LidoHon commited on
Commit
bb80cfb
·
1 Parent(s): 1cefe34

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 57.87 +/- 63.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7feb23069b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feb23069b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feb23069c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feb23069cb0>", "_build": "<function ActorCriticPolicy._build at 0x7feb23069d40>", "forward": "<function ActorCriticPolicy.forward at 0x7feb23069dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feb23069e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7feb23069ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feb23069f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feb2306e050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feb2306e0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feb230acde0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 500736, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668762113756127564, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMD/xb0pKAe6rK5AO9/gnjafZtg62CKXNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4ZUkz/XCa0CUhpRSlIwBbJRNVQOMAXSUR0CSW7WhRIjGdX2UKGgGaAloD0MIfZV87C7XVUCUhpRSlGgVTegDaBZHQJJmHyd4FA51fZQoaAZoCWgPQwjP91PjpUpeQJSGlFKUaBVN6ANoFkdAknISXyAhCHV9lChoBmgJaA9DCA7aq4+H+F1AlIaUUpRoFU3oA2gWR0CSfmNliBoVdX2UKGgGaAloD0MIZqAy/n3vakCUhpRSlGgVTUcDaBZHQJKHhQfp2U11fZQoaAZoCWgPQwiR8L2/QZdaQJSGlFKUaBVN6ANoFkdAkpIuHSF493V9lChoBmgJaA9DCA69xcN7CjXAlIaUUpRoFU2CAWgWR0CSlKPqcEvCdX2UKGgGaAloD0MIJhx6i4feYkCUhpRSlGgVTegDaBZHQJKfA79ycTd1fZQoaAZoCWgPQwj/ImjMJCoBwJSGlFKUaBVNSQFoFkdAkqJ76Hj6vnV9lChoBmgJaA9DCKGCwwsixk7AlIaUUpRoFU1qAWgWR0CSpMwLmZE2dX2UKGgGaAloD0MIbLBwkuYJaUCUhpRSlGgVTU4CaBZHQJKqipLmITJ1fZQoaAZoCWgPQwi7mjxltWxoQJSGlFKUaBVNvQFoFkdAkq29VinYQXV9lChoBmgJaA9DCM3n3O16wmFAlIaUUpRoFU3oA2gWR0CSuDF9a2WqdX2UKGgGaAloD0MIX2HB/YCdW0CUhpRSlGgVTegDaBZHQJLDmiudPLx1fZQoaAZoCWgPQwgUIApmTIxYQJSGlFKUaBVN6ANoFkdAks6FO9FnZnV9lChoBmgJaA9DCOm68IPzHFlAlIaUUpRoFU3oA2gWR0CS2F3/giu/dX2UKGgGaAloD0MIE7cKYqBr/D+UhpRSlGgVTSkBaBZHQJLaMGRmseZ1fZQoaAZoCWgPQwjM0eP3tjhqQJSGlFKUaBVNpAFoFkdAkt6hHww0wnV9lChoBmgJaA9DCFqfckwWD19AlIaUUpRoFU3oA2gWR0CS620svqTsdX2UKGgGaAloD0MI4Qoo1NM6WkCUhpRSlGgVTegDaBZHQJL3tG/etS11fZQoaAZoCWgPQwiEYitoWphhQJSGlFKUaBVN6ANoFkdAkwD0G7jDK3V9lChoBmgJaA9DCLbZWIn5TWFAlIaUUpRoFU3oA2gWR0CTDGfAKv3bdX2UKGgGaAloD0MICYuKOJ2eX0CUhpRSlGgVTegDaBZHQJMWBTDO1OV1fZQoaAZoCWgPQwhoBYasbr1iQJSGlFKUaBVN6ANoFkdAkyIJbD/EO3V9lChoBmgJaA9DCNLFppVC6ltAlIaUUpRoFU3oA2gWR0CTLlDGLk0adX2UKGgGaAloD0MIwD+lSpR1XkCUhpRSlGgVTegDaBZHQJM4yKfnOjZ1fZQoaAZoCWgPQwio34WtWcdtQJSGlFKUaBVNVwFoFkdAkzxGf5DZ13V9lChoBmgJaA9DCB5Td2UX7WBAlIaUUpRoFU3oA2gWR0CTRZczqKP5dX2UKGgGaAloD0MIg23Ek919XUCUhpRSlGgVTegDaBZHQJNRMEmplz51fZQoaAZoCWgPQwhZEwt8RYhZQJSGlFKUaBVN6ANoFkdAk18vKMefZnV9lChoBmgJaA9DCHrjpDBv6WBAlIaUUpRoFU3oA2gWR0CTapIhQm/ndX2UKGgGaAloD0MIJ8KGp1duO8CUhpRSlGgVTWQBaBZHQJNsvEvTPSl1fZQoaAZoCWgPQwjToj7JHWRjQJSGlFKUaBVN6ANoFkdAk3gPUnXumnV9lChoBmgJaA9DCNGUnX5Q+VhAlIaUUpRoFU3oA2gWR0CTgyjk+5e7dX2UKGgGaAloD0MIyeU/pN8iM8CUhpRSlGgVTUMBaBZHQJOFPOiWVu91fZQoaAZoCWgPQwieQxmqYo9iQJSGlFKUaBVN6ANoFkdAk49+IRAbAHV9lChoBmgJaA9DCFotsMdEalxAlIaUUpRoFU3oA2gWR0CTmT8OCoS+dX2UKGgGaAloD0MIEqRS7GhZYkCUhpRSlGgVTegDaBZHQJOjHUd7v5R1fZQoaAZoCWgPQwh0Q1N2+nNfQJSGlFKUaBVN6ANoFkdAk6651Ng0CXV9lChoBmgJaA9DCA6hSs2eWm9AlIaUUpRoFU0cAmgWR0CTtCyzollcdX2UKGgGaAloD0MIQu23dqIgNcCUhpRSlGgVTRcBaBZHQJO14oDxLCh1fZQoaAZoCWgPQwi858ByhIReQJSGlFKUaBVN6ANoFkdAk7/puuRs/XV9lChoBmgJaA9DCG8Sg8BKjGJAlIaUUpRoFU3oA2gWR0CTyfk/r0J4dX2UKGgGaAloD0MItcU1PpPbWkCUhpRSlGgVTegDaBZHQJPVd6KLsKN1fZQoaAZoCWgPQwiMahFRTA4WQJSGlFKUaBVNFwFoFkdAk9cvvjOs1nV9lChoBmgJaA9DCO2d0VYl0RVAlIaUUpRoFU08AWgWR0CT2nzPKMefdX2UKGgGaAloD0MIq3XicryUYUCUhpRSlGgVTegDaBZHQJPmjLQokRl1fZQoaAZoCWgPQwgiMxe4vJhtQJSGlFKUaBVNlAFoFkdAk+ordBSk03V9lChoBmgJaA9DCGfTEcBNomJAlIaUUpRoFU3oA2gWR0CT9mhBqsU7dX2UKGgGaAloD0MIfhr35jcxXECUhpRSlGgVTegDaBZHQJQAUr4Fia11fZQoaAZoCWgPQwi0VUlkn2lpQJSGlFKUaBVNbQFoFkdAlALFMVUMonV9lChoBmgJaA9DCD0nvW98