Upload 74 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- user-baichuan2-13b-v2-3.6/README.md +23 -0
- user-baichuan2-13b-v2-3.6/adapter_config.json +24 -0
- user-baichuan2-13b-v2-3.6/adapter_model.safetensors +3 -0
- user-baichuan2-13b-v2-3.6/all_results.json +7 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/README.md +53 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/adapter_config.json +24 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/adapter_model.safetensors +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/optimizer.pt +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/rng_state.pth +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/scheduler.pt +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/special_tokens_map.json +30 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/tokenization_baichuan.py +258 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/tokenizer.model +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/tokenizer_config.json +44 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/trainer_state.json +161 -0
- user-baichuan2-13b-v2-3.6/checkpoint-200/training_args.bin +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/README.md +23 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/adapter_config.json +24 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/adapter_model.safetensors +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/optimizer.pt +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/rng_state.pth +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/scheduler.pt +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/special_tokens_map.json +30 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/tokenization_baichuan.py +258 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/tokenizer.model +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/tokenizer_config.json +44 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/trainer_state.json +231 -0
- user-baichuan2-13b-v2-3.6/checkpoint-300/training_args.bin +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/README.md +23 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/adapter_config.json +24 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/adapter_model.safetensors +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/optimizer.pt +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/rng_state.pth +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/scheduler.pt +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/special_tokens_map.json +30 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/tokenization_baichuan.py +258 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/tokenizer.model +3 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/tokenizer_config.json +44 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/trainer_state.json +301 -0
- user-baichuan2-13b-v2-3.6/checkpoint-400/training_args.bin +3 -0
- user-baichuan2-13b-v2-3.6/runs/Mar06_16-02-53_u/events.out.tfevents.1709741241.u.349083.0 +3 -0
- user-baichuan2-13b-v2-3.6/runs/Mar06_16-15-19_u/events.out.tfevents.1709741991.u.349593.0 +3 -0
- user-baichuan2-13b-v2-3.6/runs/Mar06_16-27-57_u/events.out.tfevents.1709742755.u.350734.0 +3 -0
- user-baichuan2-13b-v2-3.6/runs/Mar06_16-37-25_u/events.out.tfevents.1709743386.u.351776.0 +3 -0
- user-baichuan2-13b-v2-3.6/runs/Mar06_16-46-23_u/events.out.tfevents.1709743925.u.352180.0 +3 -0
- user-baichuan2-13b-v2-3.6/runs/Mar06_16-55-14_u/events.out.tfevents.1709744402.u.352650.0 +3 -0
- user-baichuan2-13b-v2-3.6/runs/Mar06_17-03-22_u/events.out.tfevents.1709744890.u.353116.0 +3 -0
- user-baichuan2-13b-v2-3.6/runs/Mar06_17-13-29_u/events.out.tfevents.1709745516.u.353684.0 +3 -0
- user-baichuan2-13b-v2-3.6/runs/Mar06_17-30-51_u/events.out.tfevents.1709746552.u.354572.0 +3 -0
- user-baichuan2-13b-v2-3.6/runs/Mar06_17-42-56_u/events.out.tfevents.1709747302.u.355650.0 +3 -0
user-baichuan2-13b-v2-3.6/README.md
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
|
7 |
+
The following `bitsandbytes` quantization config was used during training:
|
8 |
+
- quant_method: bitsandbytes
|
9 |
+
- _load_in_8bit: False
|
10 |
+
- _load_in_4bit: True
|
11 |
+
- llm_int8_threshold: 6.0
|
12 |
+
- llm_int8_skip_modules: None
|
13 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
14 |
+
- llm_int8_has_fp16_weight: False
|
15 |
+
- bnb_4bit_quant_type: nf4
|
16 |
+
- bnb_4bit_use_double_quant: True
|
17 |
+
- bnb_4bit_compute_dtype: float16
|
18 |
+
- load_in_4bit: True
|
19 |
+
- load_in_8bit: False
|
20 |
+
### Framework versions
|
21 |
+
|
22 |
+
|
23 |
+
- PEFT 0.4.0
|
user-baichuan2-13b-v2-3.6/adapter_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "/home/jiakangxiang/.cache/modelscope/hub/baichuan-inc/Baichuan2-13B-Chat",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 16,
|
11 |
+
"lora_dropout": 0.05,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 16,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"o_proj",
|
18 |
+
"W_pack",
|
19 |
+
"down_proj",
|
20 |
+
"up_proj",
|
21 |
+
"gate_proj"
|
22 |
+
],
|
23 |
+
"task_type": "CAUSAL_LM"
|
24 |
+
}
|
user-baichuan2-13b-v2-3.6/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fa2928717257a823e5ece47fa40497bfd62df2de1dad1d22b7189be1eaae1fc
|
3 |
+
size 223203704
|
user-baichuan2-13b-v2-3.6/all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"train_loss": 0.5017403132133569,
|
4 |
+
"train_runtime": 75900.5046,
|
5 |
+
"train_samples_per_second": 0.102,
|
6 |
+
"train_steps_per_second": 0.006
|
7 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-200/README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
|
7 |
+
The following `bitsandbytes` quantization config was used during training:
|
8 |
+
- quant_method: bitsandbytes
|
9 |
+
- _load_in_8bit: False
|
10 |
+
- _load_in_4bit: True
|
11 |
+
- llm_int8_threshold: 6.0
|
12 |
+
- llm_int8_skip_modules: None
|
13 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
14 |
+
- llm_int8_has_fp16_weight: False
|
15 |
+
- bnb_4bit_quant_type: nf4
|
16 |
+
- bnb_4bit_use_double_quant: True
|
17 |
+
- bnb_4bit_compute_dtype: float16
|
18 |
+
- load_in_4bit: True
|
19 |
+
- load_in_8bit: False
|
20 |
+
|
21 |
+
The following `bitsandbytes` quantization config was used during training:
|
22 |
+
- quant_method: bitsandbytes
|
23 |
+
- _load_in_8bit: False
|
24 |
+
- _load_in_4bit: True
|
25 |
+
- llm_int8_threshold: 6.0
|
26 |
+
- llm_int8_skip_modules: None
|
27 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
28 |
+
- llm_int8_has_fp16_weight: False
|
29 |
+
- bnb_4bit_quant_type: nf4
|
30 |
+
- bnb_4bit_use_double_quant: True
|
31 |
+
- bnb_4bit_compute_dtype: float16
|
32 |
+
- load_in_4bit: True
|
33 |
+
- load_in_8bit: False
|
34 |
+
|
35 |
+
The following `bitsandbytes` quantization config was used during training:
|
36 |
+
- quant_method: bitsandbytes
|
37 |
+
- _load_in_8bit: False
|
38 |
+
- _load_in_4bit: True
|
39 |
+
- llm_int8_threshold: 6.0
|
40 |
+
- llm_int8_skip_modules: None
|
41 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
42 |
+
- llm_int8_has_fp16_weight: False
|
43 |
+
- bnb_4bit_quant_type: nf4
|
44 |
+
- bnb_4bit_use_double_quant: True
|
45 |
+
- bnb_4bit_compute_dtype: float16
|
46 |
+
- load_in_4bit: True
|
47 |
+
- load_in_8bit: False
|
48 |
+
### Framework versions
|
49 |
+
|
50 |
+
- PEFT 0.4.0
|
51 |
+
- PEFT 0.4.0
|
52 |
+
|
53 |
+
- PEFT 0.4.0
|
user-baichuan2-13b-v2-3.6/checkpoint-200/adapter_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "/home/jiakangxiang/.cache/modelscope/hub/baichuan-inc/Baichuan2-13B-Chat",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 16,
|
11 |
+
"lora_dropout": 0.05,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 16,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"o_proj",
|
18 |
+
"W_pack",
|
19 |
+
"down_proj",
|
20 |
+
"up_proj",
|
21 |
+
"gate_proj"
|
22 |
+
],
|
23 |
+
"task_type": "CAUSAL_LM"
|
24 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-200/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38a30f766c18c946f733b21a20bbed87b6c9fc7fcd352632d9f10275b9bcafec
|
3 |
+
size 223203704
|
user-baichuan2-13b-v2-3.6/checkpoint-200/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:244f09da90f8637279a30da6c1ab06000f824a132e5721b107eae147dab5ec76
|
3 |
+
size 446541509
|
user-baichuan2-13b-v2-3.6/checkpoint-200/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82057afe356e5d07dcf306e6c4328a22809f76704092cbfcfc589f5f6ca4ecfb
|
3 |
+
size 14575
|
user-baichuan2-13b-v2-3.6/checkpoint-200/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7d91431adcc602a99f3b7dfb114d8f98fcd9283452a4e00f4d0e20d836e409d
|
3 |
+
size 627
|
user-baichuan2-13b-v2-3.6/checkpoint-200/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": true
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": true
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": true
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": true
|
29 |
+
}
|
30 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-200/tokenization_baichuan.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
+
import os
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
import sentencepiece as spm
|
8 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
15 |
+
|
16 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
17 |
+
"vocab_file": {},
|
18 |
+
"tokenizer_file": {},
|
19 |
+
}
|
20 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
21 |
+
|
22 |
+
|
23 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
24 |
+
"""
|
25 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
vocab_file (`str`):
|
29 |
+
Path to the vocabulary file.
