_list = data["pixel_values"]
|
105 |
+
vision_hidden_states = []
|
106 |
+
for pixel_values in pixel_values_list:
|
107 |
+
if len(pixel_values) > 0:
|
108 |
+
vision_hidden_states.append(self.get_vision_embedding(pixel_values))
|
109 |
+
elif self.training:
|
110 |
+
dtype = self.llm.lm_head.weight.dtype
|
111 |
+
device = self.llm.lm_head.weight.device
|
112 |
+
dummy_image = torch.zeros(
|
113 |
+
(1, 3, 224, 224), device=device, dtype=dtype
|
114 |
+
)
|
115 |
+
vision_hidden_states.append(self.get_vision_embedding(dummy_image))
|
116 |
+
else:
|
117 |
+
vision_hidden_states.append([])
|
118 |
+
|
119 |
+
else:
|
120 |
+
vision_hidden_states = data["vision_hidden_states"]
|
121 |
+
|
122 |
+
vllm_embedding = (
|
123 |
+
self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
|
124 |
+
)
|
125 |
+
vision_hidden_states = [
|
126 |
+
i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i
|
127 |
+
for i in vision_hidden_states
|
128 |
+
]
|
129 |
+
|
130 |
+
bs = len(data["input_ids"])
|
131 |
+
for i in range(bs):
|
132 |
+
cur_vs_hs = vision_hidden_states[i]
|
133 |
+
if len(cur_vs_hs) > 0:
|
134 |
+
cur_vllm_emb = vllm_embedding[i]
|
135 |
+
cur_image_bound = data["image_bound"][i]
|
136 |
+
if len(cur_image_bound) > 0:
|
137 |
+
image_indices = torch.stack(
|
138 |
+
[
|
139 |
+
torch.arange(r[0], r[1], dtype=torch.long)
|
140 |
+
for r in cur_image_bound
|
141 |
+
]
|
142 |
+
).to(vllm_embedding.device)
|
143 |
+
|
144 |
+
cur_vllm_emb.scatter_(
|
145 |
+
0,
|
146 |
+
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
|
147 |
+
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
|
148 |
+
)
|
149 |
+
elif self.training:
|
150 |
+
cur_vllm_emb += cur_vs_hs[0].mean() * 0
|
151 |
+
|
152 |
+
return vllm_embedding, vision_hidden_states
|
153 |
+
|
154 |
+
def forward(self, data, **kwargs):
|
155 |
+
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
156 |
+
position_ids = data["position_ids"]
|
157 |
+
if position_ids.dtype != torch.int64:
|
158 |
+
position_ids = position_ids.long()
|
159 |
+
|
160 |
+
return self.llm(
|
161 |
+
input_ids=None,
|
162 |
+
position_ids=position_ids,
|
163 |
+
inputs_embeds=vllm_embedding,
|
164 |
+
**kwargs
|
165 |
+
)
|
166 |
+
|
167 |
+
def _convert_to_tensors(
|
168 |
+
self, tokenizer, input_str, max_inp_length: Optional[int] = None
|
169 |
+
):
|
170 |
+
if tokenizer.add_bos_token:
|
171 |
+
input_ids = tokenizer.encode(input_str)
|
172 |
+
else:
|
173 |
+
input_ids = [tokenizer.bos_id] + tokenizer.encode(input_str)
|
174 |
+
if max_inp_length is not None:
|
175 |
+
input_ids = input_ids[:max_inp_length]
|
176 |
+
input_ids = torch.tensor(input_ids, dtype=torch.int32)
|
177 |
+
|
178 |
+
image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
|
179 |
+
# 跳过 im_start
|
180 |
+
image_start_tokens += 1
|
181 |
+
image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
|
182 |
+
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
|
183 |
+
image_bound = torch.hstack(
|
184 |
+
[
|
185 |
+
image_start_tokens[:valid_image_nums].unsqueeze(-1),
|
186 |
+
image_end_tokens[:valid_image_nums].unsqueeze(-1),
|
187 |
+
]
|
188 |
+
)
|
189 |
+
|
190 |
+
model_input = {}
|
191 |
+
model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
|
192 |
+
model_input["image_bound"] = image_bound
|
193 |
+
|
194 |
+
return model_input
|
195 |
+
|
196 |
+
def _process_list(
|
197 |
+
self, tokenizer, data_list: List[str], max_inp_length: Optional[int] = None
|
198 |
+
):
|
199 |
+
pad_keys = ["input_ids"]
|
200 |
+
input_tensors = []
|
201 |
+
for data in data_list:
|
202 |
+
input_tensors.append(
|
203 |
+
self._convert_to_tensors(tokenizer, data, max_inp_length)
|
204 |
+
)
|
205 |
+
padded = {}
|
206 |
+
for key in pad_keys:
|
207 |
+
padded[key] = pad(input_tensors, key, padding_side="left").to(self.device)
|
208 |
+
padded["image_bound"] = [i["image_bound"] for i in input_tensors]
|
209 |
+
return padded
|
210 |
+
|
211 |
+
def _decode(self, inputs_embeds, tokenizer, **kwargs):
|
212 |
+
output = self.llm.generate(
|
213 |
+
inputs_embeds=inputs_embeds,
|
214 |
+
pad_token_id=0,
|
215 |
+
eos_token_id=tokenizer.eos_token_id,
|
216 |
+
**kwargs
|
217 |
+
)
|
218 |
+
return self._decode_text(output, tokenizer)
|
219 |
+
|
220 |
+
def _decode_text(self, result_ids, tokenizer):
|
221 |
+
result_text = []
|
222 |
+
for result in result_ids:
|
223 |
+
result = result[result != 0]
|
224 |
+
if result[0] == tokenizer.bos_id:
|
225 |
+
result = result[1:]
|
226 |
+
if result[-1] == tokenizer.eos_id:
|
227 |
+
result = result[:-1]
|
228 |
+
result_text.append(tokenizer.decode(result).strip())
|
229 |
+
return result_text
|
230 |
+
|
231 |
+
def slice_image(self, image):
|
232 |
+
return slice_image(
|
233 |
+
image,
|
234 |
+
self.config.max_slice_nums,
|
235 |
+
self.config.scale_resolution,
|
236 |
+
self.config.patch_size,
|
237 |
+
)
|
238 |
+
|
239 |
+
def get_slice_image_placeholder(self, image, tokenizer):
|
240 |
+
image_placeholder = (
|
241 |
+
tokenizer.im_start
|
242 |
+
+ tokenizer.unk_token * self.config.query_num
|
243 |
+
+ tokenizer.im_end
|
244 |
+
)
|
245 |
+
|
246 |
+
slice_images = []
|
247 |
+
|
248 |
+
source_image, patches, best_grid = slice_image(
|
249 |
+
image,
|
250 |
+
self.config.max_slice_nums,
|
251 |
+
self.config.scale_resolution,
|
252 |
+
self.config.patch_size,
|
253 |
+
)
|
254 |
+
|
255 |
+
slice_images.append(source_image)
|
256 |
+
final_placeholder = image_placeholder
|
257 |
+
|
258 |
+
if len(patches) > 0:
|
259 |
+
for i in range(len(patches)):
|
260 |
+
for j in range(len(patches[0])):
|
261 |
+
slice_images.append(patches[i][j])
|
262 |
+
|
263 |
+
final_placeholder += get_grid_placeholder(
|
264 |
+
tokenizer, best_grid, self.config.query_num
|
265 |
+
)
|
266 |
+
|
267 |
+
return slice_images, final_placeholder
|
268 |
+
|
269 |
+
def generate(
|
270 |
+
self,
|
271 |
+
data_list=None,
|
272 |
+
img_list=None,
|
273 |
+
tokenizer=None,
|
274 |
+
max_inp_length: Optional[int] = None,
|
275 |
+
vision_hidden_states=None,
|
276 |
+
return_vision_hidden_states=False,
|
277 |
+
**kwargs
|
278 |
+
):
|
