LilOpa commited on
Commit
ef73289
·
1 Parent(s): ad6fdc2

Upload PPO LunarLander-v2 trained agent

Browse files
LunarLander_PPO_agent.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:649121036b45bcc7c58cb2faa42663037523cabc0aebc92797c8c352aee089ec
3
+ size 146278
LunarLander_PPO_agent/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
LunarLander_PPO_agent/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f58f55c4a70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f58f55c4b00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f58f55c4b90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f58f55c4c20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f58f55c4cb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f58f55c4d40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f58f55c4dd0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f58f55c4e60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f58f55c4ef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f58f55c4f80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f58f55c9050>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f58f5610b10>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 800768,
46
+ "_total_timesteps": 800000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1659968430.5606837,
51
+ "learning_rate": 0.01,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP4R64UeuFHuFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEDbtr40RmI/ssJSvt67VL6b1Ii9oEDZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0009600000000000719,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6UXtfhW1YUCUhpRSlIwBbJRNmQKMAXSUR0CfpSko4MnadX2UKGgGaAloD0MI41RrYRbOUsCUhpRSlGgVTeQBaBZHQJ+t90EHMU11fZQoaAZoCWgPQwho6Qq2EWpmQJSGlFKUaBVNJQJoFkdAn7JjV2A5JnV9lChoBmgJaA9DCBGmKJfGAWhAlIaUUpRoFU2iAmgWR0CfuET7EYO2dX2UKGgGaAloD0MI61OOyeIGYkCUhpRSlGgVTU0CaBZHQJ/CbizcAR11fZQoaAZoCWgPQwiBe54/7TRpQJSGlFKUaBVNLwJoFkdAn8cpHRTjvXV9lChoBmgJaA9DCHyakxeZgErAlIaUUpRoFU2AAmgWR0Cfy+dyksSTdX2UKGgGaAloD0MIWBzO/GpXakCUhpRSlGgVTSkCaBZHQJ/P/TLGJep1fZQoaAZoCWgPQwgVb2Qe+QZSwJSGlFKUaBVNmgFoFkdAn9hNIbwSanV9lChoBmgJaA9DCNMXQs77cmhAlIaUUpRoFU2aAmgWR0Cf3QzvqkdndX2UKGgGaAloD0MIHk5gOq2nM8CUhpRSlGgVTXQBaBZHQJ/fNrZamoB1fZQoaAZoCWgPQwiRD3o2q2dlQJSGlFKUaBVNHwJoFkdAn+Mwaef7JnV9lChoBmgJaA9DCH8zMV2IvWJAlIaUUpRoFU02AmgWR0Cf7NIQvpQldX2UKGgGaAloD0MI8ItLVVokZ0CUhpRSlGgVTQ4CaBZHQJ/wrx3FDOV1fZQoaAZoCWgPQwhBKVq5l0ZmQJSGlFKUaBVNqgJoFkdAn/ZbayrxRXV9lChoBmgJaA9DCIHptG4DSmtAlIaUUpRoFU1UAmgWR0CgAGwWFev7dX2UKGgGaAloD0MIdzHNdC9FaECUhpRSlGgVTQUCaBZHQKACUOjIq9Z1fZQoaAZoCWgPQwioc0UpoaxlQJSGlFKUaBVNOQNoFkdAoAYMlE7W/nV9lChoBmgJaA9DCNTxmIHKFWhAlIaUUpRoFU2zAmgWR0CgC36cRUWEdX2UKGgGaAloD0MIB+3Vx8OzaECUhpRSlGgVTQkCaBZHQKANm0a6z3R1fZQoaAZoCWgPQwgUlKKV+xBoQJSGlFKUaBVNUwJoFkdAoBAo0Q9RrXV9lChoBmgJaA9DCCJPkq4Z+2VAlIaUUpRoFU3pAWgWR0CgEabC79Q5dX2UKGgGaAloD0MI8yA9RQ5JZUCUhpRSlGgVTTMCaBZHQKAWru9eyAx1fZQoaAZoCWgPQwj7JHfYRAJYwJSGlFKUaBVNfAJoFkdAoBjnQWvbGnV9lChoBmgJaA9DCNTRcTUybGVAlIaUUpRoFU03AmgWR0CgGye/xlQNdX2UKGgGaAloD0MIiLoPQGpwUsCUhpRSlGgVTZYBaBZHQKAcX6LOzIF1fZQoaAZoCWgPQwjnVZ3VgvZgQJSGlFKUaBVNNwJoFkdAoCGBdQfp2XV9lChoBmgJaA9DCAdeLXdm21FAlIaUUpRoFU3oA2gWR0CgJUuKO1fFdX2UKGgGaAloD0MIbEHvjSG3YECUhpRSlGgVTZ8DaBZHQKArqqFRHgB1fZQoaAZoCWgPQwgdc56xr8tnQJSGlFKUaBVNGgJoFkdAoC3UCRwIdHV9lChoBmgJaA9DCABzLVqAQVhAlIaUUpRoFU15A2gWR0CgMWIL5RCQdX2UKGgGaAloD0MIB7e1hWehZ0CUhpRSlGgVTe8CaBZHQKA26jHn2Zl1fZQoaAZoCWgPQwiv6UFBqUtjQJSGlFKUaBVNFQJoFkdAoDjCq0dBB3V9lChoBmgJaA9DCL2mBwWlnE5AlIaUUpRoFU3oA2gWR0CgPUsJY1YRdX2UKGgGaAloD0MIe6GA7WCuUUCUhpRSlGgVTegDaBZHQKBEGlsxfv51fZQoaAZoCWgPQwh1djI4yq5pQJSGlFKUaBVNOQJoFkdAoEY1hG6PKnV9lChoBmgJaA9DCMJoVrYPnmpAlIaUUpRoFU2kAmgWR0CgSPlJQLuydX2UKGgGaAloD0MI6BVPPdJ2TUCUhpRSlGgVTegDaBZHQKBQlM495hV1fZQoaAZoCWgPQwgB++jUFS9jQJSGlFKUaBVNAwJoFkdAoFJcXk5p8HV9lChoBmgJaA9DCNeH9UatgGVAlIaUUpRoFU1aAmgWR0CgV3464lQedX2UKGgGaAloD0MIiEZ3ELvUZUCUhpRSlGgVTbkCaBZHQKBaMORT0g91fZQoaAZoCWgPQwhklGdejtNlQJSGlFKUaBVNSgJoFkdAoFzsTFl05nV9lChoBmgJaA9DCHUEcLN4I2lAlIaUUpRoFU1bAmgWR0CgX5iiyprDdX2UKGgGaAloD0MIZHRAEnb6ZUCUhpRSlGgVTVICaBZHQKBkql54W1t1fZQoaAZoCWgPQwgg7upV5AZqQJSGlFKUaBVNTAJoFkdAoGc0auOjqXV9lChoBmgJaA9DCMucLouJdWxAlIaUUpRoFU3RAWgWR0CgaNdv0h/zdX2UKGgGaAloD0MI3o0FhUETVsCUhpRSlGgVTZMBaBZHQKBqK99tuUF1fZQoaAZoCWgPQwgTtwpioAdmQJSGlFKUaBVN4gJoFkdAoG/g4p+c6XV9lChoBmgJaA9DCK9A9KTMAWlAlIaUUpRoFU3hAWgWR0CgcZ/BeokzdX2UKGgGaAloD0MIX3089F36ZECUhpRSlGgVTWICaBZHQKB0F6i0v5B1fZQoaAZoCWgPQwghBORLKD5pQJSGlFKUaBVNnAJoFkdAoHlvgBLf13V9lChoBmgJaA9DCIro19bPf2pAlIaUUpRoFU33AWgWR0Cge3C1AqusdX2UKGgGaAloD0MIB5eOOc+BaECUhpRSlGgVTUkCaBZHQKB+Le7cwg11fZQoaAZoCWgPQwinQdE8gDVpQJSGlFKUaBVNRAJoFkdAoIDx35eqrHV9lChoBmgJaA9DCI1feCXJwyXAlIaUUpRoFU1iAWgWR0CghOW3z+WGdX2UKGgGaAloD0MIABsQIS6RakCUhpRSlGgVTYMCaBZHQKCG/sY2sJZ1fZQoaAZoCWgPQwgE4nX9ggVpQJSGlFKUaBVNdwJoFkdAoIlakCV8kXV9lChoBmgJaA9DCM0Ew7kGdWZAlIaUUpRoFU30AWgWR0CgjhhddE9ddX2UKGgGaAloD0MIv9L58KzfakCUhpRSlGgVTegBaBZHQKCQLG6PKdR1fZQoaAZoCWgPQwgbuAN1Sn5mQJSGlFKUaBVNEwJoFkdAoJItg4Otn3V9lChoBmgJaA9DCHA/4IEBSknAlIaUUpRoFU3+AWgWR0CglCY1P3zudX2UKGgGaAloD0MI9yFvuXoaZkCUhpRSlGgVTSoCaBZHQKCZClxffGd1fZQoaAZoCWgPQwg6sYf2sXRQQJSGlFKUaBVN6ANoFkdAoJ2nkkrwv3V9lChoBmgJaA9DCDz2s1gK4WpAlIaUUpRoFU36AWgWR0Cgn4+JP69CdX2UKGgGaAloD0MIv4HJjSKoaECUhpRSlGgVTQMCaBZHQKCkM6unuRd1fZQoaAZoCWgPQwg3cXK/w81rQJSGlFKUaBVNCQJoFkdAoKZsyrPt2XV9lChoBmgJaA9DCOoENBG2IGtAlIaUUpRoFU03AmgWR0CgqFBzV+ZxdX2UKGgGaAloD0MIWMoyxLE6UECUhpRSlGgVTegDaBZHQKCwtfTkQwt1fZQoaAZoCWgPQwjjw+xl28tgQJSGlFKUaBVN/wFoFkdAoLK28scyWXV9lChoBmgJaA9DCKnb2VcermhAlIaUUpRoFU3zAWgWR0CgtINfXwsodX2UKGgGaAloD0MIzEQRUjc+bECUhpRSlGgVTfwBaBZHQKC2f8aXKKZ1fZQoaAZoCWgPQwiufmySH9lkQJSGlFKUaBVNeAJoFkdAoLwjHCGetnV9lChoBmgJaA9DCBgmUwWjpGdAlIaUUpRoFU0pAmgWR0CgvfsW43FUdX2UKGgGaAloD0MI7rQ1IpgbY0CUhpRSlGgVTWcCaBZHQKDAfOZb6gx1fZQoaAZoCWgPQwi/Y3jsZ7RlQJSGlFKUaBVNNAJoFkdAoMKfVkMCtHV9lChoBmgJaA9DCKsHzEOmHlBAlIaUUpRoFU3oA2gWR0CgybZYPoV3dX2UKGgGaAloD0MIdCZtqu6yUcCUhpRSlGgVTXkBaBZHQKDK5L7Gecx1fZQoaAZoCWgPQwiNRGgEG/1GQJSGlFKUaBVN6ANoFkdAoNL1ycTakHV9lChoBmgJaA9DCNtOWyOClmlAlIaUUpRoFU0rAmgWR0Cg1Q8VQAMldX2UKGgGaAloD0MIvaqzWuCtZ0CUhpRSlGgVTeMBaBZHQKDXApjtoi91fZQoaAZoCWgPQwgc0qjAybRrQJSGlFKUaBVNVAJoFkdAoNkXEVFhHHV9lChoBmgJaA9DCGnDYWnggmxAlIaUUpRoFU0bAmgWR0Cg3dIbXHzZdX2UKGgGaAloD0MIniPyXco/a0CUhpRSlGgVTQwCaBZHQKDfu2Q4jr11fZQoaAZoCWgPQwiYp3NFKbdNQJSGlFKUaBVN6ANoFkdAoOPkGs3hoHV9lChoBmgJaA9DCPOQKR+CPk7AlIaUUpRoFU2IAWgWR0Cg5/AmiQDFdX2UKGgGaAloD0MIkuumlNcGPsCUhpRSlGgVTWUBaBZHQKDpIsdT5wh1fZQoaAZoCWgPQwhK8fEJWeJmQJSGlFKUaBVNNgJoFkdAoOsz9l2/z3V9lChoBmgJaA9DCH/aqE6HempAlIaUUpRoFU3bAWgWR0Cg7N6Y/mkndX2UKGgGaAloD0MIaCJsePqOa0CUhpRSlGgVTccBaBZHQKDuf5MURFt1fZQoaAZoCWgPQwh7Eticg+tJwJSGlFKUaBVNWwFoFkdAoPJYIv8IiXV9lChoBmgJaA9DCPFkNzP642RAlIaUUpRoFU3kAWgWR0Cg89mLLpzLdX2UKGgGaAloD0MIPXyZKMK9a0CUhpRSlGgVTUQCaBZHQKD1pyz5XU91fZQoaAZoCWgPQwjY9KCgFCxtQJSGlFKUaBVN9QFoFkdAoPeVw1ivxHV9lChoBmgJaA9DCC9QUmABymhAlIaUUpRoFU32AWgWR0Cg/D8qOLiudX2UKGgGaAloD0MIIjSCjevjZ0CUhpRSlGgVTQ4CaBZHQKD+CMVDa5B1fZQoaAZoCWgPQwh+jSRBOD1nQJSGlFKUaBVNzANoFkdAoQGIkX1rZnV9lChoBmgJaA9DCBPU8C0sw2hAlIaUUpRoFU0pAmgWR0ChBr1Oj7AMdX2UKGgGaAloD0MI/1vJjo07a0CUhpRSlGgVTQ0CaBZHQKEIk+9Jz1d1fZQoaAZoCWgPQwh+Oh4zUGtMwJSGlFKUaBVN1gFoFkdAoQpCDRMN+nV9lChoBmgJaA9DCNDSFWyj4mpAlIaUUpRoFU1YAmgWR0ChDK/j81n/dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 3910,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLQ0MEZAFTAJRORwAAAAAAAAAAhpQpjAFflIWUjB88aXB5dGhvbi1pbnB1dC0xNC1kNTY3MzU5ODFkNzg+lIwIPGxhbWJkYT6USw1DAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoFn2UfZQoaBNoDYwMX19xdWFsbmFtZV9flGgNjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgUjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
LunarLander_PPO_agent/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6af051c8c08c752f6698235578a3836b469af5ca2bc4a75341efc4051a552adb
3
+ size 87993
LunarLander_PPO_agent/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:769ec4e988d27868f6f1e690221da9e218f87bec08ebace582c0911be712f956
3
+ size 43201
LunarLander_PPO_agent/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander_PPO_agent/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md CHANGED
@@ -1,3 +1,36 @@
1
  ---
2
- license: afl-3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 116.10 +/- 113.40
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
  ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f58f55c4a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f58f55c4b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f58f55c4b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f58f55c4c20>", "_build": "<function ActorCriticPolicy._build at 0x7f58f55c4cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f58f55c4d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f58f55c4dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f58f55c4e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f58f55c4ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f58f55c4f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f58f55c9050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f58f5610b10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 