|
30 |
+
"""
|
31 |
+
|
32 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
33 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
34 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
35 |
+
model_input_names = ["input_ids", "attention_mask"]
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
vocab_file,
|
40 |
+
unk_token="<unk>",
|
41 |
+
bos_token="<s>",
|
42 |
+
eos_token="</s>",
|
43 |
+
pad_token=None,
|
44 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
45 |
+
add_bos_token=True,
|
46 |
+
add_eos_token=False,
|
47 |
+
clean_up_tokenization_spaces=False,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
51 |
+
bos_token = (
|
52 |
+
AddedToken(bos_token, lstrip=False, rstrip=False)
|
53 |
+
if isinstance(bos_token, str)
|
54 |
+
else bos_token
|
55 |
+
)
|
56 |
+
eos_token = (
|
57 |
+
AddedToken(eos_token, lstrip=False, rstrip=False)
|
58 |
+
if isinstance(eos_token, str)
|
59 |
+
else eos_token
|
60 |
+
)
|
61 |
+
unk_token = (
|
62 |
+
AddedToken(unk_token, lstrip=False, rstrip=False)
|
63 |
+
if isinstance(unk_token, str)
|
64 |
+
else unk_token
|
65 |
+
)
|
66 |
+
pad_token = (
|
67 |
+
AddedToken(pad_token, lstrip=False, rstrip=False)
|
68 |
+
if isinstance(pad_token, str)
|
69 |
+
else pad_token
|
70 |
+
)
|
71 |
+
self.vocab_file = vocab_file
|
72 |
+
self.add_bos_token = add_bos_token
|
73 |
+
self.add_eos_token = add_eos_token
|
74 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
75 |
+
self.sp_model.Load(vocab_file)
|
76 |
+
super().__init__(
|
77 |
+
bos_token=bos_token,
|
78 |
+
eos_token=eos_token,
|
79 |
+
unk_token=unk_token,
|
80 |
+
pad_token=pad_token,
|
81 |
+
add_bos_token=add_bos_token,
|
82 |
+
add_eos_token=add_eos_token,
|
83 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
84 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
85 |
+
**kwargs,
|
86 |
+
)
|
87 |
+
|
88 |
+
def __getstate__(self):
|
89 |
+
state = self.__dict__.copy()
|
90 |
+
state["sp_model"] = None
|
91 |
+
return state
|
92 |
+
|
93 |
+
def __setstate__(self, d):
|
94 |
+
self.__dict__ = d
|
95 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
96 |
+
self.sp_model.Load(self.vocab_file)
|
97 |
+
|
98 |
+
@property
|
99 |
+
def vocab_size(self):
|
100 |
+
"""Returns vocab size"""
|
101 |
+
return self.sp_model.get_piece_size()
|
102 |
+
|
103 |
+
def get_vocab(self):
|
104 |
+
"""Returns vocab as a dict"""
|
105 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
106 |
+
vocab.update(self.added_tokens_encoder)
|
107 |
+
return vocab
|
108 |
+
|
109 |
+
def _tokenize(self, text):
|
110 |
+
"""Returns a tokenized string."""
|
111 |
+
return self.sp_model.encode(text, out_type=str)
|
112 |
+
|
113 |
+
def _convert_token_to_id(self, token):
|
114 |
+
"""Converts a token (str) in an id using the vocab."""
|
115 |
+
return self.sp_model.piece_to_id(token)
|
116 |
+
|
117 |
+
def _convert_id_to_token(self, index):
|
118 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
119 |
+
token = self.sp_model.IdToPiece(index)
|
120 |
+
return token
|
121 |
+
|
122 |
+
def convert_tokens_to_string(self, tokens):
|
123 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
124 |
+
current_sub_tokens = []
|
125 |
+
out_string = ""
|
126 |
+
prev_is_special = False
|
127 |
+
for i, token in enumerate(tokens):
|
128 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
129 |
+
if token in self.all_special_tokens:
|
130 |
+
if not prev_is_special and i != 0:
|
131 |
+
out_string += " "
|
132 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
133 |
+
prev_is_special = True
|
134 |
+
current_sub_tokens = []
|
135 |
+
else:
|
136 |
+
current_sub_tokens.append(token)
|
137 |
+
prev_is_special = False
|
138 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
139 |
+
return out_string
|
140 |
+
|
141 |
+
def save_vocabulary(
|
142 |
+
self, save_directory, filename_prefix: Optional[str] = None
|
143 |
+
) -> Tuple[str]:
|
144 |
+
"""
|
145 |
+
Save the vocabulary and special tokens file to a directory.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
save_directory (`str`):
|
149 |
+
The directory in which to save the vocabulary.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
`Tuple(str)`: Paths to the files saved.
|
153 |
+
"""
|
154 |
+
if not os.path.isdir(save_directory):
|
155 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
156 |
+
return
|
157 |
+
out_vocab_file = os.path.join(
|
158 |
+
save_directory,
|
159 |
+
(filename_prefix + "-" if filename_prefix else "")
|
160 |
+
+ VOCAB_FILES_NAMES["vocab_file"],
|
161 |
+
)
|
162 |
+
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
164 |
+
out_vocab_file
|
165 |
+
) and os.path.isfile(self.vocab_file):
|
166 |
+
copyfile(self.vocab_file, out_vocab_file)
|
167 |
+
elif not os.path.isfile(self.vocab_file):
|
168 |
+
with open(out_vocab_file, "wb") as fi:
|
169 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
170 |
+
fi.write(content_spiece_model)
|
171 |
+
|
172 |
+
return (out_vocab_file,)
|
173 |
+
|
174 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
175 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
176 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
177 |
+
|
178 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
179 |
+
|
180 |
+
if token_ids_1 is not None:
|
181 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
182 |
+
|
183 |
+
return output
|
184 |
+
|
185 |
+
def get_special_tokens_mask(
|
186 |
+
self,
|
187 |
+
token_ids_0: List[int],
|
188 |
+
token_ids_1: Optional[List[int]] = None,
|
189 |
+
already_has_special_tokens: bool = False,
|
190 |
+
) -> List[int]:
|
191 |
+
"""
|
192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
token_ids_0 (`List[int]`):
|
197 |
+
List of IDs.