279 |
+
|
280 |
+
assert data_list is not None
|
281 |
+
bs = len(data_list)
|
282 |
+
if img_list == None:
|
283 |
+
img_list = [[] for i in range(bs)]
|
284 |
+
assert bs == len(img_list)
|
285 |
+
|
286 |
+
model_inputs = self._process_list(tokenizer, data_list, max_inp_length)
|
287 |
+
|
288 |
+
if vision_hidden_states is None:
|
289 |
+
pixel_values = []
|
290 |
+
for i in range(bs):
|
291 |
+
img_inps = []
|
292 |
+
for img in img_list[i]:
|
293 |
+
img_inps.append(self.transform(img).to(self.device))
|
294 |
+
if img_inps:
|
295 |
+
pixel_values.append(img_inps)
|
296 |
+
else:
|
297 |
+
pixel_values.append([])
|
298 |
+
model_inputs["pixel_values"] = pixel_values
|
299 |
+
else:
|
300 |
+
model_inputs["vision_hidden_states"] = vision_hidden_states
|
301 |
+
|
302 |
+
with torch.inference_mode():
|
303 |
+
(
|
304 |
+
model_inputs["inputs_embeds"],
|
305 |
+
vision_hidden_states,
|
306 |
+
) = self.get_vllm_embedding(model_inputs)
|
307 |
+
|
308 |
+
result = self._decode(model_inputs["inputs_embeds"], tokenizer, **kwargs)
|
309 |
+
|
310 |
+
if return_vision_hidden_states:
|
311 |
+
return result, vision_hidden_states
|
312 |
+
|
313 |
+
return result
|
314 |
+
|
315 |
+
def chat(
|
316 |
+
self,
|
317 |
+
image,
|
318 |
+
msgs,
|
319 |
+
context,
|
320 |
+
tokenizer,
|
321 |
+
vision_hidden_states=None,
|
322 |
+
max_new_tokens=1024,
|
323 |
+
sampling=True,
|
324 |
+
max_inp_length=2048,
|
325 |
+
**kwargs
|
326 |
+
):
|
327 |
+
if isinstance(msgs, str):
|
328 |
+
msgs = json.loads(msgs)
|
329 |
+
# msgs to prompt
|
330 |
+
prompt = ""
|
331 |
+
for i, msg in enumerate(msgs):
|
332 |
+
role = msg["role"]
|
333 |
+
content = msg["content"]
|
334 |
+
assert role in ["user", "assistant"]
|
335 |
+
if i == 0:
|
336 |
+
assert role == "user", "The role of first msg should be user"
|
337 |
+
if self.config.slice_mode:
|
338 |
+
images, final_placeholder = self.get_slice_image_placeholder(
|
339 |
+
image, tokenizer
|
340 |
+
)
|
341 |
+
content = final_placeholder + "\n" + content
|
342 |
+
else:
|
343 |
+
images = [image]
|
344 |
+
content = (
|
345 |
+
tokenizer.im_start
|
346 |
+
+ tokenizer.unk_token * self.config.query_num
|
347 |
+
+ tokenizer.im_end
|
348 |
+
+ "\n"
|
349 |
+
+ content
|
350 |
+
)
|
351 |
+
prompt += "<用户>" if role == "user" else "<AI>"
|
352 |
+
prompt += content
|
353 |
+
prompt += "<AI>"
|
354 |
+
final_input = prompt
|
355 |
+
|
356 |
+
if sampling:
|
357 |
+
generation_config = {
|
358 |
+
"top_p": 0.8,
|
359 |
+
"top_k": 100,
|
360 |
+
"temperature": 0.7,
|
361 |
+
"do_sample": True,
|
362 |
+
"repetition_penalty": 1.05
|
363 |
+
}
|
364 |
+
else:
|
365 |
+
generation_config = {
|
366 |
+
"num_beams": 3,
|
367 |
+
"repetition_penalty": 1.2,
|
368 |
+
}
|
369 |
+
|
370 |
+
generation_config.update(
|
371 |
+
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
|
372 |
+
)
|
373 |
+
|
374 |
+
with torch.inference_mode():
|
375 |
+
res, vision_hidden_states = self.generate(
|
376 |
+
data_list=[final_input],
|
377 |
+
max_inp_length=max_inp_length,
|
378 |
+
img_list=[images],
|
379 |
+
tokenizer=tokenizer,
|
380 |
+
max_new_tokens=max_new_tokens,
|
381 |
+
vision_hidden_states=vision_hidden_states,
|
382 |
+
return_vision_hidden_states=True,
|
383 |
+
**generation_config
|
384 |
+
)
|
385 |
+
answer = res[0]
|
386 |
+
context = msgs.copy()
|
387 |
+
context.append({"role": "assistant", "content": answer})
|
388 |
+
|
389 |
+
return answer, context, generation_config
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
class LlamaTokenizerWrapper(LlamaTokenizer):
|
395 |
+
def __init__(self, **kwargs):
|
396 |
+
super().__init__(**kwargs)
|
397 |
+
self.im_start = "<image>"
|
398 |
+
self.im_end = "</image>"
|
399 |
+
self.ref_start = "<ref>"
|
400 |
+
self.ref_end = "</ref>"
|
401 |
+
self.box_start = "<box>"
|
402 |
+
self.box_end = "</box>"
|
403 |
+
self.quad_start = "<quad>"
|
404 |
+
self.quad_end = "</quad>"
|
405 |
+
self.point_start = "<point>"
|
406 |
+
self.point_end = "</point>"
|
407 |
+
self.slice_start = "<slice>"
|
408 |
+
self.slice_end = "</slice>"
|
409 |
+
|
410 |
+
@property
|
411 |
+
def eos_id(self):
|
412 |
+
return self.sp_model.eos_id()
|
413 |
+
|
414 |
+
@property
|
415 |
+
def bos_id(self):
|
416 |
+
return self.sp_model.bos_id()
|
417 |
+
|
418 |
+
@property
|
419 |
+
def unk_id(self):
|
420 |
+
return self.sp_model.unk_id()
|
421 |
+
|
422 |
+
@property
|
423 |
+
def im_start_id(self):
|
424 |
+
return self._convert_token_to_id(self.im_start)
|
425 |
+
|
426 |
+
@property
|
427 |
+
def im_end_id(self):
|
428 |
+
return self._convert_token_to_id(self.im_end)
|
429 |
+
|
430 |
+
|
431 |
+
def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
|
432 |
+
items = []
|
433 |
+
if isinstance(orig_items[0][key], list):
|
434 |
+
assert isinstance(orig_items[0][key][0], torch.Tensor)
|
435 |
+
for it in orig_items:
|
436 |
+
for tr in it[key]:
|
437 |
+
items.append({key: tr})
|
438 |
+
else:
|
439 |
+
assert isinstance(orig_items[0][key], torch.Tensor)
|
440 |
+
items = orig_items
|
441 |
+
|
442 |
+
batch_size = len(items)
|
443 |
+
shape = items[0][key].shape
|
444 |
+
dim = len(shape)
|
445 |
+
assert dim <= 3
|
446 |
+
if max_length is None:
|
447 |
+
max_length = 0
|
448 |
+
max_length = max(max_length, max(item[key].shape[-1] for item in items))
|
449 |
+
min_length = min(item[key].shape[-1] for item in items)
|
450 |
+
dtype = items[0][key].dtype
|
451 |
+
|
452 |
+
if dim == 1:
|
453 |
+
return torch.cat([item[key] for item in items], dim=0)
|
454 |
+
elif dim == 2:
|
455 |
+
if max_length == min_length:
|
456 |
+
return torch.cat([item[key] for item in items], dim=0)
|
457 |
+
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
|
458 |
+
else:
|
459 |
+
tensor = (
|
460 |
+
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
|
461 |
+
+ padding_value
|
462 |
+
)
|
463 |
+
|
464 |
+
for i, item in enumerate(items):
|
465 |
+
if dim == 2:
|
466 |
+
if padding_side == "left":
|
467 |
+
tensor[i, -len(item[key][0]) :] = item[key][0].clone()
|
468 |
+
else:
|
469 |
+
tensor[i, : len(item[key][0])] = item[key][0].clone()