clpAlIaUUpRoFU3oA2gWR0CUDROv+wTudX2UKGgGaAloD0MIMo6R7BEyQcCUhpRSlGgVTTYBaBZHQJQQN8pkPMB1fZQoaAZoCWgPQwjO3hltVXIvwJSGlFKUaBVNagFoFkdAlBJ9cGC7LHV9lChoBmgJaA9DCOmAJOzbCmFAlIaUUpRoFU3oA2gWR0CUHDdUKiPAdX2UKGgGaAloD0MIhQoOL4jwKcCUhpRSlGgVTSYBaBZHQJQeBN+LFXJ1fZQoaAZoCWgPQwgXt9EA3v1WQJSGlFKUaBVN6ANoFkdAlClYoy9EkXV9lChoBmgJaA9DCAu45/nTwjrAlIaUUpRoFU0XAWgWR0CUKzyBClabdX2UKGgGaAloD0MI3lZ6bTZ9V0CUhpRSlGgVTegDaBZHQJQ209QoCuF1fZQoaAZoCWgPQwhHjnQGRn5rQJSGlFKUaBVNhAFoFkdAlDrQaJhvznV9lChoBmgJaA9DCONve4LE2GNAlIaUUpRoFU3oA2gWR0CUSvhqj8DTdX2UKGgGaAloD0MIgsr49xlKV0CUhpRSlGgVTegDaBZHQJRYj863iJh1fZQoaAZoCWgPQwhUjzS4raU5wJSGlFKUaBVNjwFoFkdAlFtLwOOKfnV9lChoBmgJaA9DCO6x9KEL71lAlIaUUpRoFU3oA2gWR0CUZ2yj59E1dX2UKGgGaAloD0MIya60jNRTbUCUhpRSlGgVTd4BaBZHQJRsHGtITXd1fZQoaAZoCWgPQwhdxeI3hcVUQJSGlFKUaBVN6ANoFkdAlHQGxD9fkXV9lChoBmgJaA9DCNtRnKMOUGBAlIaUUpRoFU3oA2gWR0CUfzi8FpwkdX2UKGgGaAloD0MI6lil9ExLaECUhpRSlGgVTYUBaBZHQJSDTihnJ1d1fZQoaAZoCWgPQwhS8X9HVIpdQJSGlFKUaBVN6ANoFkdAlI2acd5prXV9lChoBmgJaA9DCG9iSE4mTg9AlIaUUpRoFUvQaBZHQJSO1DkU9IR1fZQoaAZoCWgPQwjCbW3hecVqQJSGlFKUaBVNgQFoFkdAlJGnS0BwM3V9lChoBmgJaA9DCAJmvoMf22FAlIaUUpRoFU3oA2gWR0CUnNTb349HdX2UKGgGaAloD0MIUBn/PuNeTsCUhpRSlGgVTTEBaBZHQJSgCnxaxHJ1fZQoaAZoCWgPQwgnF2NgHVc8wJSGlFKUaBVNIgFoFkdAlKINBWxQi3V9lChoBmgJaA9DCABvgQRFNWZAlIaUUpRoFU2VAWgWR0CUpLkvboKVdX2UKGgGaAloD0MIWwpI+x/5XkCUhpRSlGgVTegDaBZHQJSvikBS1md1fZQoaAZoCWgPQwiGWP0Rhok3wJSGlFKUaBVNbQFoFkdAlLMzdLxqf3V9lChoBmgJaA9DCMobYOY7glhAlIaUUpRoFU3oA2gWR0CUvO+6Ae7udX2UKGgGaAloD0MIpUqUvaVMI8CUhpRSlGgVTTwBaBZHQJS++gSOBDp1fZQoaAZoCWgPQwj/dW7ajJdgQJSGlFKUaBVN6ANoFkdAlMsKYVqN63V9lChoBmgJaA9DCKq53GCoozfAlIaUUpRoFU07AWgWR0CUzPgkka/AdX2UKGgGaAloD0MI+tLbn4u+XkCUhpRSlGgVTegDaBZHQJTYfHOryUd1fZQoaAZoCWgPQwgYWwhyUE9aQJSGlFKUaBVN6ANoFkdAlOH+32EkB3V9lChoBmgJaA9DCDvkZrgB30DAlIaUUpRoFU0pAWgWR0CU5RC8e0XxdX2UKGgGaAloD0MIpFLsaBxUX0CUhpRSlGgVTegDaBZHQJTtsX+ERJ51fZQoaAZoCWgPQwhgdHlzOHthQJSGlFKUaBVN6ANoFkdAlPnTrE9+w3V9lChoBmgJaA9DCDTY1HlUa19AlIaUUpRoFU3oA2gWR0CVAysi0OVgdX2UKGgGaAloD0MIG0esxad7XUCUhpRSlGgVTegDaBZHQJUPHES/TLJ1fZQoaAZoCWgPQwjsTneeeKNqQJSGlFKUaBVNeQFoFkdAlRMaUu+RHXV9lChoBmgJaA9DCGq932jHHR5AlIaUUpRoFU0hAWgWR0CVFPu6VdHEdX2UKGgGaAloD0MI+Z0mM94aWUCUhpRSlGgVTegDaBZHQJUfEcsDnvF1fZQoaAZoCWgPQwiwARHiSjdrQJSGlFKUaBVNoQFoFkdAlSJg6ZH/cXV9lChoBmgJaA9DCN+Hg4SoaWBAlIaUUpRoFU3oA2gWR0CVMq9kz41xdX2UKGgGaAloD0MIWoKMgAqnScCUhpRSlGgVTX4BaBZHQJU2fBHkLhJ1fZQoaAZoCWgPQwizB1qBIa8xQJSGlFKUaBVNCwFoFkdAlTgtlZowmHV9lChoBmgJaA9DCPmFV5I8SWFAlIaUUpRoFU3oA2gWR0CVREDzRQaadX2UKGgGaAloD0MI/+bFia/qTcCUhpRSlGgVTaoBaBZHQJVHJKRMewN1fZQoaAZoCWgPQwjpKAeziR9kQJSGlFKUaBVN6ANoFkdAlVBQuyu6mXV9lChoBmgJaA9DCGbdPxaiIm1AlIaUUpRoFU17AWgWR0CVVHCCBf8edX2UKGgGaAloD0MIsB2M2CfuSkCUhpRSlGgVTegDaBZHQJVh0IkZ75V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6f3f0cd4566628c9c3f526b8e9dbd7e2cd722fb332fbd7cbb7b5b3b42ff328e
3
+ size 146495
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7feb23069b00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feb23069b90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feb23069c20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feb23069cb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7feb23069d40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7feb23069dd0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feb23069e60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7feb23069ef0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feb23069f80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feb2306e050>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feb2306e0e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7feb230acde0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 500736,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1668762113756127564,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMD/xb0pKAe6rK5AO9/gnjafZtg62CKXNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0014719999999999178,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4ZUkz/XCa0CUhpRSlIwBbJRNVQOMAXSUR0CSW7WhRIjGdX2UKGgGaAloD0MIfZV87C7XVUCUhpRSlGgVTegDaBZHQJJmHyd4FA51fZQoaAZoCWgPQwjP91PjpUpeQJSGlFKUaBVN6ANoFkdAknISXyAhCHV9lChoBmgJaA9DCA7aq4+H+F1AlIaUUpRoFU3oA2gWR0CSfmNliBoVdX2UKGgGaAloD0MIZqAy/n3vakCUhpRSlGgVTUcDaBZHQJKHhQfp2U11fZQoaAZoCWgPQwiR8L2/QZdaQJSGlFKUaBVN6ANoFkdAkpIuHSF493V9lChoBmgJaA9DCA69xcN7CjXAlIaUUpRoFU2CAWgWR0CSlKPqcEvCdX2UKGgGaAloD0MIJhx6i4feYkCUhpRSlGgVTegDaBZHQJKfA79ycTd1fZQoaAZoCWgPQwj/ImjMJCoBwJSGlFKUaBVNSQFoFkdAkqJ76Hj6vnV9lChoBmgJaA9DCKGCwwsixk7AlIaUUpRoFU1qAWgWR0CSpMwLmZE2dX2UKGgGaAloD0MIbLBwkuYJaUCUhpRSlGgVTU4CaBZHQJKqipLmITJ1fZQoaAZoCWgPQwi7mjxltWxoQJSGlFKUaBVNvQFoFkdAkq29VinYQXV9lChoBmgJaA9DCM3n3O16wmFAlIaUUpRoFU3oA2gWR0CSuDF9a2WqdX2UKGgGaAloD0MIX2HB/YCdW0CUhpRSlGgVTegDaBZHQJLDmiudPLx1fZQoaAZoCWgPQwgUIApmTIxYQJSGlFKUaBVN6ANoFkdAks6FO9FnZnV9lChoBmgJaA9DCOm68IPzHFlAlIaUUpRoFU3oA2gWR0CS2F3/giu/dX2UKGgGaAloD0MIE7cKYqBr/D+UhpRSlGgVTSkBaBZHQJLaMGRmseZ1fZQoaAZoCWgPQwjM0eP3tjhqQJSGlFKUaBVNpAFoFkdAkt6hHww0wnV9lChoBmgJaA9DCFqfckwWD19AlIaUUpRoFU3oA2gWR0CS620svqTsdX2UKGgGaAloD0MI4Qoo1NM6WkCUhpRSlGgVTegDaBZHQJL3tG/etS11fZQoaAZoCWgPQwiEYitoWphhQJSGlFKUaBVN6ANoFkdAkwD0G7jDK3V9lChoBmgJaA9DCLbZWIn5TWFAlIaUUpRoFU3oA2gWR0CTDGfAKv3bdX2UKGgGaAloD0MICYuKOJ2eX0CUhpRSlGgVTegDaBZHQJMWBTDO1OV1fZQoaAZoCWgPQwhoBYasbr1iQJSGlFKUaBVN6ANoFkdAkyIJbD/EO3V9lChoBmgJaA9DCNLFppVC6ltAlIaUUpRoFU3oA2gWR0CTLlDGLk0adX2UKGgGaAloD0MIwD+lSpR1XkCUhpRSlGgVTegDaBZHQJM4yKfnOjZ1fZQoaAZoCWgPQwio34WtWcdtQJSGlFKUaBVNVwFoFkdAkzxGf5DZ13V9lChoBmgJaA9DCB5Td2UX7WBAlIaUUpRoFU3oA2gWR0CTRZczqKP5dX2UKGgGaAloD0MIg23Ek919XUCUhpRSlGgVTegDaBZHQJNRMEmplz51fZQoaAZoCWgPQwhZEwt8RYhZQJSGlFKUaBVN6ANoFkdAk18vKMefZnV9lChoBmgJaA9DCHrjpDBv6WBAlIaUUpRoFU3oA2gWR0CTapIhQm/ndX2UKGgGaAloD0MIJ8KGp1duO8CUhpRSlGgVTWQBaBZHQJNsvEvTPSl1fZQoaAZoCWgPQwjToj7JHWRjQJSGlFKUaBVN6ANoFkdAk3gPUnXumnV9lChoBmgJaA9DCNGUnX5Q+VhAlIaUUpRoFU3oA2gWR0CTgyjk+5e7dX2UKGgGaAloD0MIyeU/pN8iM8CUhpRSlGgVTUMBaBZHQJOFPOiWVu91fZQoaAZoCWgPQwieQxmqYo9iQJSGlFKUaBVN6ANoFkdAk49+IRAbAHV9lChoBmgJaA9DCFotsMdEalxAlIaUUpRoFU3oA2gWR0CTmT8OCoS+dX2UKGgGaAloD0MIEqRS7GhZYkCUhpRSlGgVTegDaBZHQJOjHUd7v5R1fZQoaAZoCWgPQwh0Q1N2+nNfQJSGlFKUaBVN6ANoFkdAk6651Ng0CXV9lChoBmgJaA9DCA6hSs2eWm9AlIaUUpRoFU0cAmgWR0CTtCyzollcdX2UKGgGaAloD0MIQu23dqIgNcCUhpRSlGgVTRcBaBZHQJO14oDxLCh1fZQoaAZoCWgPQwi858ByhIReQJSGlFKUaBVN6ANoFkdAk7/puuRs/XV9lChoBmgJaA9DCG8Sg8BKjGJAlIaUUpRoFU3oA2gWR0CTyfk/r0J4dX2UKGgGaAloD0MItcU1PpPbWkCUhpRSlGgVTegDaBZHQJPVd6KLsKN1fZQoaAZoCWgPQwiMahFRTA4WQJSGlFKUaBVNFwFoFkdAk9cvvjOs1nV9lChoBmgJaA9DCO2d0VYl0RVAlIaUUpRoFU08AWgWR0CT2nzPKMefdX2UKGgGaAloD0MIq3XicryUYUCUhpRSlGgVTegDaBZHQJPmjLQokRl1fZQoaAZoCWgPQwgiMxe4vJhtQJSGlFKUaBVNlAFoFkdAk+ordBSk03V9lChoBmgJaA9DCGfTEcBNomJAlIaUUpRoFU3oA2gWR0CT9mhBqsU7dX2UKGgGaAloD0MIfhr35jcxXECUhpRSlGgVTegDaBZHQJQAUr4Fia11fZQoaAZoCWgPQwi0VUlkn2lpQJSGlFKUaBVNbQFoFkdAlALFMVUMonV9lChoBmgJaA9DCD0nvW98clpAlIaUUpRoFU3oA2gWR0CUDROv+wTudX2UKGgGaAloD0MIMo6R7BEyQcCUhpRSlGgVTTYBaBZHQJQQN8pkPMB1fZQoaAZoCWgPQwjO3hltVXIvwJSGlFKUaBVNagFoFkdAlBJ9cGC7LHV9lChoBmgJaA9DCOmAJOzbCmFAlIaUUpRoFU3oA2gWR0CUHDdUKiPAdX2UKGgGaAloD0MIhQoOL4jwKcCUhpRSlGgVTSYBaBZHQJQeBN+LFXJ1fZQoaAZoCWgPQwgXt9EA3v1WQJSGlFKUaBVN6ANoFkdAlClYoy9EkXV9lChoBmgJaA9DCAu45/nTwjrAlIaUUpRoFU0XAWgWR0CUKzyBClabdX2UKGgGaAloD0MI3lZ6bTZ9V0CUhpRSlGgVTegDaBZHQJQ209QoCuF1fZQoaAZoCWgPQwhHjnQGRn5rQJSGlFKUaBVNhAFoFkdAlDrQaJhvznV9lChoBmgJaA9DCONve4LE2GNAlIaUUpRoFU3oA2gWR0CUSvhqj8DTdX2UKGgGaAloD0MIgsr49xlKV0CUhpRSlGgVTegDaBZHQJRYj863iJh1fZQoaAZoCWgPQwhUjzS4raU5wJSGlFKUaBVNjwFoFkdAlFtLwOOKfnV9lChoBmgJaA9DCO6x9KEL71lAlIaUUpRoFU3oA2gWR0CUZ2yj59E1dX2UKGgGaAloD0MIya60jNRTbUCUhpRSlGgVTd4BaBZHQJRsHGtITXd1fZQoaAZoCWgPQwhdxeI3hcVUQJSGlFKUaBVN6ANoFkdAlHQGxD9fkXV9lChoBmgJaA9DCNtRnKMOUGBAlIaUUpRoFU3oA2gWR0CUfzi8FpwkdX2UKGgGaAloD0MI6lil9ExLaECUhpRSlGgVTYUBaBZHQJSDTihnJ1d1fZQoaAZoCWgPQwhS8X9HVIpdQJSGlFKUaBVN6ANoFkdAlI2acd5prXV9lChoBmgJaA9DCG9iSE4mTg9AlIaUUpRoFUvQaBZHQJSO1DkU9IR1fZQoaAZoCWgPQwjCbW3hecVqQJSGlFKUaBVNgQFoFkdAlJGnS0BwM3V9lChoBmgJaA9DCAJmvoMf22FAlIaUUpRoFU3oA2gWR0CUnNTb349HdX2UKGgGaAloD0MIUBn/PuNeTsCUhpRSlGgVTTEBaBZHQJSgCnxaxHJ1fZQoaAZoCWgPQwgnF2NgHVc8wJSGlFKUaBVNIgFoFkdAlKINBWxQi3V9lChoBmgJaA9DCABvgQRFNWZAlIaUUpRoFU2VAWgWR0CUpLkvboKVdX2UKGgGaAloD0MIWwpI+x/5XkCUhpRSlGgVTegDaBZHQJSvikBS1md1fZQoaAZoCWgPQwiGWP0Rhok3wJSGlFKUaBVNbQFoFkdAlLMzdLxqf3V9lChoBmgJaA9DCMobYOY7glhAlIaUUpRoFU3oA2gWR0CUvO+6Ae7udX2UKGgGaAloD0MIpUqUvaVMI8CUhpRSlGgVTTwBaBZHQJS++gSOBDp1fZQoaAZoCWgPQwj/dW7ajJdgQJSGlFKUaBVN6ANoFkdAlMsKYVqN63V9lChoBmgJaA9DCKq53GCoozfAlIaUUpRoFU07AWgWR0CUzPgkka/AdX2UKGgGaAloD0MI+tLbn4u+XkCUhpRSlGgVTegDaBZHQJTYfHOryUd1fZQoaAZoCWgPQwgYWwhyUE9aQJSGlFKUaBVN6ANoFkdAlOH+32EkB3V9lChoBmgJaA9DCDvkZrgB30DAlIaUUpRoFU0pAWgWR0CU5RC8e0XxdX2UKGgGaAloD0MIpFLsaBxUX0CUhpRSlGgVTegDaBZHQJTtsX+ERJ51fZQoaAZoCWgPQwhgdHlzOHthQJSGlFKUaBVN6ANoFkdAlPnTrE9+w3V9lChoBmgJaA9DCDTY1HlUa19AlIaUUpRoFU3oA2gWR0CVAysi0OVgdX2UKGgGaAloD0MIG0esxad7XUCUhpRSlGgVTegDaBZHQJUPHES/TLJ1fZQoaAZoCWgPQwjsTneeeKNqQJSGlFKUaBVNeQFoFkdAlRMaUu+RHXV9lChoBmgJaA9DCGq932jHHR5AlIaUUpRoFU0hAWgWR0CVFPu6VdHEdX2UKGgGaAloD0MI+Z0mM94aWUCUhpRSlGgVTegDaBZHQJUfEcsDnvF1fZQoaAZoCWgPQwiwARHiSjdrQJSGlFKUaBVNoQFoFkdAlSJg6ZH/cXV9lChoBmgJaA9DCN+Hg4SoaWBAlIaUUpRoFU3oA2gWR0CVMq9kz41xdX2UKGgGaAloD0MIWoKMgAqnScCUhpRSlGgVTX4BaBZHQJU2fBHkLhJ1fZQoaAZoCWgPQwizB1qBIa8xQJSGlFKUaBVNCwFoFkdAlTgtlZowmHV9lChoBmgJaA9DCPmFV5I8SWFAlIaUUpRoFU3oA2gWR0CVREDzRQaadX2UKGgGaAloD0MI/+bFia/qTcCUhpRSlGgVTaoBaBZHQJVHJKRMewN1fZQoaAZoCWgPQwjpKAeziR9kQJSGlFKUaBVN6ANoFkdAlVBQuyu6mXV9lChoBmgJaA9DCGbdPxaiIm1AlIaUUpRoFU17AWgWR0CVVHCCBf8edX2UKGgGaAloD0MIsB2M2CfuSkCUhpRSlGgVTegDaBZHQJVh0IkZ75V1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1956,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d86bc837e695087816bbdbd598c4e1eb42114a16ffad6d4d7158869b9acb8402
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61b88ec271a4724786c62f94dc6ad964ec3c6673142325df67141feb4322c800
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (231 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 57.87221985871438, "std_reward": 63.417328563477454, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-18T09:34:54.115810"}