LimYeri commited on
Commit
4871b77
1 Parent(s): afe10d4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -1
README.md CHANGED
@@ -47,4 +47,52 @@ The model was fine-tuned using the following datasets:
47
  ## Usage
48
  To use the CodeMind model, you can access it through the Hugging Face model hub or by integrating it into your own applications using the provided API. Provide a coding problem or a question related to programming concepts, and the model will generate relevant explanations, code snippets, or guidance based on its training.
49
 
50
- Please refer to the documentation and examples for detailed instructions on how to integrate and use the CodeMind model effectively.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  ## Usage
48
  To use the CodeMind model, you can access it through the Hugging Face model hub or by integrating it into your own applications using the provided API. Provide a coding problem or a question related to programming concepts, and the model will generate relevant explanations, code snippets, or guidance based on its training.
49
 
50
+ Please refer to the documentation and examples for detailed instructions on how to integrate and use the CodeMind model effectively.
51
+
52
+ Below we share some code snippets on how to get quickly started with running the model. After downloading the transformers library via 'pip install -U transformers', use the following snippet code.
53
+
54
+ #### Running the model on a CPU
55
+
56
+ ```python
57
+ from transformers import AutoTokenizer, AutoModelForCausalLM
58
+
59
+ tokenizer = AutoTokenizer.from_pretrained("LimYeri/CodeMind-Gemma-7B-QLoRA-4bit")
60
+ model = AutoModelForCausalLM.from_pretrained("LimYeri/CodeMind-Gemma-7B-QLoRA-4bit")
61
+
62
+ input_text = "Tell me how to solve the Leetcode Two Sum problem"
63
+ input_ids = tokenizer(input_text, return_tensors="pt")
64
+
65
+ outputs = model.generate(**input_ids)
66
+ print(tokenizer.decode(outputs[0]))
67
+ ```
68
+
69
+
70
+ #### Running the model on a single / multi GPU
71
+
72
+ ```python
73
+ # pip install accelerate
74
+ from transformers import AutoTokenizer, AutoModelForCausalLM
75
+
76
+ tokenizer = AutoTokenizer.from_pretrained("LimYeri/CodeMind-Gemma-7B-QLoRA-4bit")
77
+ model = AutoModelForCausalLM.from_pretrained("LimYeri/CodeMind-Gemma-7B-QLoRA-4bit")
78
+
79
+ def get_completion(query: str, model, tokenizer) -> str:
80
+ device = "cuda:0"
81
+ prompt_template = """
82
+ <start_of_turn>user
83
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
84
+ {query}
85
+ <end_of_turn>\n\n<start_of_turn>model
86
+
87
+ """
88
+ prompt = prompt_template.format(query=query)
89
+ encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
90
+ model_inputs = encodeds.to(device)
91
+ generated_ids = model.generate(**model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.eos_token_id)
92
+ # decoded = tokenizer.batch_decode(generated_ids)
93
+ decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
94
+ return (decoded)
95
+
96
+ result = get_completion(query="Tell me how to solve the Leetcode Two Sum problem", model=model, tokenizer=tokenizer)
97
+ print(result)
98
+ ```