|
470 |
+
elif dim == 3:
|
471 |
+
if padding_side == "left":
|
472 |
+
tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
|
473 |
+
else:
|
474 |
+
tensor[i, : len(item[key][0]), :] = item[key][0].clone()
|
475 |
+
|
476 |
+
return tensor
|
477 |
+
|
478 |
+
|
479 |
+
def slice_image(
|
480 |
+
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
|
481 |
+
):
|
482 |
+
original_size = image.size
|
483 |
+
original_width, original_height = original_size
|
484 |
+
log_ratio = math.log(original_width / original_height)
|
485 |
+
ratio = original_width * original_height / (scale_resolution * scale_resolution)
|
486 |
+
multiple = min(math.ceil(ratio), max_slice_nums)
|
487 |
+
|
488 |
+
source_image = None
|
489 |
+
best_grid = None
|
490 |
+
patches = []
|
491 |
+
|
492 |
+
if multiple <= 1 or never_split:
|
493 |
+
# dont need to slice, upsample
|
494 |
+
best_size = find_best_resize(
|
495 |
+
original_size, scale_resolution, patch_size, allow_upscale=True
|
496 |
+
)
|
497 |
+
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
|
498 |
+
else:
|
499 |
+
candidate_split_grids_nums = []
|
500 |
+
for i in [multiple - 1, multiple, multiple + 1]:
|
501 |
+
if i == 1 or i > max_slice_nums:
|
502 |
+
continue
|
503 |
+
candidate_split_grids_nums.append(i)
|
504 |
+
|
505 |
+
# source image, down-sampling and ensure divided by patch_size
|
506 |
+
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
|
507 |
+
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
508 |
+
candidate_grids = []
|
509 |
+
|
510 |
+
# find best grid
|
511 |
+
for split_grids_nums in candidate_split_grids_nums:
|
512 |
+
m = 1
|
513 |
+
while m <= split_grids_nums:
|
514 |
+
if split_grids_nums % m == 0:
|
515 |
+
candidate_grids.append([m, split_grids_nums // m])
|
516 |
+
m += 1
|
517 |
+
|
518 |
+
best_grid = [1, 1]
|
519 |
+
min_error = float("inf")
|
520 |
+
for grid in candidate_grids:
|
521 |
+
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
522 |
+
if error < min_error:
|
523 |
+
best_grid = grid
|
524 |
+
min_error = error
|
525 |
+
|
526 |
+
refine_size = get_refine_size(
|
527 |
+
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
|
528 |
+
)
|
529 |
+
|
530 |
+
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
|
531 |
+
patches = split_to_patches(refine_image, best_grid)
|
532 |
+
|
533 |
+
return source_image, patches, best_grid
|
534 |
+
|
535 |
+
|
536 |
+
def ensure_divide(length, patch_size):
|
537 |
+
return max(round(length / patch_size) * patch_size, patch_size)
|
538 |
+
|
539 |
+
|
540 |
+
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
|
541 |
+
width, height = original_size
|
542 |
+
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
|
543 |
+
r = width / height
|
544 |
+
height = int(scale_resolution / math.sqrt(r))
|
545 |
+
width = int(height * r)
|
546 |
+
best_width = ensure_divide(width, patch_size)
|
547 |
+
best_height = ensure_divide(height, patch_size)
|
548 |
+
return (best_width, best_height)
|
549 |
+
|
550 |
+
|
551 |
+
def get_refine_size(
|
552 |
+
original_size, grid, scale_resolution, patch_size, allow_upscale=False
|
553 |
+
):
|
554 |
+
width, height = original_size
|
555 |
+
grid_x, grid_y = grid
|
556 |
+
|
557 |
+
refine_width = ensure_divide(width, grid_x)
|
558 |
+
refine_height = ensure_divide(height, grid_y)
|
559 |
+
|
560 |
+
grid_width = refine_width / grid_x
|
561 |
+
grid_height = refine_height / grid_y
|
562 |
+
|
563 |
+
best_grid_size = find_best_resize(
|
564 |
+
(grid_width, grid_height),
|
565 |
+
scale_resolution,
|
566 |
+
patch_size,
|
567 |
+
allow_upscale=allow_upscale,
|
568 |
+
)
|
569 |
+
|
570 |
+
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
|
571 |
+
|
572 |
+
return refine_size
|
573 |
+
|
574 |
+
|
575 |
+
def split_to_patches(image, grid):
|
576 |
+
patches = []
|
577 |
+
width, height = image.size
|
578 |
+
grid_x = int(width / grid[0])
|
579 |
+
grid_y = int(height / grid[1])
|
580 |
+
|
581 |
+
for i in range(0, height, grid_y):
|
582 |
+
images = []
|
583 |
+
for j in range(0, width, grid_x):
|
584 |
+
box = (j, i, j + grid_x, i + grid_y)
|
585 |
+
patch = image.crop(box)
|
586 |
+
images.append(patch)
|
587 |
+
patches.append(images)
|
588 |
+
|
589 |
+
return patches
|
590 |
+
|
591 |
+
|
592 |
+
def get_grid_placeholder(tokenizer, grid, query_num):
|
593 |
+
image_placeholder = (
|
594 |
+
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
|
595 |
+
)
|
596 |
+
|
597 |
+
cols = grid[0]
|
598 |
+
rows = grid[1]
|
599 |
+
slices = []
|
600 |
+
for i in range(rows):
|
601 |
+
lines = []
|
602 |
+
for j in range(cols):
|
603 |
+
lines.append(image_placeholder)
|
604 |
+
slices.append("".join(lines))
|
605 |
+
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
|
606 |
+
return slice_placeholder
|
resampler.py
ADDED
@@ -0,0 +1,825 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from collections import OrderedDict
|
7 |
+
import math
|
8 |
+
import requests
|
9 |
+
from io import BytesIO
|
10 |
+
from functools import partial
|
11 |
+
from PIL import Image
|
12 |
+
from typing import Callable, Optional, Sequence, Tuple, List, Union
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
from torch.nn import functional as F
|
18 |
+
from torch.nn.init import trunc_normal_
|
19 |
+
from torchvision import transforms
|
20 |
+
from torchvision.transforms import InterpolationMode
|
21 |
+
|
22 |
+
from functools import partial
|
23 |
+
import numpy as np
|
24 |
+
import warnings
|
25 |
+
from typing import Optional, Tuple
|
26 |
+
import torch
|
27 |
+
from torch import nn
|
28 |
+
from torch import Tensor
|
29 |
+
import torch.nn.functional as F
|
30 |
+
from torch.nn.functional import *
|
31 |
+
from torch.nn.modules.activation import *
|
32 |
+
from torch.nn.init import trunc_normal_
|
33 |
+
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
34 |
+
from transformers import PreTrainedModel
|
35 |
+
from transformers.integrations import is_deepspeed_zero3_enabled
|
36 |
+
def get_abs_pos(abs_pos, tgt_size):
|
37 |
+
# abs_pos: L, C
|
38 |
+
# tgt_size: (H, W)
|
39 |
+