|
198 |
+
token_ids_1 (`List[int]`, *optional*):
|
199 |
+
Optional second list of IDs for sequence pairs.
|
200 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
201 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
205 |
+
"""
|
206 |
+
if already_has_special_tokens:
|
207 |
+
return super().get_special_tokens_mask(
|
208 |
+
token_ids_0=token_ids_0,
|
209 |
+
token_ids_1=token_ids_1,
|
210 |
+
already_has_special_tokens=True,
|
211 |
+
)
|
212 |
+
|
213 |
+
bos_token_id = [1] if self.add_bos_token else []
|
214 |
+
eos_token_id = [1] if self.add_eos_token else []
|
215 |
+
|
216 |
+
if token_ids_1 is None:
|
217 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
218 |
+
return (
|
219 |
+
bos_token_id
|
220 |
+
+ ([0] * len(token_ids_0))
|
221 |
+
+ eos_token_id
|
222 |
+
+ bos_token_id
|
223 |
+
+ ([0] * len(token_ids_1))
|
224 |
+
+ eos_token_id
|
225 |
+
)
|
226 |
+
|
227 |
+
def create_token_type_ids_from_sequences(
|
228 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
229 |
+
) -> List[int]:
|
230 |
+
"""
|
231 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
232 |
+
sequence pair mask has the following format:
|
233 |
+
|
234 |
+
```
|
235 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
236 |
+
| first sequence | second sequence |
|
237 |
+
```
|
238 |
+
|
239 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
240 |
+
|
241 |
+
Args:
|
242 |
+
token_ids_0 (`List[int]`):
|
243 |
+
List of ids.
|
244 |
+
token_ids_1 (`List[int]`, *optional*):
|
245 |
+
Optional second list of IDs for sequence pairs.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
249 |
+
"""
|
250 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
251 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
252 |
+
|
253 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
254 |
+
|
255 |
+
if token_ids_1 is not None:
|
256 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
257 |
+
|
258 |
+
return output
|
user-baichuan2-13b-v2-3.6/checkpoint-200/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
|
3 |
+
size 2001107
|
user-baichuan2-13b-v2-3.6/checkpoint-200/tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": true,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": true,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": true,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"auto_map": {
|
31 |
+
"AutoTokenizer": [
|
32 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
33 |
+
null
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"bos_token": "<s>",
|
37 |
+
"clean_up_tokenization_spaces": false,
|
38 |
+
"eos_token": "</s>",
|
39 |
+
"model_max_length": 4096,
|
40 |
+
"pad_token": "<unk>",
|
41 |
+
"sp_model_kwargs": {},
|
42 |
+
"tokenizer_class": "BaichuanTokenizer",
|
43 |
+
"unk_token": "<unk>"
|
44 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-200/trainer_state.json
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.41450777202072536,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02,
|
13 |
+
"grad_norm": 4.99941873550415,
|
14 |
+
"learning_rate": 2e-05,
|
15 |
+
"loss": 9.9329,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.04,
|
20 |
+
"grad_norm": 1.741065502166748,
|
21 |
+
"learning_rate": 4e-05,
|
22 |
+
"loss": 11.0746,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.06,
|
27 |
+
"grad_norm": 1.4727320671081543,
|
28 |
+
"learning_rate": 6e-05,
|
29 |
+
"loss": 2.7159,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.08,
|
34 |
+
"grad_norm": 0.1335960477590561,
|
35 |
+
"learning_rate": 8e-05,
|
36 |
+
"loss": 0.3969,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.1,
|
41 |
+
"grad_norm": 0.0014472692273557186,
|
42 |
+
"learning_rate": 0.0001,
|
43 |
+
"loss": 0.0032,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.12,
|
48 |
+
"grad_norm": 0.0010780546581372619,
|
49 |
+
"learning_rate": 0.0001,
|
50 |
+
"loss": 0.0002,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.15,
|
55 |
+
"grad_norm": 1.03132963180542,
|
56 |
+
"learning_rate": 0.0001,
|
57 |
+
"loss": 0.0002,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.17,
|
62 |
+
"grad_norm": 0.008827299810945988,
|
63 |
+
"learning_rate": 0.0001,
|
64 |
+
"loss": 0.0,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.19,
|
69 |
+
"grad_norm": 0.0002956670359708369,
|
70 |
+
"learning_rate": 0.0001,
|
71 |
+
"loss": 0.0001,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.21,
|
76 |
+
"grad_norm": 0.0003419867134653032,
|
77 |
+
"learning_rate": 0.0001,
|
78 |
+
"loss": 0.0,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.23,
|
83 |
+
"grad_norm": 0.0003681881644297391,
|
84 |
+
"learning_rate": 0.0001,
|
85 |
+
"loss": 0.0,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.25,
|
90 |
+
"grad_norm": 0.0002884200366679579,
|
91 |
+
"learning_rate": 0.0001,
|
92 |
+
"loss": 0.0,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.27,
|
97 |
+
"grad_norm": 0.00011985149467363954,
|
98 |
+
"learning_rate": 0.0001,
|
99 |
+
"loss": 0.0,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.29,
|
104 |
+
"grad_norm": 0.0003195986500941217,
|
105 |
+
"learning_rate": 0.0001,
|
106 |
+
"loss": 0.0,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.31,
|
111 |
+
"grad_norm": 0.00010149635636480525,
|
112 |
+
"learning_rate": 0.0001,
|
113 |
+
"loss": 0.0,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.33,
|
118 |
+
"grad_norm": 0.00010508792183827609,
|
119 |
+
"learning_rate": 0.0001,
|
120 |
+
"loss": 0.0,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.35,
|
125 |
+
"grad_norm": 0.00011793687008321285,
|
126 |
+
"learning_rate": 0.0001,
|
127 |
+
"loss": 0.006,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.37,
|
132 |
+
"grad_norm": 8.076676749624312e-05,
|
133 |
+
"learning_rate": 0.0001,
|
134 |
+
"loss": 0.0,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.39,
|
139 |
+
"grad_norm": 0.0007808339432813227,
|
140 |
+
"learning_rate": 0.0001,
|
141 |
+
"loss": 0.006,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.41,
|
146 |
+
"grad_norm": 0.11711683869361877,
|
147 |
+
"learning_rate": 0.0001,
|
148 |
+
"loss": 0.003,
|
149 |
+
"step": 200
|
150 |
+
}
|
151 |
+
],
|
152 |
+
"logging_steps": 10,
|
153 |
+
"max_steps": 482,
|
154 |
+
"num_input_tokens_seen": 0,
|
155 |
+
"num_train_epochs": 1,
|
156 |
+
"save_steps": 100,
|
157 |
+
"total_flos": 3.335841878562816e+17,
|
158 |
+
"train_batch_size": 1,
|
159 |
+
"trial_name": null,
|
160 |
+
"trial_params": null
|
161 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-200/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1abab34fc571ab2be46c8abdf765b96b9a09ab4144528e95270f1af465c0f19c
|
3 |
+
size 4475
|
user-baichuan2-13b-v2-3.6/checkpoint-300/README.md
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
|
7 |
+
The following `bitsandbytes` quantization config was used during training:
|
8 |
+
- quant_method: bitsandbytes
|
9 |
+
- _load_in_8bit: False