800768, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659968430.5606837, "learning_rate": 0.01, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP4R64UeuFHuFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEDbtr40RmI/ssJSvt67VL6b1Ii9oEDZPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0009600000000000719, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6UXtfhW1YUCUhpRSlIwBbJRNmQKMAXSUR0CfpSko4MnadX2UKGgGaAloD0MI41RrYRbOUsCUhpRSlGgVTeQBaBZHQJ+t90EHMU11fZQoaAZoCWgPQwho6Qq2EWpmQJSGlFKUaBVNJQJoFkdAn7JjV2A5JnV9lChoBmgJaA9DCBGmKJfGAWhAlIaUUpRoFU2iAmgWR0CfuET7EYO2dX2UKGgGaAloD0MI61OOyeIGYkCUhpRSlGgVTU0CaBZHQJ/CbizcAR11fZQoaAZoCWgPQwiBe54/7TRpQJSGlFKUaBVNLwJoFkdAn8cpHRTjvXV9lChoBmgJaA9DCHyakxeZgErAlIaUUpRoFU2AAmgWR0Cfy+dyksSTdX2UKGgGaAloD0MIWBzO/GpXakCUhpRSlGgVTSkCaBZHQJ/P/TLGJep1fZQoaAZoCWgPQwgVb2Qe+QZSwJSGlFKUaBVNmgFoFkdAn9hNIbwSanV9lChoBmgJaA9DCNMXQs77cmhAlIaUUpRoFU2aAmgWR0Cf3QzvqkdndX2UKGgGaAloD0MIHk5gOq2nM8CUhpRSlGgVTXQBaBZHQJ/fNrZamoB1fZQoaAZoCWgPQwiRD3o2q2dlQJSGlFKUaBVNHwJoFkdAn+Mwaef7JnV9lChoBmgJaA9DCH8zMV2IvWJAlIaUUpRoFU02AmgWR0Cf7NIQvpQldX2UKGgGaAloD0MI8ItLVVokZ0CUhpRSlGgVTQ4CaBZHQJ/wrx3FDOV1fZQoaAZoCWgPQwhBKVq5l0ZmQJSGlFKUaBVNqgJoFkdAn/ZbayrxRXV9lChoBmgJaA9DCIHptG4DSmtAlIaUUpRoFU1UAmgWR0CgAGwWFev7dX2UKGgGaAloD0MIdzHNdC9FaECUhpRSlGgVTQUCaBZHQKACUOjIq9Z1fZQoaAZoCWgPQwioc0UpoaxlQJSGlFKUaBVNOQNoFkdAoAYMlE7W/nV9lChoBmgJaA9DCNTxmIHKFWhAlIaUUpRoFU2zAmgWR0CgC36cRUWEdX2UKGgGaAloD0MIB+3Vx8OzaECUhpRSlGgVTQkCaBZHQKANm0a6z3R1fZQoaAZoCWgPQwgUlKKV+xBoQJSGlFKUaBVNUwJoFkdAoBAo0Q9RrXV9lChoBmgJaA9DCCJPkq4Z+2VAlIaUUpRoFU3pAWgWR0CgEabC79Q5dX2UKGgGaAloD0MI8yA9RQ5JZUCUhpRSlGgVTTMCaBZHQKAWru9eyAx1fZQoaAZoCWgPQwj7JHfYRAJYwJSGlFKUaBVNfAJoFkdAoBjnQWvbGnV9lChoBmgJaA9DCNTRcTUybGVAlIaUUpRoFU03AmgWR0CgGye/xlQNdX2UKGgGaAloD0MIiLoPQGpwUsCUhpRSlGgVTZYBaBZHQKAcX6LOzIF1fZQoaAZoCWgPQwjnVZ3VgvZgQJSGlFKUaBVNNwJoFkdAoCGBdQfp2XV9lChoBmgJaA9DCAdeLXdm21FAlIaUUpRoFU3oA2gWR0CgJUuKO1fFdX2UKGgGaAloD0MIbEHvjSG3YECUhpRSlGgVTZ8DaBZHQKArqqFRHgB1fZQoaAZoCWgPQwgdc56xr8tnQJSGlFKUaBVNGgJoFkdAoC3UCRwIdHV9lChoBmgJaA9DCABzLVqAQVhAlIaUUpRoFU15A