# return: M, C
|
40 |
+
src_size = int(math.sqrt(abs_pos.size(0)))
|
41 |
+
# tgt_size = int(math.sqrt(tgt_size))
|
42 |
+
dtype = abs_pos.dtype
|
43 |
+
|
44 |
+
return F.interpolate(
|
45 |
+
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
|
46 |
+
size=(tgt_size[0], tgt_size[1]),
|
47 |
+
mode="bicubic",
|
48 |
+
align_corners=False,
|
49 |
+
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
|
50 |
+
|
51 |
+
|
52 |
+
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
53 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
54 |
+
"""
|
55 |
+
grid_size: int of the grid height and width
|
56 |
+
return:
|
57 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
58 |
+
"""
|
59 |
+
if isinstance(grid_size, int):
|
60 |
+
grid_h_size, grid_w_size = grid_size, grid_size
|
61 |
+
else:
|
62 |
+
grid_h_size, grid_w_size = grid_size[0], grid_size[1]
|
63 |
+
|
64 |
+
grid_h = np.arange(grid_h_size, dtype=np.float32)
|
65 |
+
grid_w = np.arange(grid_w_size, dtype=np.float32)
|
66 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
67 |
+
grid = np.stack(grid, axis=0)
|
68 |
+
|
69 |
+
grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
|
70 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
71 |
+
if cls_token:
|
72 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
73 |
+
return pos_embed
|
74 |
+
|
75 |
+
|
76 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
77 |
+
assert embed_dim % 2 == 0
|
78 |
+
|
79 |
+
# use half of dimensions to encode grid_h
|
80 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
81 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
82 |
+
|
83 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
84 |
+
return emb
|
85 |
+
|
86 |
+
|
87 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
88 |
+
"""
|
89 |
+
embed_dim: output dimension for each position
|
90 |
+
pos: a list of positions to be encoded: size (M,)
|
91 |
+
out: (M, D)
|
92 |
+
"""
|
93 |
+
assert embed_dim % 2 == 0
|
94 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
95 |
+
omega /= embed_dim / 2.
|
96 |
+
omega = 1. / 10000 ** omega # (D/2,)
|
97 |
+
|
98 |
+
pos = pos.reshape(-1) # (M,)
|
99 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
100 |
+
|
101 |
+
emb_sin = np.sin(out) # (M, D/2)
|
102 |
+
emb_cos = np.cos(out) # (M, D/2)
|
103 |
+
|
104 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
105 |
+
return emb
|
106 |
+
|
107 |
+
|
108 |
+
class Resampler(nn.Module):
|
109 |
+
"""
|
110 |
+
A 2D perceiver-resampler network with one cross attention layers by
|
111 |
+
(grid_size**2) learnable queries and 2d sincos pos_emb
|
112 |
+
Outputs:
|
113 |
+
A tensor with the shape of (grid_size**2, embed_dim)
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
grid_size,
|
119 |
+
embed_dim,
|
120 |
+
num_heads,
|
121 |
+
kv_dim=None,
|
122 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
123 |
+
adaptive=False
|
124 |
+
):
|
125 |
+
super().__init__()
|
126 |
+
self.num_queries = grid_size ** 2
|
127 |
+
self.embed_dim = embed_dim
|
128 |
+
self.num_heads = num_heads
|
129 |
+
self.adaptive = adaptive
|
130 |
+
|
131 |
+
self.pos_embed = nn.Parameter(
|
132 |
+
torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float()
|
133 |
+
).requires_grad_(False)
|
134 |
+
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
|
135 |
+
|
136 |
+
if kv_dim is not None and kv_dim != embed_dim:
|
137 |
+
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
138 |
+
else:
|
139 |
+
self.kv_proj = nn.Identity()
|
140 |
+
|
141 |
+
self.attn = MultiheadAttention(embed_dim, num_heads)
|
142 |
+
self.ln_q = norm_layer(embed_dim)
|
143 |
+
self.ln_kv = norm_layer(embed_dim)
|
144 |
+
|
145 |
+
self.ln_post = norm_layer(embed_dim)
|
146 |
+
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
|
147 |
+
|
148 |
+
def _init_weights(self, m):
|
149 |
+
if isinstance(m, nn.Linear):
|
150 |
+
trunc_normal_(m.weight, std=.02)
|
151 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
152 |
+
nn.init.constant_(m.bias, 0)
|
153 |
+
elif isinstance(m, nn.LayerNorm):
|
154 |
+
nn.init.constant_(m.bias, 0)
|
155 |
+
nn.init.constant_(m.weight, 1.0)
|
156 |
+
|
157 |
+
def forward(self, x, tgt_size=None, attn_mask=None):
|
158 |
+
if self.adaptive:
|
159 |
+
pos_embed = torch.Tensor(get_2d_sincos_pos_embed(self.embed_dim, tgt_size)).float().to(device=x.device, dtype=x.dtype)
|
160 |
+
else:
|
161 |
+
pos_embed = get_abs_pos(self.pos_embed, tgt_size)
|
162 |
+
|
163 |
+
x = self.kv_proj(x)
|
164 |
+
x = self.ln_kv(x).permute(1, 0, 2)
|
165 |
+
|
166 |
+
N = x.shape[1]
|
167 |
+
q = self.ln_q(self.query)
|
168 |
+
|
169 |
+
out = self.attn(
|
170 |
+
self._repeat(q, N) + self.pos_embed.unsqueeze(1),
|
171 |
+
x + pos_embed.unsqueeze(1),
|
172 |
+
x,
|
173 |
+
attn_mask=attn_mask)[0]
|
174 |
+
x = out.permute(1, 0, 2)
|
175 |
+
x = self.ln_post(x)
|
176 |
+
x = x @ self.proj
|
177 |
+
return x
|
178 |
+
|
179 |
+
def _repeat(self, query, N: int):
|
180 |
+
return query.unsqueeze(1).repeat(1, N, 1)
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
class MultiheadAttention(nn.MultiheadAttention):
|
185 |
+
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False,
|
186 |
+
add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):
|
187 |
+
super().__init__(embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype)
|
188 |
+
|
189 |
+
# rewrite out_proj layer,with nn.Linear
|
190 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias,)
|
191 |
+
|
192 |
+
def forward(
|
193 |
+
self,
|
194 |
+
query: Tensor,
|
195 |
+
key: Tensor,
|
196 |
+
value: Tensor,
|
197 |
+
key_padding_mask: Optional[Tensor] = None,
|
198 |
+
need_weights: bool = True,
|
199 |
+
attn_mask: Optional[Tensor] = None,
|
200 |
+
average_attn_weights: bool = True,
|
201 |
+
is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
|
202 |
+
why_not_fast_path = ''
|
203 |
+
if ((attn_mask is not None and torch.is_floating_point(attn_mask))
|
204 |
+
or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
|
205 |
+
why_not_fast_path = "floating-point masks are not supported for fast path."