|
10 |
+
- _load_in_4bit: True
|
11 |
+
- llm_int8_threshold: 6.0
|
12 |
+
- llm_int8_skip_modules: None
|
13 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
14 |
+
- llm_int8_has_fp16_weight: False
|
15 |
+
- bnb_4bit_quant_type: nf4
|
16 |
+
- bnb_4bit_use_double_quant: True
|
17 |
+
- bnb_4bit_compute_dtype: float16
|
18 |
+
- load_in_4bit: True
|
19 |
+
- load_in_8bit: False
|
20 |
+
### Framework versions
|
21 |
+
|
22 |
+
|
23 |
+
- PEFT 0.4.0
|
user-baichuan2-13b-v2-3.6/checkpoint-300/adapter_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "/home/jiakangxiang/.cache/modelscope/hub/baichuan-inc/Baichuan2-13B-Chat",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 16,
|
11 |
+
"lora_dropout": 0.05,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 16,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"o_proj",
|
18 |
+
"W_pack",
|
19 |
+
"down_proj",
|
20 |
+
"up_proj",
|
21 |
+
"gate_proj"
|
22 |
+
],
|
23 |
+
"task_type": "CAUSAL_LM"
|
24 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-300/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3abb43148c7b50ee5cbd1d6ca51b35ce5a55e74d837bf441cb247d3ea6a7c56a
|
3 |
+
size 223203704
|
user-baichuan2-13b-v2-3.6/checkpoint-300/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6626b117cfcf7dfb7c1d3cf79bd87cac30bfdbb5b6d6138c5282bda6d59f86cb
|
3 |
+
size 446541893
|
user-baichuan2-13b-v2-3.6/checkpoint-300/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:939982b34814a29d20630db8d8bb9ca8ffaaca659852333f9bf40ca5f715ffd0
|
3 |
+
size 14575
|
user-baichuan2-13b-v2-3.6/checkpoint-300/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47e1286a69d6cf9d5865b0808d9a438a85cffe270c5273c3518b2a5557084aa5
|
3 |
+
size 627
|
user-baichuan2-13b-v2-3.6/checkpoint-300/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": true
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": true
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": true
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": true
|
29 |
+
}
|
30 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-300/tokenization_baichuan.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
+
import os
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
import sentencepiece as spm
|
8 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
15 |
+
|
16 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
17 |
+
"vocab_file": {},
|
18 |
+
"tokenizer_file": {},
|
19 |
+
}
|
20 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
21 |
+
|
22 |
+
|
23 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
24 |
+
"""
|
25 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
vocab_file (`str`):
|
29 |
+
Path to the vocabulary file.
|
30 |
+
"""
|
31 |
+
|
32 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
33 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
34 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
35 |
+
model_input_names = ["input_ids", "attention_mask"]
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
vocab_file,
|
40 |
+
unk_token="<unk>",
|
41 |
+
bos_token="<s>",
|
42 |
+
eos_token="</s>",
|
43 |
+
pad_token=None,
|
44 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
45 |
+
add_bos_token=True,
|
46 |
+
add_eos_token=False,
|
47 |
+
clean_up_tokenization_spaces=False,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
51 |
+
bos_token = (
|
52 |
+
AddedToken(bos_token, lstrip=False, rstrip=False)
|
53 |
+
if isinstance(bos_token, str)
|
54 |
+
else bos_token
|
55 |
+
)
|
56 |
+
eos_token = (
|
57 |
+
AddedToken(eos_token, lstrip=False, rstrip=False)
|
58 |
+
if isinstance(eos_token, str)
|
59 |
+
else eos_token
|
60 |
+
)
|
61 |
+
unk_token = (
|
62 |
+
AddedToken(unk_token, lstrip=False, rstrip=False)
|
63 |
+
if isinstance(unk_token, str)
|
64 |
+
else unk_token
|
65 |
+
)
|
66 |
+
pad_token = (
|
67 |
+
AddedToken(pad_token, lstrip=False, rstrip=False)
|
68 |
+
if isinstance(pad_token, str)
|
69 |
+
else pad_token
|
70 |
+
)
|
71 |
+
self.vocab_file = vocab_file
|
72 |
+
self.add_bos_token = add_bos_token
|
73 |
+
self.add_eos_token = add_eos_token
|
74 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
75 |
+
self.sp_model.Load(vocab_file)
|
76 |
+
super().__init__(
|
77 |
+
bos_token=bos_token,
|
78 |
+
eos_token=eos_token,
|
79 |
+
unk_token=unk_token,
|
80 |
+
pad_token=pad_token,
|
81 |
+
add_bos_token=add_bos_token,
|
82 |
+
add_eos_token=add_eos_token,
|
83 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
84 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
85 |
+
**kwargs,
|
86 |
+
)
|
87 |
+
|
88 |
+
def __getstate__(self):
|
89 |
+
state = self.__dict__.copy()
|
90 |
+
state["sp_model"] = None
|
91 |
+
return state
|
92 |
+
|
93 |
+
def __setstate__(self, d):
|
94 |
+
self.__dict__ = d
|
95 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
96 |
+
self.sp_model.Load(self.vocab_file)
|
97 |
+
|
98 |
+
@property
|
99 |
+
def vocab_size(self):
|
100 |
+
"""Returns vocab size"""
|
101 |
+
return self.sp_model.get_piece_size()
|
102 |
+
|
103 |
+
def get_vocab(self):
|
104 |
+
"""Returns vocab as a dict"""
|
105 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
106 |
+
vocab.update(self.added_tokens_encoder)
|
107 |
+
return vocab
|
108 |
+
|
109 |
+
def _tokenize(self, text):
|
110 |
+
"""Returns a tokenized string."""
|
111 |
+
return self.sp_model.encode(text, out_type=str)
|
112 |
+
|
113 |
+
def _convert_token_to_id(self, token):
|
114 |
+
"""Converts a token (str) in an id using the vocab."""
|
115 |
+
return self.sp_model.piece_to_id(token)
|
116 |
+
|
117 |
+
def _convert_id_to_token(self, index):
|
118 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
119 |
+
token = self.sp_model.IdToPiece(index)
|
120 |
+
return token
|
121 |
+
|
122 |
+
def convert_tokens_to_string(self, tokens):
|
123 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
124 |
+
current_sub_tokens = []
|
125 |
+
out_string = ""
|
126 |
+
prev_is_special = False
|
127 |
+
for i, token in enumerate(tokens):
|
128 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
129 |
+
if token in self.all_special_tokens:
|
130 |
+
if not prev_is_special and i != 0:
|
131 |
+
out_string += " "
|
132 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
133 |
+
prev_is_special = True
|
134 |
+
current_sub_tokens = []
|
135 |
+
else:
|
136 |
+
current_sub_tokens.append(token)
|
137 |
+
prev_is_special = False
|
138 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
139 |
+
return out_string
|
140 |
+
|
141 |
+
def save_vocabulary(
|
142 |
+
self, save_directory, filename_prefix: Optional[str] = None
|
143 |
+
) -> Tuple[str]:
|
144 |
+
"""
|
145 |
+
Save the vocabulary and special tokens file to a directory.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
save_directory (`str`):
|
149 |
+
The directory in which to save the vocabulary.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
`Tuple(str)`: Paths to the files saved.
