lilt-en-funsd-2

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7012
  • Answer: {'precision': 0.901985111662531, 'recall': 0.8898408812729498, 'f1': 0.8958718422674061, 'number': 817}
  • Header: {'precision': 0.6371681415929203, 'recall': 0.6050420168067226, 'f1': 0.6206896551724138, 'number': 119}
  • Question: {'precision': 0.8736027515047291, 'recall': 0.9433611884865367, 'f1': 0.9071428571428571, 'number': 1077}
  • Overall Precision: 0.8718
  • Overall Recall: 0.9016
  • Overall F1: 0.8864
  • Overall Accuracy: 0.8041

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4401 10.53 200 0.9136 {'precision': 0.8668252080856124, 'recall': 0.8922888616891065, 'f1': 0.879372738238842, 'number': 817} {'precision': 0.512, 'recall': 0.5378151260504201, 'f1': 0.5245901639344263, 'number': 119} {'precision': 0.8825622775800712, 'recall': 0.9210770659238626, 'f1': 0.9014084507042255, 'number': 1077} 0.8541 0.8867 0.8701 0.8093
0.0458 21.05 400 1.2043 {'precision': 0.879415347137637, 'recall': 0.8837209302325582, 'f1': 0.8815628815628815, 'number': 817} {'precision': 0.6153846153846154, 'recall': 0.5378151260504201, 'f1': 0.5739910313901345, 'number': 119} {'precision': 0.8856121537086684, 'recall': 0.9201485608170845, 'f1': 0.9025500910746811, 'number': 1077} 0.8694 0.8828 0.8760 0.8042
0.0127 31.58 600 1.3936 {'precision': 0.880722891566265, 'recall': 0.8947368421052632, 'f1': 0.8876745598057073, 'number': 817} {'precision': 0.6019417475728155, 'recall': 0.5210084033613446, 'f1': 0.5585585585585585, 'number': 119} {'precision': 0.8826714801444043, 'recall': 0.9080779944289693, 'f1': 0.8951945080091533, 'number': 1077} 0.8677 0.8798 0.8737 0.8098
0.0082 42.11 800 1.3872 {'precision': 0.8771498771498771, 'recall': 0.8739290085679314, 'f1': 0.8755364806866953, 'number': 817} {'precision': 0.6428571428571429, 'recall': 0.5294117647058824, 'f1': 0.5806451612903226, 'number': 119} {'precision': 0.8669565217391304, 'recall': 0.9257195914577531, 'f1': 0.895374943870678, 'number': 1077} 0.8603 0.8813 0.8707 0.8067
0.0035 52.63 1000 1.6235 {'precision': 0.8825665859564165, 'recall': 0.8922888616891065, 'f1': 0.887401095556908, 'number': 817} {'precision': 0.49044585987261147, 'recall': 0.6470588235294118, 'f1': 0.5579710144927537, 'number': 119} {'precision': 0.8833333333333333, 'recall': 0.8857938718662952, 'f1': 0.8845618915159944, 'number': 1077} 0.8531 0.8743 0.8636 0.7953
0.0031 63.16 1200 1.6677 {'precision': 0.9051833122629582, 'recall': 0.8763769889840881, 'f1': 0.890547263681592, 'number': 817} {'precision': 0.48484848484848486, 'recall': 0.6722689075630253, 'f1': 0.5633802816901409, 'number': 119} {'precision': 0.8893023255813953, 'recall': 0.8876508820798514, 'f1': 0.8884758364312269, 'number': 1077} 0.8626 0.8703 0.8665 0.7994
0.0014 73.68 1400 1.7012 {'precision': 0.901985111662531, 'recall': 0.8898408812729498, 'f1': 0.8958718422674061, 'number': 817} {'precision': 0.6371681415929203, 'recall': 0.6050420168067226, 'f1': 0.6206896551724138, 'number': 119} {'precision': 0.8736027515047291, 'recall': 0.9433611884865367, 'f1': 0.9071428571428571, 'number': 1077} 0.8718 0.9016 0.8864 0.8041
0.0011 84.21 1600 1.6779 {'precision': 0.8715814506539834, 'recall': 0.8971848225214198, 'f1': 0.8841978287092883, 'number': 817} {'precision': 0.6413043478260869, 'recall': 0.4957983193277311, 'f1': 0.5592417061611374, 'number': 119} {'precision': 0.8754448398576512, 'recall': 0.9136490250696379, 'f1': 0.894139027714675, 'number': 1077} 0.8634 0.8823 0.8727 0.8067
0.0009 94.74 1800 1.6159 {'precision': 0.8729216152019003, 'recall': 0.8996328029375765, 'f1': 0.8860759493670887, 'number': 817} {'precision': 0.5740740740740741, 'recall': 0.5210084033613446, 'f1': 0.5462555066079295, 'number': 119} {'precision': 0.8681898066783831, 'recall': 0.9173630454967502, 'f1': 0.8920993227990971, 'number': 1077} 0.8549 0.8867 0.8705 0.8060
0.0007 105.26 2000 1.5876 {'precision': 0.8733572281959379, 'recall': 0.8947368421052632, 'f1': 0.8839177750906893, 'number': 817} {'precision': 0.5982142857142857, 'recall': 0.5630252100840336, 'f1': 0.5800865800865801, 'number': 119} {'precision': 0.8783783783783784, 'recall': 0.9052924791086351, 'f1': 0.8916323731138546, 'number': 1077} 0.8611 0.8808 0.8708 0.8091
0.0003 115.79 2200 1.6529 {'precision': 0.8662721893491124, 'recall': 0.8959608323133414, 'f1': 0.8808664259927798, 'number': 817} {'precision': 0.5714285714285714, 'recall': 0.5378151260504201, 'f1': 0.554112554112554, 'number': 119} {'precision': 0.8662587412587412, 'recall': 0.9201485608170845, 'f1': 0.8923908149482216, 'number': 1077} 0.8505 0.8877 0.8687 0.8039
0.0002 126.32 2400 1.6602 {'precision': 0.8699763593380615, 'recall': 0.9008567931456548, 'f1': 0.8851473241130486, 'number': 817} {'precision': 0.5775862068965517, 'recall': 0.5630252100840336, 'f1': 0.5702127659574467, 'number': 119} {'precision': 0.8725663716814159, 'recall': 0.9155060352831941, 'f1': 0.8935206162211146, 'number': 1077} 0.8552 0.8887 0.8716 0.8024

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
103
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.