|
206 |
+
|
207 |
+
is_batched = query.dim() == 3
|
208 |
+
|
209 |
+
key_padding_mask = F._canonical_mask(
|
210 |
+
mask=key_padding_mask,
|
211 |
+
mask_name="key_padding_mask",
|
212 |
+
other_type=F._none_or_dtype(attn_mask),
|
213 |
+
other_name="attn_mask",
|
214 |
+
target_type=query.dtype
|
215 |
+
)
|
216 |
+
# _canonical_mask
|
217 |
+
attn_mask = F._canonical_mask(
|
218 |
+
mask=attn_mask,
|
219 |
+
mask_name="attn_mask",
|
220 |
+
other_type=None,
|
221 |
+
other_name="",
|
222 |
+
target_type=query.dtype,
|
223 |
+
check_other=False,
|
224 |
+
)
|
225 |
+
|
226 |
+
|
227 |
+
if not is_batched:
|
228 |
+
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
229 |
+
elif query is not key or key is not value:
|
230 |
+
# When lifting this restriction, don't forget to either
|
231 |
+
# enforce that the dtypes all match or test cases where
|
232 |
+
# they don't!
|
233 |
+
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
234 |
+
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
235 |
+
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
236 |
+
elif self.in_proj_weight is None:
|
237 |
+
why_not_fast_path = "in_proj_weight was None"
|
238 |
+
elif query.dtype != self.in_proj_weight.dtype:
|
239 |
+
# this case will fail anyway, but at least they'll get a useful error message.
|
240 |
+
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
241 |
+
elif self.training:
|
242 |
+
why_not_fast_path = "training is enabled"
|
243 |
+
elif (self.num_heads % 2) != 0:
|
244 |
+
why_not_fast_path = "self.num_heads is not even"
|
245 |
+
elif not self.batch_first:
|
246 |
+
why_not_fast_path = "batch_first was not True"
|
247 |
+
elif self.bias_k is not None:
|
248 |
+
why_not_fast_path = "self.bias_k was not None"
|
249 |
+
elif self.bias_v is not None:
|
250 |
+
why_not_fast_path = "self.bias_v was not None"
|
251 |
+
elif self.add_zero_attn:
|
252 |
+
why_not_fast_path = "add_zero_attn was enabled"
|
253 |
+
elif not self._qkv_same_embed_dim:
|
254 |
+
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
255 |
+
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
|
256 |
+
why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
|
257 |
+
is not supported with NestedTensor input"
|
258 |
+
elif torch.is_autocast_enabled():
|
259 |
+
why_not_fast_path = "autocast is enabled"
|
260 |
+
|
261 |
+
if not why_not_fast_path:
|
262 |
+
tensor_args = (
|
263 |
+
query,
|
264 |
+
key,
|
265 |
+
value,
|
266 |
+
self.in_proj_weight,
|
267 |
+
self.in_proj_bias,
|
268 |
+
self.out_proj.weight,
|
269 |
+
self.out_proj.bias,
|
270 |
+
)
|
271 |
+
# We have to use list comprehensions below because TorchScript does not support
|
272 |
+
# generator expressions.
|
273 |
+
if torch.overrides.has_torch_function(tensor_args):
|
274 |
+
why_not_fast_path = "some Tensor argument has_torch_function"
|
275 |
+
elif _is_make_fx_tracing():
|
276 |
+
why_not_fast_path = "we are running make_fx tracing"
|
277 |
+
elif not all(_check_arg_device(x) for x in tensor_args):
|
278 |
+
why_not_fast_path = ("some Tensor argument's device is neither one of "
|
279 |
+
f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
|
280 |
+
elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
|
281 |
+
why_not_fast_path = ("grad is enabled and at least one of query or the "
|
282 |
+
"input/output projection weights or biases requires_grad")
|
283 |
+
if not why_not_fast_path:
|
284 |
+
merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
|
285 |
+
|
286 |
+
if self.in_proj_bias is not None and self.in_proj_weight is not None:
|
287 |
+
return torch._native_multi_head_attention(
|
288 |
+
query,
|
289 |
+
key,
|
290 |
+
value,
|
291 |
+
self.embed_dim,
|
292 |
+
self.num_heads,
|
293 |
+
self.in_proj_weight,
|
294 |
+
self.in_proj_bias,
|
295 |
+
self.out_proj.weight,
|
296 |
+
self.out_proj.bias,
|
297 |
+
merged_mask,
|
298 |
+
need_weights,
|
299 |
+
average_attn_weights,
|
300 |
+
mask_type)
|
301 |
+
|
302 |
+
any_nested = query.is_nested or key.is_nested or value.is_nested
|
303 |
+
assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
|
304 |
+
f"The fast path was not hit because {why_not_fast_path}")
|
305 |
+
|
306 |
+
if self.batch_first and is_batched:
|
307 |
+
# make sure that the transpose op does not affect the "is" property
|
308 |
+
if key is value:
|
309 |
+
if query is key:
|
310 |
+
query = key = value = query.transpose(1, 0)
|
311 |
+
else:
|
312 |
+
query, key = (x.transpose(1, 0) for x in (query, key))
|
313 |
+
value = key
|
314 |
+
else:
|
315 |
+
query, key, value = (x.transpose(1, 0) for x in (query, key, value))
|
316 |
+
|
317 |
+
if not self._qkv_same_embed_dim:
|
318 |
+
attn_output, attn_output_weights = self.multi_head_attention_forward(
|
319 |
+
query, key, value, self.embed_dim, self.num_heads,
|
320 |
+
self.in_proj_weight, self.in_proj_bias,
|
321 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
322 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
323 |
+
training=self.training,
|
324 |
+
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
325 |
+
attn_mask=attn_mask,
|
326 |
+
use_separate_proj_weight=True,
|
327 |
+
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
328 |
+
v_proj_weight=self.v_proj_weight,
|
329 |
+
average_attn_weights=average_attn_weights,
|
330 |
+
is_causal=is_causal)
|
331 |
+
else:
|
332 |
+
attn_output, attn_output_weights = self.multi_head_attention_forward(
|
333 |
+
query, key, value, self.embed_dim, self.num_heads,
|
334 |
+
self.in_proj_weight, self.in_proj_bias,
|
335 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
336 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
337 |
+
training=self.training,
|
338 |
+
key_padding_mask=key_padding_mask,
|
339 |
+
need_weights=need_weights,
|
340 |
+
attn_mask=attn_mask,
|
341 |
+
average_attn_weights=average_attn_weights,
|
342 |
+
is_causal=is_causal)
|
343 |
+
if self.batch_first and is_batched:
|
344 |
+
return attn_output.transpose(1, 0), attn_output_weights
|
345 |
+
else:
|
346 |
+
return attn_output, attn_output_weights
|
347 |
+
|
348 |
+
def multi_head_attention_forward(
|
349 |
+
self,
|
350 |
+
query: Tensor,
|
351 |
+
key: Tensor,
|
352 |
+
value: Tensor,
|
353 |
+
embed_dim_to_check: int,