|
153 |
+
"""
|
154 |
+
if not os.path.isdir(save_directory):
|
155 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
156 |
+
return
|
157 |
+
out_vocab_file = os.path.join(
|
158 |
+
save_directory,
|
159 |
+
(filename_prefix + "-" if filename_prefix else "")
|
160 |
+
+ VOCAB_FILES_NAMES["vocab_file"],
|
161 |
+
)
|
162 |
+
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
164 |
+
out_vocab_file
|
165 |
+
) and os.path.isfile(self.vocab_file):
|
166 |
+
copyfile(self.vocab_file, out_vocab_file)
|
167 |
+
elif not os.path.isfile(self.vocab_file):
|
168 |
+
with open(out_vocab_file, "wb") as fi:
|
169 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
170 |
+
fi.write(content_spiece_model)
|
171 |
+
|
172 |
+
return (out_vocab_file,)
|
173 |
+
|
174 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
175 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
176 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
177 |
+
|
178 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
179 |
+
|
180 |
+
if token_ids_1 is not None:
|
181 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
182 |
+
|
183 |
+
return output
|
184 |
+
|
185 |
+
def get_special_tokens_mask(
|
186 |
+
self,
|
187 |
+
token_ids_0: List[int],
|
188 |
+
token_ids_1: Optional[List[int]] = None,
|
189 |
+
already_has_special_tokens: bool = False,
|
190 |
+
) -> List[int]:
|
191 |
+
"""
|
192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
token_ids_0 (`List[int]`):
|
197 |
+
List of IDs.
|
198 |
+
token_ids_1 (`List[int]`, *optional*):
|
199 |
+
Optional second list of IDs for sequence pairs.
|
200 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
201 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
205 |
+
"""
|
206 |
+
if already_has_special_tokens:
|
207 |
+
return super().get_special_tokens_mask(
|
208 |
+
token_ids_0=token_ids_0,
|
209 |
+
token_ids_1=token_ids_1,
|
210 |
+
already_has_special_tokens=True,
|
211 |
+
)
|
212 |
+
|
213 |
+
bos_token_id = [1] if self.add_bos_token else []
|
214 |
+
eos_token_id = [1] if self.add_eos_token else []
|
215 |
+
|
216 |
+
if token_ids_1 is None:
|
217 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
218 |
+
return (
|
219 |
+
bos_token_id
|
220 |
+
+ ([0] * len(token_ids_0))
|
221 |
+
+ eos_token_id
|
222 |
+
+ bos_token_id
|
223 |
+
+ ([0] * len(token_ids_1))
|
224 |
+
+ eos_token_id
|
225 |
+
)
|
226 |
+
|
227 |
+
def create_token_type_ids_from_sequences(
|
228 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
229 |
+
) -> List[int]:
|
230 |
+
"""
|
231 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
232 |
+
sequence pair mask has the following format:
|
233 |
+
|
234 |
+
```
|
235 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
236 |
+
| first sequence | second sequence |
|
237 |
+
```
|
238 |
+
|
239 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
240 |
+
|
241 |
+
Args:
|
242 |
+
token_ids_0 (`List[int]`):
|
243 |
+
List of ids.
|
244 |
+
token_ids_1 (`List[int]`, *optional*):
|
245 |
+
Optional second list of IDs for sequence pairs.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
249 |
+
"""
|
250 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
251 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
252 |
+
|
253 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
254 |
+
|
255 |
+
if token_ids_1 is not None:
|
256 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
257 |
+
|
258 |
+
return output
|
user-baichuan2-13b-v2-3.6/checkpoint-300/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
|
3 |
+
size 2001107
|
user-baichuan2-13b-v2-3.6/checkpoint-300/tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": true,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": true,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": true,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"auto_map": {
|
31 |
+
"AutoTokenizer": [
|
32 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
33 |
+
null
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"bos_token": "<s>",
|
37 |
+
"clean_up_tokenization_spaces": false,
|
38 |
+
"eos_token": "</s>",
|
39 |
+
"model_max_length": 4096,
|
40 |
+
"pad_token": "<unk>",
|
41 |
+
"sp_model_kwargs": {},
|
42 |
+
"tokenizer_class": "BaichuanTokenizer",
|
43 |
+
"unk_token": "<unk>"
|
44 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-300/trainer_state.json
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.6217616580310881,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 300,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02,
|
13 |
+
"grad_norm": 4.99941873550415,
|
14 |
+
"learning_rate": 2e-05,
|
15 |
+
"loss": 9.9329,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.04,
|
20 |
+
"grad_norm": 1.741065502166748,
|
21 |
+
"learning_rate": 4e-05,
|
22 |
+
"loss": 11.0746,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.06,
|
27 |
+
"grad_norm": 1.4727320671081543,
|
28 |
+
"learning_rate": 6e-05,
|
29 |
+
"loss": 2.7159,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.08,
|
34 |
+
"grad_norm": 0.1335960477590561,
|
35 |
+
"learning_rate": 8e-05,
|
36 |
+
"loss": 0.3969,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.1,
|
41 |
+
"grad_norm": 0.0014472692273557186,
|
42 |
+
"learning_rate": 0.0001,
|
43 |
+
"loss": 0.0032,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.12,
|
48 |
+
"grad_norm": 0.0010780546581372619,
|
49 |
+
"learning_rate": 0.0001,
|
50 |
+
"loss": 0.0002,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.15,
|
55 |
+
"grad_norm": 1.03132963180542,
|
56 |
+
"learning_rate": 0.0001,
|
57 |
+
"loss": 0.0002,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.17,
|
62 |
+
"grad_norm": 0.008827299810945988,
|
63 |
+
"learning_rate": 0.0001,
|
64 |
+
"loss": 0.0,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.19,
|
69 |
+
"grad_norm": 0.0002956670359708369,
|
70 |
+
"learning_rate": 0.0001,
|
71 |
+
"loss": 0.0001,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.21,
|
76 |
+
"grad_norm": 0.0003419867134653032,
|
77 |
+
"learning_rate": 0.0001,
|
78 |
+
"loss": 0.0,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.23,
|
83 |
+
"grad_norm": 0.0003681881644297391,
|
84 |
+
"learning_rate": 0.0001,
|
85 |
+
"loss": 0.0,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.25,
|
90 |
+
"grad_norm": 0.0002884200366679579,
|
91 |
+
"learning_rate": 0.0001,
|
92 |
+
"loss": 0.0,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.27,