2gWR0CgMWIL5RCQdX2UKGgGaAloD0MIB7e1hWehZ0CUhpRSlGgVTe8CaBZHQKA26jHn2Zl1fZQoaAZoCWgPQwiv6UFBqUtjQJSGlFKUaBVNFQJoFkdAoDjCq0dBB3V9lChoBmgJaA9DCL2mBwWlnE5AlIaUUpRoFU3oA2gWR0CgPUsJY1YRdX2UKGgGaAloD0MIe6GA7WCuUUCUhpRSlGgVTegDaBZHQKBEGlsxfv51fZQoaAZoCWgPQwh1djI4yq5pQJSGlFKUaBVNOQJoFkdAoEY1hG6PKnV9lChoBmgJaA9DCMJoVrYPnmpAlIaUUpRoFU2kAmgWR0CgSPlJQLuydX2UKGgGaAloD0MI6BVPPdJ2TUCUhpRSlGgVTegDaBZHQKBQlM495hV1fZQoaAZoCWgPQwgB++jUFS9jQJSGlFKUaBVNAwJoFkdAoFJcXk5p8HV9lChoBmgJaA9DCNeH9UatgGVAlIaUUpRoFU1aAmgWR0CgV3464lQedX2UKGgGaAloD0MIiEZ3ELvUZUCUhpRSlGgVTbkCaBZHQKBaMORT0g91fZQoaAZoCWgPQwhklGdejtNlQJSGlFKUaBVNSgJoFkdAoFzsTFl05nV9lChoBmgJaA9DCHUEcLN4I2lAlIaUUpRoFU1bAmgWR0CgX5iiyprDdX2UKGgGaAloD0MIZHRAEnb6ZUCUhpRSlGgVTVICaBZHQKBkql54W1t1fZQoaAZoCWgPQwgg7upV5AZqQJSGlFKUaBVNTAJoFkdAoGc0auOjqXV9lChoBmgJaA9DCMucLouJdWxAlIaUUpRoFU3RAWgWR0CgaNdv0h/zdX2UKGgGaAloD0MI3o0FhUETVsCUhpRSlGgVTZMBaBZHQKBqK99tuUF1fZQoaAZoCWgPQwgTtwpioAdmQJSGlFKUaBVN4gJoFkdAoG/g4p+c6XV9lChoBmgJaA9DCK9A9KTMAWlAlIaUUpRoFU3hAWgWR0CgcZ/BeokzdX2UKGgGaAloD0MIX3089F36ZECUhpRSlGgVTWICaBZHQKB0F6i0v5B1fZQoaAZoCWgPQwghBORLKD5pQJSGlFKUaBVNnAJoFkdAoHlvgBLf13V9lChoBmgJaA9DCIro19bPf2pAlIaUUpRoFU33AWgWR0Cge3C1AqusdX2UKGgGaAloD0MIB5eOOc+BaECUhpRSlGgVTUkCaBZHQKB+Le7cwg11fZQoaAZoCWgPQwinQdE8gDVpQJSGlFKUaBVNRAJoFkdAoIDx35eqrHV9lChoBmgJaA9DCI1feCXJwyXAlIaUUpRoFU1iAWgWR0CghOW3z+WGdX2UKGgGaAloD0MIABsQIS6RakCUhpRSlGgVTYMCaBZHQKCG/sY2sJZ1fZQoaAZoCWgPQwgE4nX9ggVpQJSGlFKUaBVNdwJoFkdAoIlakCV8kXV9lChoBmgJaA9DCM0Ew7kGdWZAlIaUUpRoFU30AWgWR0CgjhhddE9ddX2UKGgGaAloD0MIv9L58KzfakCUhpRSlGgVTegBaBZHQKCQLG6PKdR1fZQoaAZoCWgPQwgbuAN1Sn5mQJSGlFKUaBVNEwJoFkdAoJItg4Otn3V9lChoBmgJaA9DCHA/4IEBSknAlIaUUpRoFU3+AWgWR0CglCY1P3zudX2UKGgGaAloD0MI9yFvuXoaZkCUhpRSlGgVTSoCaBZHQKCZClxffGd1fZQoaAZoCWgPQwg6sYf2sXRQQJSGlFKUaBVN6ANoFkdAoJ2nkkrwv3V9lChoBmgJaA9DCDz2s1gK4WpAlIaUUpRoFU36AWgWR0Cgn4+JP69CdX2UKGgGaAloD0MIv4HJjSKoaECUhpRSlGgVTQMCaBZHQKCkM6unuRd1fZQoaAZoCWgPQwg3cXK/w81rQJSGlFKUaBVNCQJoFkdAoKZsyrPt2XV9lChoBmgJaA9DCOoENBG2IGtAlIaUUpRoFU03AmgWR0CgqFBzV+ZxdX2UKGgGaAloD0MIWMoyxLE6UECUhpRSlGgVTegDaBZHQKCwtfTkQwt1fZQoaAZoCWgPQwjjw+xl28tgQJSGlFKUaBVN/wFoFkdAoLK28scyWXV9lChoBmgJaA9DCKnb2VcermhAlIaUUpRoFU3zAWgWR0CgtINfXwsodX2UKGgGaAloD0MIzEQRUjc+bECUhpRSlGgVTfwBaBZHQKC2f8aXKKZ1fZQoaAZoCWgPQwiufmySH9lkQJSGlFKUaBVNeAJoFkdAoLwjHCGetnV9lChoBmgJaA9DCBgmUwWjpGdAlIaUUpRoFU0pAmgWR0CgvfsW43FUdX2UKGgGaAloD0MI7rQ1IpgbY0CUhpRSlGgVTWcCaBZHQKDAfOZb6gx1fZQoaAZoCWgPQwi/Y3jsZ7RlQJSGlFKUaBVNNAJoFkdAoMKfVkMCtHV9lChoBmgJaA9DCKsHzEOmHlBAlIaUUpRoFU3oA2gWR0CgybZYPoV3dX2UKGgGaAloD0MIdCZtqu6yUcCUhpRSlGgVTXkBaBZHQKDK5L7Gecx1fZQoaAZoCWgPQwiNRGgEG/1GQJSGlFKUaBVN6ANoFkdAoNL1ycTakHV9lChoBmgJaA9DCNtOWyOClmlAlIaUUpRoFU0rAmgWR0Cg1Q8VQAMldX2UKGgGaAloD0MIvaqzWuCtZ0CUhpRSlGgVTeMBaBZHQKDXApjtoi91fZQoaAZoCWgPQwgc0qjAybRrQJSGlFKUaBVNVAJoFkdAoNkXEVFhHHV9lChoBmgJaA9DCGnDYWnggmxAlIaUUpRoFU0bAmgWR0Cg3dIbXHzZdX2UKGgGaAloD0MIniPyXco/a0CUhpRSlGgVTQwCaBZHQKDfu2Q4jr11fZQoaAZoCWgPQwiYp3NFKbdNQJSGlFKUaBVN6ANoFkdAoOPkGs3hoHV9lChoBmgJaA9DCPOQKR+CPk7AlIaUUpRoFU2IAWgWR0Cg5/AmiQDFdX2UKGgGaAloD0MIkuumlNcGPsCUhpRSlGgVTWUBaBZHQKDpIsdT5wh1fZQoaAZoCWgPQwhK8fEJWeJmQJSGlFKUaBVNNgJoFkdAoOsz9l2/z3V9lChoBmgJaA9DCH/aqE6HempAlIaUUpRoFU3bAWgWR0Cg7N6Y/mkndX2UKGgGaAloD0MIaCJsePqOa0CUhpRSlGgVTccBaBZHQKDuf5MURFt1fZQoaAZoCWgPQwh7Eticg+tJwJSGlFKUaBVNWwFoFkdAoPJYIv8IiXV9lChoBmgJaA9DCPFkNzP642RAlIaUUpRoFU3kAWgWR0Cg89mLLpzLdX2UKGgGaAloD0MIPXyZKMK9a0CUhpRSlGgVTUQCaBZHQKD1pyz5XU91fZQoaAZoCWgPQwjY9KCgFCxtQJSGlFKUaBVN9QFoFkdAoPeVw1ivxHV9lChoBmgJaA9DCC9QUmABymhAlIaUUpRoFU32AWgWR0Cg/D8qOLiudX2UKGgGaAloD0MIIjSCjevjZ0CUhpRSlGgVTQ4CaBZHQKD+CMVDa5B1fZQoaAZoCWgPQwh+jSRBOD1nQJSGlFKUaBVNzANoFkdAoQGIkX1rZnV9lChoBmgJaA9DCBPU8C0sw2hAlIaUUpRoFU0pAmgWR0ChBr1Oj7AMdX2UKGgGaAloD0MI/1vJjo07a0CUhpRSlGgVTQ0CaBZHQKEIk+9Jz1d1fZQoaAZoCWgPQwh+Oh4zUGtMwJSGlFKUaBVN1gFoFkdAoQpCDRMN+nV9lChoBmgJaA9DCNDSFWyj4mpAlIaUUpRoFU1YAmgWR0ChDK/j81n/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3910, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLQ0MEZAFTAJRORwAAAAAAAAAAhpQpjAFflIWUjB88aXB5dGhvbi1pbnB1dC0xNC1kNTY3MzU5ODFkNzg+lIwIPGxhbWJkYT6USw1DAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoFn2UfZQoaBNoDYwMX19xdWFsbmFtZV9flGgNjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgUjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (256 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 116.09864654449231, "std_reward": 113.39826383617564, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-08T15:15:09.340566"}