|
354 |
+
num_heads: int,
|
355 |
+
in_proj_weight: Optional[Tensor],
|
356 |
+
in_proj_bias: Optional[Tensor],
|
357 |
+
bias_k: Optional[Tensor],
|
358 |
+
bias_v: Optional[Tensor],
|
359 |
+
add_zero_attn: bool,
|
360 |
+
dropout_p: float,
|
361 |
+
out_proj_weight: Tensor,
|
362 |
+
out_proj_bias: Optional[Tensor],
|
363 |
+
training: bool = True,
|
364 |
+
key_padding_mask: Optional[Tensor] = None,
|
365 |
+
need_weights: bool = True,
|
366 |
+
attn_mask: Optional[Tensor] = None,
|
367 |
+
use_separate_proj_weight: bool = False,
|
368 |
+
q_proj_weight: Optional[Tensor] = None,
|
369 |
+
k_proj_weight: Optional[Tensor] = None,
|
370 |
+
v_proj_weight: Optional[Tensor] = None,
|
371 |
+
static_k: Optional[Tensor] = None,
|
372 |
+
static_v: Optional[Tensor] = None,
|
373 |
+
average_attn_weights: bool = True,
|
374 |
+
is_causal: bool = False,
|
375 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
376 |
+
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
|
377 |
+
if has_torch_function(tens_ops):
|
378 |
+
return handle_torch_function(
|
379 |
+
multi_head_attention_forward,
|
380 |
+
tens_ops,
|
381 |
+
query,
|
382 |
+
key,
|
383 |
+
value,
|
384 |
+
embed_dim_to_check,
|
385 |
+
num_heads,
|
386 |
+
in_proj_weight,
|
387 |
+
in_proj_bias,
|
388 |
+
bias_k,
|
389 |
+
bias_v,
|
390 |
+
add_zero_attn,
|
391 |
+
dropout_p,
|
392 |
+
out_proj_weight,
|
393 |
+
out_proj_bias,
|
394 |
+
training=training,
|
395 |
+
key_padding_mask=key_padding_mask,
|
396 |
+
need_weights=need_weights,
|
397 |
+
attn_mask=attn_mask,
|
398 |
+
is_causal=is_causal,
|
399 |
+
use_separate_proj_weight=use_separate_proj_weight,
|
400 |
+
q_proj_weight=q_proj_weight,
|
401 |
+
k_proj_weight=k_proj_weight,
|
402 |
+
v_proj_weight=v_proj_weight,
|
403 |
+
static_k=static_k,
|
404 |
+
static_v=static_v,
|
405 |
+
average_attn_weights=average_attn_weights,
|
406 |
+
)
|
407 |
+
|
408 |
+
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
|
409 |
+
|
410 |
+
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
411 |
+
# is batched, run the computation and before returning squeeze the
|
412 |
+
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
413 |
+
if not is_batched:
|
414 |
+
# unsqueeze if the input is unbatched
|
415 |
+
query = query.unsqueeze(1)
|
416 |
+
key = key.unsqueeze(1)
|
417 |
+
value = value.unsqueeze(1)
|
418 |
+
if key_padding_mask is not None:
|
419 |
+
key_padding_mask = key_padding_mask.unsqueeze(0)
|
420 |
+
|
421 |
+
# set up shape vars
|
422 |
+
tgt_len, bsz, embed_dim = query.shape
|
423 |
+
src_len, _, _ = key.shape
|
424 |
+
|
425 |
+
key_padding_mask = _canonical_mask(
|
426 |
+
mask=key_padding_mask,
|
427 |
+
mask_name="key_padding_mask",
|
428 |
+
other_type=_none_or_dtype(attn_mask),
|
429 |
+
other_name="attn_mask",
|
430 |
+
target_type=query.dtype
|
431 |
+
)
|
432 |
+
|
433 |
+
if is_causal and attn_mask is None:
|
434 |
+
raise RuntimeError(
|
435 |
+
"Need attn_mask if specifying the is_causal hint. "
|
436 |
+
"You may use the Transformer module method "
|
437 |
+
"`generate_square_subsequent_mask` to create this mask."
|
438 |
+
)
|
439 |
+
|
440 |
+
if is_causal and key_padding_mask is None and not need_weights:
|
441 |
+
# when we have a kpm or need weights, we need attn_mask
|
442 |
+
# Otherwise, we use the is_causal hint go as is_causal
|
443 |
+
# indicator to SDPA.
|
444 |
+
attn_mask = None
|
445 |
+
else:
|
446 |
+
attn_mask = _canonical_mask(
|
447 |
+
mask=attn_mask,
|
448 |
+
mask_name="attn_mask",
|
449 |
+
other_type=None,
|
450 |
+
other_name="",
|
451 |
+
target_type=query.dtype,
|
452 |
+
check_other=False,
|
453 |
+
)
|
454 |
+
|
455 |
+
if key_padding_mask is not None:
|
456 |
+
# We have the attn_mask, and use that to merge kpm into it.
|
457 |
+
# Turn off use of is_causal hint, as the merged mask is no
|
458 |
+
# longer causal.
|
459 |
+
is_causal = False
|
460 |
+
|
461 |
+
assert embed_dim == embed_dim_to_check, \
|
462 |
+
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
463 |
+
if isinstance(embed_dim, torch.Tensor):
|
464 |
+
# embed_dim can be a tensor when JIT tracing
|
465 |
+
head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
|
466 |
+
else:
|
467 |
+
head_dim = embed_dim // num_heads
|
468 |
+
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
469 |
+
if use_separate_proj_weight:
|
470 |
+
# allow MHA to have different embedding dimensions when separate projection weights are used
|
471 |
+
assert key.shape[:2] == value.shape[:2], \
|
472 |
+
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
473 |
+
else:
|
474 |
+
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
|
475 |
+
|
476 |
+
#
|
477 |
+
# compute in-projection
|
478 |
+
#
|
479 |
+
|
480 |
+
if not use_separate_proj_weight:
|
481 |
+
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
|
482 |
+
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
483 |
+
else:
|
484 |
+
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
|
485 |
+
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
|
486 |
+
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
|
487 |
+
if in_proj_bias is None:
|
488 |
+
b_q = b_k = b_v = None
|
489 |
+
else:
|
490 |
+
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
491 |
+
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
|
492 |
+
|
493 |
+
# prep attention mask
|
494 |
+
|
495 |
+
if attn_mask is not None:
|
496 |
+
# ensure attn_mask's dim is 3
|
497 |
+
if attn_mask.dim() == 2:
|
498 |
+
correct_2d_size = (tgt_len, src_len)
|
499 |
+
if attn_mask.shape != correct_2d_size:
|
500 |
+
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
|
501 |
+
attn_mask = attn_mask.unsqueeze(0)
|
502 |
+
elif attn_mask.dim() == 3:
|
503 |
+
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
504 |
+
if attn_mask.shape != correct_3d_size:
|
505 |
+
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
|
506 |
+
else:
|
507 |
+
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
508 |
+
|
509 |
+
# add bias along batch dimension (currently second)
|
510 |
+
if bias_k is not None and bias_v is not None:
|
511 |
+
assert static_k is None, "bias cannot be added to static key."
|
512 |
+
assert static_v is None, "bias cannot be added to static value."