|
97 |
+
"grad_norm": 0.00011985149467363954,
|
98 |
+
"learning_rate": 0.0001,
|
99 |
+
"loss": 0.0,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.29,
|
104 |
+
"grad_norm": 0.0003195986500941217,
|
105 |
+
"learning_rate": 0.0001,
|
106 |
+
"loss": 0.0,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.31,
|
111 |
+
"grad_norm": 0.00010149635636480525,
|
112 |
+
"learning_rate": 0.0001,
|
113 |
+
"loss": 0.0,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.33,
|
118 |
+
"grad_norm": 0.00010508792183827609,
|
119 |
+
"learning_rate": 0.0001,
|
120 |
+
"loss": 0.0,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.35,
|
125 |
+
"grad_norm": 0.00011793687008321285,
|
126 |
+
"learning_rate": 0.0001,
|
127 |
+
"loss": 0.006,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.37,
|
132 |
+
"grad_norm": 8.076676749624312e-05,
|
133 |
+
"learning_rate": 0.0001,
|
134 |
+
"loss": 0.0,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.39,
|
139 |
+
"grad_norm": 0.0007808339432813227,
|
140 |
+
"learning_rate": 0.0001,
|
141 |
+
"loss": 0.006,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.41,
|
146 |
+
"grad_norm": 0.11711683869361877,
|
147 |
+
"learning_rate": 0.0001,
|
148 |
+
"loss": 0.003,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.44,
|
153 |
+
"grad_norm": 0.0002039404644165188,
|
154 |
+
"learning_rate": 0.0001,
|
155 |
+
"loss": 0.0001,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.46,
|
160 |
+
"grad_norm": 0.00873592495918274,
|
161 |
+
"learning_rate": 0.0001,
|
162 |
+
"loss": 0.0209,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.48,
|
167 |
+
"grad_norm": 3.0506539344787598,
|
168 |
+
"learning_rate": 0.0001,
|
169 |
+
"loss": 0.0201,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.5,
|
174 |
+
"grad_norm": 0.05903371796011925,
|
175 |
+
"learning_rate": 0.0001,
|
176 |
+
"loss": 0.0026,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.52,
|
181 |
+
"grad_norm": 0.0002484666183590889,
|
182 |
+
"learning_rate": 0.0001,
|
183 |
+
"loss": 0.0001,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.54,
|
188 |
+
"grad_norm": 0.0003493047261144966,
|
189 |
+
"learning_rate": 0.0001,
|
190 |
+
"loss": 0.0001,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.56,
|
195 |
+
"grad_norm": 0.0008058947860263288,
|
196 |
+
"learning_rate": 0.0001,
|
197 |
+
"loss": 0.0001,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.58,
|
202 |
+
"grad_norm": 0.0004198936221655458,
|
203 |
+
"learning_rate": 0.0001,
|
204 |
+
"loss": 0.0001,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.6,
|
209 |
+
"grad_norm": 0.0002983050071634352,
|
210 |
+
"learning_rate": 0.0001,
|
211 |
+
"loss": 0.0001,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.62,
|
216 |
+
"grad_norm": 0.0002279053587699309,
|
217 |
+
"learning_rate": 0.0001,
|
218 |
+
"loss": 0.0001,
|
219 |
+
"step": 300
|
220 |
+
}
|
221 |
+
],
|
222 |
+
"logging_steps": 10,
|
223 |
+
"max_steps": 482,
|
224 |
+
"num_input_tokens_seen": 0,
|
225 |
+
"num_train_epochs": 1,
|
226 |
+
"save_steps": 100,
|
227 |
+
"total_flos": 5.004587702980301e+17,
|
228 |
+
"train_batch_size": 1,
|
229 |
+
"trial_name": null,
|
230 |
+
"trial_params": null
|
231 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-300/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1abab34fc571ab2be46c8abdf765b96b9a09ab4144528e95270f1af465c0f19c
|
3 |
+
size 4475
|
user-baichuan2-13b-v2-3.6/checkpoint-400/README.md
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
---
|
4 |
+
## Training procedure
|
5 |
+
|
6 |
+
|
7 |
+
The following `bitsandbytes` quantization config was used during training:
|
8 |
+
- quant_method: bitsandbytes
|
9 |
+
- _load_in_8bit: False
|
10 |
+
- _load_in_4bit: True
|
11 |
+
- llm_int8_threshold: 6.0
|
12 |
+
- llm_int8_skip_modules: None
|
13 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
14 |
+
- llm_int8_has_fp16_weight: False
|
15 |
+
- bnb_4bit_quant_type: nf4
|
16 |
+
- bnb_4bit_use_double_quant: True
|
17 |
+
- bnb_4bit_compute_dtype: float16
|
18 |
+
- load_in_4bit: True
|
19 |
+
- load_in_8bit: False
|
20 |
+
### Framework versions
|
21 |
+
|
22 |
+
|
23 |
+
- PEFT 0.4.0
|
user-baichuan2-13b-v2-3.6/checkpoint-400/adapter_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "/home/jiakangxiang/.cache/modelscope/hub/baichuan-inc/Baichuan2-13B-Chat",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 16,
|
11 |
+
"lora_dropout": 0.05,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 16,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"o_proj",
|
18 |
+
"W_pack",
|
19 |
+
"down_proj",
|
20 |
+
"up_proj",
|
21 |
+
"gate_proj"
|
22 |
+
],
|
23 |
+
"task_type": "CAUSAL_LM"
|
24 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-400/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a761a3ff3848cad96ebcb4d93d82af85ae86c2703ec031d10338d35d93aff15
|
3 |
+
size 223203704
|
user-baichuan2-13b-v2-3.6/checkpoint-400/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b55a4a50d2c66907dc3b95e3f979aac9b320a415e3a978859a220e686a76d9a
|
3 |
+
size 446541893
|
user-baichuan2-13b-v2-3.6/checkpoint-400/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54a11743bad40439e1bbf592fb8f66b1a3c8dbde2539b8897aec5e85c29fcc1c
|
3 |
+
size 14575
|
user-baichuan2-13b-v2-3.6/checkpoint-400/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6536a67a17be52e1d2b7b314f3abff272bd0f976aca319628b666d64bd161a64
|
3 |
+
size 627
|
user-baichuan2-13b-v2-3.6/checkpoint-400/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": true
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": true
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": true
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": true
|
29 |
+
}
|
30 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-400/tokenization_baichuan.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
|
2 |
+
|
3 |
+
import os
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
import sentencepiece as spm
|
8 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
15 |
+
|
16 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
17 |
+
"vocab_file": {},
|
18 |
+
"tokenizer_file": {},
|
19 |
+
}
|
20 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
21 |
+
|
22 |
+
|
23 |
+
class BaichuanTokenizer(PreTrainedTokenizer):
|
24 |
+
"""
|
25 |
+
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
vocab_file (`str`):
|
29 |
+
Path to the vocabulary file.
|
30 |
+
"""
|
31 |
+
|
32 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
33 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
34 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
35 |
+
model_input_names = ["input_ids", "attention_mask"]
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
vocab_file,
|
40 |
+
unk_token="<unk>",
|
41 |
+
bos_token="<s>",
|
42 |
+
eos_token="</s>",
|
43 |
+
pad_token=None,
|
44 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
45 |
+
add_bos_token=True,
|
46 |
+
add_eos_token=False,
|
47 |
+
clean_up_tokenization_spaces=False,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
51 |
+
bos_token = (
|
52 |
+
AddedToken(bos_token, lstrip=False, rstrip=False)
|
53 |
+
if isinstance(bos_token, str)
|
54 |
+
else bos_token
|
55 |
+
)
|
56 |
+
eos_token = (
|
57 |
+
AddedToken(eos_token, lstrip=False, rstrip=False)
|
58 |
+
if isinstance(eos_token, str)
|
59 |
+
else eos_token
|
60 |
+
)
|
61 |
+
unk_token = (
|
62 |
+
AddedToken(unk_token, lstrip=False, rstrip=False)
|
63 |
+
if isinstance(unk_token, str)
|
64 |
+
else unk_token
|
65 |
+
)
|
66 |
+
pad_token = (
|
67 |
+
AddedToken(pad_token, lstrip=False, rstrip=False)
|
68 |
+
if isinstance(pad_token, str)
|
69 |
+
else pad_token
|
70 |
+
)
|
71 |
+
self.vocab_file = vocab_file
|
72 |
+
self.add_bos_token = add_bos_token
|
73 |
+
self.add_eos_token = add_eos_token
|
74 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
75 |
+
self.sp_model.Load(vocab_file)
|
76 |
+
super().__init__(
|
77 |
+
bos_token=bos_token,
|
78 |
+
eos_token=eos_token,
|
79 |
+
unk_token=unk_token,
|
80 |
+
pad_token=pad_token,
|
81 |
+
add_bos_token=add_bos_token,
|
82 |
+
add_eos_token=add_eos_token,
|
83 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
84 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
85 |
+
**kwargs,
|
86 |
+
)
|
87 |
+
|
88 |
+
def __getstate__(self):
|
89 |
+
state = self.__dict__.copy()
|
90 |
+
state["sp_model"] = None
|
91 |
+
return state
|
92 |
+
|
93 |
+
def __setstate__(self, d):
|
94 |
+
self.__dict__ = d
|
95 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
96 |
+
self.sp_model.Load(self.vocab_file)
|
97 |
+
|
98 |
+
@property
|
99 |
+
def vocab_size(self):
|
100 |
+
"""Returns vocab size"""
|
101 |
+
return self.sp_model.get_piece_size()
|
102 |
+
|
103 |
+
def get_vocab(self):
|
104 |
+
"""Returns vocab as a dict"""
|
105 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
106 |
+
vocab.update(self.added_tokens_encoder)
|
107 |
+
return vocab
|
108 |
+
|
109 |
+
def _tokenize(self, text):
|
110 |
+
"""Returns a tokenized string."""
|
111 |
+
return self.sp_model.encode(text, out_type=str)
|
112 |
+
|
113 |
+
def _convert_token_to_id(self, token):
|
114 |
+
"""Converts a token (str) in an id using the vocab."""
|
115 |
+
return self.sp_model.piece_to_id(token)
|
116 |
+
|
117 |
+
def _convert_id_to_token(self, index):
|
118 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
119 |
+
token = self.sp_model.IdToPiece(index)
|
120 |
+
return token
|
121 |
+
|
122 |
+
def convert_tokens_to_string(self, tokens):
|
123 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
124 |
+
current_sub_tokens = []
|
125 |
+
out_string = ""
|
126 |
+
prev_is_special = False
|
127 |
+
for i, token in enumerate(tokens):
|
128 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
129 |
+
if token in self.all_special_tokens:
|
130 |
+
if not prev_is_special and i != 0:
|
131 |
+
out_string += " "
|
132 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
133 |
+
prev_is_special = True
|
134 |
+
current_sub_tokens = []
|
135 |
+
else:
|
136 |
+
current_sub_tokens.append(token)
|
137 |
+
prev_is_special = False
|
138 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
139 |
+
return out_string
|
140 |
+
|
141 |
+
def save_vocabulary(
|
142 |
+
self, save_directory, filename_prefix: Optional[str] = None
|
143 |
+
) -> Tuple[str]:
|
144 |
+
"""
|
145 |
+
Save the vocabulary and special tokens file to a directory.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
save_directory (`str`):
|
149 |
+
The directory in which to save the vocabulary.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
`Tuple(str)`: Paths to the files saved.
|
153 |
+
"""
|
154 |
+
if not os.path.isdir(save_directory):
|
155 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
156 |
+
return
|
157 |
+
out_vocab_file = os.path.join(
|
158 |
+
save_directory,
|
159 |
+
(filename_prefix + "-" if filename_prefix else "")
|
160 |
+
+ VOCAB_FILES_NAMES["vocab_file"],
|
161 |
+
)
|
162 |
+
|
163 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
164 |
+
out_vocab_file
|
165 |
+
) and os.path.isfile(self.vocab_file):
|
166 |
+
copyfile(self.vocab_file, out_vocab_file)
|
167 |
+
elif not os.path.isfile(self.vocab_file):
|
168 |
+
with open(out_vocab_file, "wb") as fi:
|
169 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
170 |
+
fi.write(content_spiece_model)
|
171 |
+
|
172 |
+
return (out_vocab_file,)
|
173 |
+
|
174 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
175 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
176 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
177 |
+
|
178 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
179 |
+
|
180 |
+
if token_ids_1 is not None:
|
181 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
182 |
+
|
183 |
+
return output
|
184 |
+
|
185 |
+
def get_special_tokens_mask(
|
186 |
+
self,
|
187 |
+
token_ids_0: List[int],
|
188 |
+
token_ids_1: Optional[List[int]] = None,
|
189 |
+
already_has_special_tokens: bool = False,
|
190 |
+
) -> List[int]:
|
191 |
+
"""
|
192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
token_ids_0 (`List[int]`):
|
197 |
+
List of IDs.
|
198 |
+
token_ids_1 (`List[int]`, *optional*):
|
199 |
+
Optional second list of IDs for sequence pairs.
|
200 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
201 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
205 |
+
"""
|
206 |
+
if already_has_special_tokens:
|
207 |
+
return super().get_special_tokens_mask(
|
208 |
+
token_ids_0=token_ids_0,
|
209 |
+
token_ids_1=token_ids_1,
|
210 |
+
already_has_special_tokens=True,
|
211 |
+
)
|
212 |
+
|
213 |
+
bos_token_id = [1] if self.add_bos_token else []
|
214 |
+
eos_token_id = [1] if self.add_eos_token else []
|
215 |
+
|
216 |
+
if token_ids_1 is None:
|
217 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
218 |
+
return (
|
219 |
+
bos_token_id
|
220 |
+
+ ([0] * len(token_ids_0))
|
221 |
+
+ eos_token_id
|
222 |
+
+ bos_token_id
|
223 |
+
+ ([0] * len(token_ids_1))
|
224 |
+
+ eos_token_id
|
225 |
+
)
|
226 |
+
|
227 |
+
def create_token_type_ids_from_sequences(
|
228 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
229 |
+
) -> List[int]:
|
230 |
+
"""
|
231 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
232 |
+
sequence pair mask has the following format:
|
233 |
+
|
234 |
+
```
|
235 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
236 |
+
| first sequence | second sequence |
|
237 |
+
```
|
238 |
+
|
239 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
240 |
+
|
241 |
+
Args:
|
242 |
+
token_ids_0 (`List[int]`):
|
243 |
+
List of ids.