|
513 |
+
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
514 |
+
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
515 |
+
if attn_mask is not None:
|
516 |
+
attn_mask = pad(attn_mask, (0, 1))
|
517 |
+
if key_padding_mask is not None:
|
518 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
519 |
+
else:
|
520 |
+
assert bias_k is None
|
521 |
+
assert bias_v is None
|
522 |
+
|
523 |
+
#
|
524 |
+
# reshape q, k, v for multihead attention and make em batch first
|
525 |
+
#
|
526 |
+
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
527 |
+
if static_k is None:
|
528 |
+
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
529 |
+
else:
|
530 |
+
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
531 |
+
assert static_k.size(0) == bsz * num_heads, \
|
532 |
+
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
533 |
+
assert static_k.size(2) == head_dim, \
|
534 |
+
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
535 |
+
k = static_k
|
536 |
+
if static_v is None:
|
537 |
+
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
538 |
+
else:
|
539 |
+
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
540 |
+
assert static_v.size(0) == bsz * num_heads, \
|
541 |
+
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
542 |
+
assert static_v.size(2) == head_dim, \
|
543 |
+
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
544 |
+
v = static_v
|
545 |
+
|
546 |
+
# add zero attention along batch dimension (now first)
|
547 |
+
if add_zero_attn:
|
548 |
+
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
549 |
+
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
|
550 |
+
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
|
551 |
+
if attn_mask is not None:
|
552 |
+
attn_mask = pad(attn_mask, (0, 1))
|
553 |
+
if key_padding_mask is not None:
|
554 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
555 |
+
|
556 |
+
# update source sequence length after adjustments
|
557 |
+
src_len = k.size(1)
|
558 |
+
|
559 |
+
# merge key padding and attention masks
|
560 |
+
if key_padding_mask is not None:
|
561 |
+
assert key_padding_mask.shape == (bsz, src_len), \
|
562 |
+
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
563 |
+
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
|
564 |
+
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
|
565 |
+
if attn_mask is None:
|
566 |
+
attn_mask = key_padding_mask
|
567 |
+
else:
|
568 |
+
attn_mask = attn_mask + key_padding_mask
|
569 |
+
|
570 |
+
# adjust dropout probability
|
571 |
+
if not training:
|
572 |
+
dropout_p = 0.0
|
573 |
+
|
574 |
+
#
|
575 |
+
# (deep breath) calculate attention and out projection
|
576 |
+
#
|
577 |
+
|
578 |
+
if need_weights:
|
579 |
+
B, Nt, E = q.shape
|
580 |
+
q_scaled = q / math.sqrt(E)
|
581 |
+
|
582 |
+
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
|
583 |
+
|
584 |
+
if attn_mask is not None:
|
585 |
+
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
|
586 |
+
else:
|
587 |
+
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
588 |
+
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
589 |
+
if dropout_p > 0.0:
|
590 |
+
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
591 |
+
|
592 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
593 |
+
|
594 |
+
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
595 |
+
attn_output = self.out_proj(attn_output)
|
596 |
+
|
597 |
+
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
598 |
+
|
599 |
+
# optionally average attention weights over heads
|
600 |
+
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
601 |
+
if average_attn_weights:
|
602 |
+
attn_output_weights = attn_output_weights.mean(dim=1)
|
603 |
+
|
604 |
+
if not is_batched:
|
605 |
+
# squeeze the output if input was unbatched
|
606 |
+
attn_output = attn_output.squeeze(1)
|
607 |
+
attn_output_weights = attn_output_weights.squeeze(0)
|
608 |
+
return attn_output, attn_output_weights
|
609 |
+
else:
|
610 |
+
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
611 |
+
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
612 |
+
# in order to match the input for SDPA of (N, num_heads, L, S)
|
613 |
+
if attn_mask is not None:
|
614 |
+
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
615 |
+
attn_mask = attn_mask.unsqueeze(0)
|
616 |
+
else:
|
617 |
+
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
618 |
+
|
619 |
+
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
620 |
+
k = k.view(bsz, num_heads, src_len, head_dim)
|
621 |
+
v = v.view(bsz, num_heads, src_len, head_dim)
|
622 |
+
|
623 |
+
attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
624 |
+
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
625 |
+
|
626 |
+
attn_output = self.out_proj(attn_output)
|
627 |
+
|
628 |
+
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
629 |
+
if not is_batched:
|
630 |
+
# squeeze the output if input was unbatched
|
631 |
+
attn_output = attn_output.squeeze(1)
|
632 |
+
return attn_output, None
|
633 |
+
|
634 |
+
|
635 |
+
def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,
|
636 |
+
key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
|
637 |
+
# Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
|
638 |
+
# and returns if the input is batched or not.
|
639 |
+
# Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
|
640 |
+
|
641 |
+
# Shape check.
|
642 |
+
if query.dim() == 3:
|
643 |
+
# Batched Inputs
|
644 |
+
is_batched = True
|
645 |
+
assert key.dim() == 3 and value.dim() == 3, \
|
646 |
+
("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
|
647 |
+
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
|
648 |
+
if key_padding_mask is not None:
|
649 |
+
assert key_padding_mask.dim() == 2, \
|
650 |
+
("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
|
651 |
+
f" but found {key_padding_mask.dim()}-D tensor instead")
|
652 |
+
if attn_mask is not None:
|
653 |
+
assert attn_mask.dim() in (2, 3), \
|
654 |
+
("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
655 |
+
f" but found {attn_mask.dim()}-D tensor instead")
|
656 |
+
elif query.dim() == 2:
|
657 |
+
# Unbatched Inputs
|
658 |
+
is_batched = False
|
659 |
+
assert key.dim() == 2 and value.dim() == 2, \
|
660 |
+
("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
|
661 |
+
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
|
662 |
+
|
663 |
+
if key_padding_mask is not None:
|
664 |
+
assert key_padding_mask.dim() == 1, \
|
665 |
+
("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
|
666 |
+
f" but found {key_padding_mask.dim()}-D tensor instead")
|
667 |
+
|
668 |
+
if attn_mask is not None:
|
669 |
+
assert attn_mask.dim() in (2, 3), \
|
670 |
+
("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
671 |
+
f" but found {attn_mask.dim()}-D tensor instead")
|
672 |
+
if attn_mask.dim() == 3:
|
673 |
+
expected_shape = (num_heads, query.shape[0], key.shape[0])
|
674 |
+
assert attn_mask.shape == expected_shape, \
|
675 |
+
(f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
|
676 |
+
else:
|
677 |
+
raise AssertionError(
|
678 |
+
f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
|
679 |
+
|
680 |
+
return is_batched
|
681 |
+
|
682 |
+
|
683 |
+
def _canonical_mask(
|
684 |
+
mask: Optional[Tensor],
|
685 |
+
mask_name: str,
|
686 |
+
other_type: Optional[DType],
|
687 |
+
other_name: str,
|
688 |
+
target_type: DType,
|
689 |
+
check_other: bool = True,
|
690 |
+
) -> Optional[Tensor]:
|
691 |
+
|
692 |
+
if mask is not None:
|
693 |
+
_mask_dtype = mask.dtype
|
694 |
+
_mask_is_float = torch.is_floating_point(mask)
|
695 |
+
if _mask_dtype != torch.bool and not _mask_is_float:
|
696 |
+
raise AssertionError(
|
697 |
+
f"only bool and floating types of {mask_name} are supported")
|
698 |
+
if check_other and other_type is not None:
|
699 |
+
if _mask_dtype != other_type:
|
700 |
+
warnings.warn(
|
701 |
+
f"Support for mismatched {mask_name} and {other_name} "
|
702 |
+
"is deprecated. Use same type for both instead."
|
703 |
+
)
|
704 |
+
if not _mask_is_float:
|
705 |
+
mask = (
|
706 |
+
torch.zeros_like(mask, dtype=target_type)
|
707 |
+
.masked_fill_(mask, float("-inf"))
|
708 |
+
)
|
709 |
+
return mask
|
710 |
+
|
711 |
+
|
712 |
+
def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
|
713 |
+
if input is None:
|
714 |
+
return None
|
715 |
+
elif isinstance(input, torch.Tensor):
|
716 |
+
return input.dtype
|
717 |
+
raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
|
718 |
+
|
719 |
+
def _in_projection_packed(
|
720 |
+
q: Tensor,
|
721 |
+
k: Tensor,
|
722 |
+
v: Tensor,
|
723 |
+
w: Tensor,
|
724 |
+
b: Optional[Tensor] = None,
|
725 |
+
) -> List[Tensor]:
|
726 |
+
r"""
|
727 |
+
Performs the in-projection step of the attention operation, using packed weights.
|
728 |
+
Output is a triple containing projection tensors for query, key and value.
|
729 |
+
Args:
|
730 |
+
q, k, v: query, key and value tensors to be projected. For self-attention,
|
731 |
+
these are typically the same tensor; for encoder-decoder attention,
|
732 |
+
k and v are typically the same tensor. (We take advantage of these
|
733 |
+
identities for performance if they are present.) Regardless, q, k and v
|
734 |
+
must share a common embedding dimension; otherwise their shapes may vary.
|
735 |
+
w: projection weights for q, k and v, packed into a single tensor. Weights
|
736 |
+
are packed along dimension 0, in q, k, v order.
|
737 |
+
b: optional projection biases for q, k and v, packed into a single tensor
|
738 |
+
in q, k, v order.
|
739 |
+
Shape:
|
740 |
+
Inputs:
|
741 |
+
- q: :math:`(..., E)` where E is the embedding dimension
|
742 |
+
- k: :math:`(..., E)` where E is the embedding dimension
|
743 |
+
- v: :math:`(..., E)` where E is the embedding dimension
|
744 |
+
- w: :math:`(E * 3, E)` where E is the embedding dimension
|
745 |
+
- b: :math:`E * 3` where E is the embedding dimension
|
746 |
+
Output:
|
747 |
+
- in output list :math:`[q', k', v']`, each output tensor will have the
|
748 |
+
same shape as the corresponding input tensor.
|
749 |
+
"""
|
750 |
+
E = q.size(-1)
|
751 |
+
if k is v:
|
752 |
+
if q is k:
|
753 |
+
# self-attention
|
754 |
+
proj = linear(q, w, b)
|
755 |
+
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
|
756 |
+
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
757 |
+
return proj[0], proj[1], proj[2]
|
758 |
+
else:
|
759 |
+
# encoder-decoder attention
|
760 |
+
w_q, w_kv = w.split([E, E * 2])
|
761 |
+
if b is None:
|
762 |
+
b_q = b_kv = None
|
763 |
+
else:
|
764 |
+
b_q, b_kv = b.split([E, E * 2])
|
765 |
+
q_proj = linear(q, w_q, b_q)
|
766 |
+
kv_proj = linear(k, w_kv, b_kv)
|
767 |
+
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
|
768 |
+
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
769 |
+
return (q_proj, kv_proj[0], kv_proj[1])
|
770 |
+
else:
|
771 |
+
w_q, w_k, w_v = w.chunk(3)
|
772 |
+
if b is None:
|
773 |
+
b_q = b_k = b_v = None
|
774 |
+
else:
|
775 |
+
b_q, b_k, b_v = b.chunk(3)
|
776 |
+
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
777 |
+
|
778 |
+
|
779 |
+
def _in_projection(
|
780 |
+
q: Tensor,
|
781 |
+
k: Tensor,
|
782 |
+
v: Tensor,
|
783 |
+
w_q: Tensor,
|
784 |
+
w_k: Tensor,
|
785 |
+
w_v: Tensor,
|
786 |
+
b_q: Optional[Tensor] = None,
|
787 |
+
b_k: Optional[Tensor] = None,
|
788 |
+
b_v: Optional[Tensor] = None,
|
789 |
+
) -> Tuple[Tensor, Tensor, Tensor]:
|
790 |
+
r"""
|
791 |
+
Performs the in-projection step of the attention operation. This is simply
|
792 |
+
a triple of linear projections, with shape constraints on the weights which
|
793 |
+
ensure embedding dimension uniformity in the projected outputs.
|
794 |
+
Output is a triple containing projection tensors for query, key and value.
|
795 |
+
Args:
|
796 |
+
q, k, v: query, key and value tensors to be projected.
|
797 |
+
w_q, w_k, w_v: weights for q, k and v, respectively.
|
798 |
+
b_q, b_k, b_v: optional biases for q, k and v, respectively.
|
799 |
+
Shape:
|
800 |
+
Inputs:
|
801 |
+
- q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
|
802 |
+
number of leading dimensions.
|
803 |
+
- k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
|
804 |
+
number of leading dimensions.
|
805 |
+
- v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
|
806 |
+
number of leading dimensions.
|
807 |
+
- w_q: :math:`(Eq, Eq)`
|
808 |
+
- w_k: :math:`(Eq, Ek)`
|
809 |
+
- w_v: :math:`(Eq, Ev)`
|
810 |
+
- b_q: :math:`(Eq)`
|
811 |
+
- b_k: :math:`(Eq)`
|
812 |
+
- b_v: :math:`(Eq)`
|
813 |
+
Output: in output triple :math:`(q', k', v')`,
|
814 |
+
- q': :math:`[Qdims..., Eq]`
|
815 |
+
- k': :math:`[Kdims..., Eq]`
|
816 |
+
- v': :math:`[Vdims..., Eq]`
|
817 |
+
"""
|
818 |
+
Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
|
819 |
+
assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
|
820 |
+
assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
|
821 |
+
assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
|
822 |
+
assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
|
823 |
+
assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
|
824 |
+
assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
|
825 |
+
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<image>",
|
4 |
+
"</image>",
|
5 |
+
"<ref>",
|
6 |
+
"</ref>",
|
7 |
+
"<box>",
|
8 |
+
"</box>",
|
9 |
+
"<quad>",
|
10 |
+
"</quad>",
|
11 |
+
"<point>",
|
12 |
+
"</point>",
|
13 |
+
"<slice>",
|
14 |
+
"</slice>"
|
15 |
+
],
|
16 |
+
"bos_token": {
|
17 |
+
"content": "<s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"eos_token": {
|
24 |
+
"content": "</s>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": "<unk>",
|
31 |
+
"unk_token": {
|
32 |
+
"content": "<unk>",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
}
|
38 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"101": {
|
30 |
+
"content": "<image>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"102": {
|
38 |
+
"content": "</image>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"103": {
|
46 |
+
"content": "<ref>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"104": {
|
54 |
+
"content": "</ref>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"105": {
|
62 |
+
"content": "<box>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"106": {
|
70 |
+
"content": "</box>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"107": {
|
78 |
+
"content": "<quad>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"108": {
|
86 |
+
"content": "</quad>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"109": {
|
94 |
+
"content": "<point>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"110": {
|
102 |
+
"content": "</point>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"111": {
|
110 |
+
"content": "<slice>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"112": {
|
118 |
+
"content": "</slice>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": true
|
124 |
+
}
|
125 |
+
},
|
126 |
+
"additional_special_tokens": [
|
127 |
+
"<image>",
|
128 |
+
"</image>",
|
129 |
+
"<ref>",
|
130 |
+
"</ref>",
|
131 |
+
"<box>",
|
132 |
+
"</box>",
|
133 |
+
"<quad>",
|
134 |
+
"</quad>",
|
135 |
+
"<point>",
|
136 |
+
"</point>",
|
137 |
+
"<slice>",
|
138 |
+
"</slice>"
|
139 |
+
],
|
140 |
+
"auto_map": {
|
141 |
+
"AutoTokenizer": [
|
142 |
+
"modeling_minicpmv.LlamaTokenizerWrapper",
|
143 |
+
null
|
144 |
+
]
|
145 |
+
},
|
146 |
+
"bos_token": "<s>",
|
147 |
+
"clean_up_tokenization_spaces": false,
|
148 |
+
"eos_token": "</s>",
|
149 |
+
"legacy": true,
|
150 |
+
"model_max_length": 1000000000000000019884624838656,
|
151 |
+
"pad_token": "<unk>",
|
152 |
+
"padding_side": "right",
|
153 |
+
"sp_model_kwargs": {},
|
154 |
+
"spaces_between_special_tokens": false,
|
155 |
+
"tokenizer_class": "LlamaTokenizerWrapper",
|
156 |
+
"truncation_side": "right",
|
157 |
+
"unk_token": "<unk>",
|
158 |
+
"use_default_system_prompt": false
|
159 |
+
}
|