|
244 |
+
token_ids_1 (`List[int]`, *optional*):
|
245 |
+
Optional second list of IDs for sequence pairs.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
249 |
+
"""
|
250 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
251 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
252 |
+
|
253 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
254 |
+
|
255 |
+
if token_ids_1 is not None:
|
256 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
257 |
+
|
258 |
+
return output
|
user-baichuan2-13b-v2-3.6/checkpoint-400/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
|
3 |
+
size 2001107
|
user-baichuan2-13b-v2-3.6/checkpoint-400/tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": true,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": true,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": true,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"auto_map": {
|
31 |
+
"AutoTokenizer": [
|
32 |
+
"tokenization_baichuan.BaichuanTokenizer",
|
33 |
+
null
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"bos_token": "<s>",
|
37 |
+
"clean_up_tokenization_spaces": false,
|
38 |
+
"eos_token": "</s>",
|
39 |
+
"model_max_length": 4096,
|
40 |
+
"pad_token": "<unk>",
|
41 |
+
"sp_model_kwargs": {},
|
42 |
+
"tokenizer_class": "BaichuanTokenizer",
|
43 |
+
"unk_token": "<unk>"
|
44 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-400/trainer_state.json
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.8290155440414507,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 400,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02,
|
13 |
+
"grad_norm": 4.99941873550415,
|
14 |
+
"learning_rate": 2e-05,
|
15 |
+
"loss": 9.9329,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.04,
|
20 |
+
"grad_norm": 1.741065502166748,
|
21 |
+
"learning_rate": 4e-05,
|
22 |
+
"loss": 11.0746,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.06,
|
27 |
+
"grad_norm": 1.4727320671081543,
|
28 |
+
"learning_rate": 6e-05,
|
29 |
+
"loss": 2.7159,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.08,
|
34 |
+
"grad_norm": 0.1335960477590561,
|
35 |
+
"learning_rate": 8e-05,
|
36 |
+
"loss": 0.3969,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.1,
|
41 |
+
"grad_norm": 0.0014472692273557186,
|
42 |
+
"learning_rate": 0.0001,
|
43 |
+
"loss": 0.0032,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.12,
|
48 |
+
"grad_norm": 0.0010780546581372619,
|
49 |
+
"learning_rate": 0.0001,
|
50 |
+
"loss": 0.0002,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.15,
|
55 |
+
"grad_norm": 1.03132963180542,
|
56 |
+
"learning_rate": 0.0001,
|
57 |
+
"loss": 0.0002,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.17,
|
62 |
+
"grad_norm": 0.008827299810945988,
|
63 |
+
"learning_rate": 0.0001,
|
64 |
+
"loss": 0.0,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.19,
|
69 |
+
"grad_norm": 0.0002956670359708369,
|
70 |
+
"learning_rate": 0.0001,
|
71 |
+
"loss": 0.0001,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.21,
|
76 |
+
"grad_norm": 0.0003419867134653032,
|
77 |
+
"learning_rate": 0.0001,
|
78 |
+
"loss": 0.0,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.23,
|
83 |
+
"grad_norm": 0.0003681881644297391,
|
84 |
+
"learning_rate": 0.0001,
|
85 |
+
"loss": 0.0,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.25,
|
90 |
+
"grad_norm": 0.0002884200366679579,
|
91 |
+
"learning_rate": 0.0001,
|
92 |
+
"loss": 0.0,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.27,
|
97 |
+
"grad_norm": 0.00011985149467363954,
|
98 |
+
"learning_rate": 0.0001,
|
99 |
+
"loss": 0.0,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.29,
|
104 |
+
"grad_norm": 0.0003195986500941217,
|
105 |
+
"learning_rate": 0.0001,
|
106 |
+
"loss": 0.0,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.31,
|
111 |
+
"grad_norm": 0.00010149635636480525,
|
112 |
+
"learning_rate": 0.0001,
|
113 |
+
"loss": 0.0,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.33,
|
118 |
+
"grad_norm": 0.00010508792183827609,
|
119 |
+
"learning_rate": 0.0001,
|
120 |
+
"loss": 0.0,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.35,
|
125 |
+
"grad_norm": 0.00011793687008321285,
|
126 |
+
"learning_rate": 0.0001,
|
127 |
+
"loss": 0.006,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.37,
|
132 |
+
"grad_norm": 8.076676749624312e-05,
|
133 |
+
"learning_rate": 0.0001,
|
134 |
+
"loss": 0.0,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.39,
|
139 |
+
"grad_norm": 0.0007808339432813227,
|
140 |
+
"learning_rate": 0.0001,
|
141 |
+
"loss": 0.006,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.41,
|
146 |
+
"grad_norm": 0.11711683869361877,
|
147 |
+
"learning_rate": 0.0001,
|
148 |
+
"loss": 0.003,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.44,
|
153 |
+
"grad_norm": 0.0002039404644165188,
|
154 |
+
"learning_rate": 0.0001,
|
155 |
+
"loss": 0.0001,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.46,
|
160 |
+
"grad_norm": 0.00873592495918274,
|
161 |
+
"learning_rate": 0.0001,
|
162 |
+
"loss": 0.0209,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.48,
|
167 |
+
"grad_norm": 3.0506539344787598,
|
168 |
+
"learning_rate": 0.0001,
|
169 |
+
"loss": 0.0201,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.5,
|
174 |
+
"grad_norm": 0.05903371796011925,
|
175 |
+
"learning_rate": 0.0001,
|
176 |
+
"loss": 0.0026,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.52,
|
181 |
+
"grad_norm": 0.0002484666183590889,
|
182 |
+
"learning_rate": 0.0001,
|
183 |
+
"loss": 0.0001,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.54,
|
188 |
+
"grad_norm": 0.0003493047261144966,
|
189 |
+
"learning_rate": 0.0001,
|
190 |
+
"loss": 0.0001,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.56,
|
195 |
+
"grad_norm": 0.0008058947860263288,
|
196 |
+
"learning_rate": 0.0001,
|
197 |
+
"loss": 0.0001,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.58,
|
202 |
+
"grad_norm": 0.0004198936221655458,
|
203 |
+
"learning_rate": 0.0001,
|
204 |
+
"loss": 0.0001,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.6,
|
209 |
+
"grad_norm": 0.0002983050071634352,
|
210 |
+
"learning_rate": 0.0001,
|
211 |
+
"loss": 0.0001,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.62,
|
216 |
+
"grad_norm": 0.0002279053587699309,
|
217 |
+
"learning_rate": 0.0001,
|
218 |
+
"loss": 0.0001,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.64,
|
223 |
+
"grad_norm": 0.00015332824841607362,
|
224 |
+
"learning_rate": 0.0001,
|
225 |
+
"loss": 0.0,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.66,
|
230 |
+
"grad_norm": 0.00011723622446879745,
|
231 |
+
"learning_rate": 0.0001,
|
232 |
+
"loss": 0.0,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.68,
|
237 |
+
"grad_norm": 0.0001235378731507808,
|
238 |
+
"learning_rate": 0.0001,
|
239 |
+
"loss": 0.0,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.7,
|
244 |
+
"grad_norm": 0.00010625163122313097,
|
245 |
+
"learning_rate": 0.0001,
|
246 |
+
"loss": 0.0001,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.73,
|
251 |
+
"grad_norm": 7.50239341869019e-05,
|
252 |
+
"learning_rate": 0.0001,
|
253 |
+
"loss": 0.0,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.75,
|
258 |
+
"grad_norm": 0.00010148331784876063,
|
259 |
+
"learning_rate": 0.0001,
|
260 |
+
"loss": 0.0,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.77,
|
265 |
+
"grad_norm": 7.368126534856856e-05,
|
266 |
+
"learning_rate": 0.0001,
|
267 |
+
"loss": 0.0,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.79,
|
272 |
+
"grad_norm": 0.00012744461128022522,
|
273 |
+
"learning_rate": 0.0001,
|
274 |
+
"loss": 0.0,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.81,
|
279 |
+
"grad_norm": 5.87971335335169e-05,
|
280 |
+
"learning_rate": 0.0001,
|
281 |
+
"loss": 0.0,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.83,
|
286 |
+
"grad_norm": 6.405858584912494e-05,
|
287 |
+
"learning_rate": 0.0001,
|
288 |
+
"loss": 0.0001,
|
289 |
+
"step": 400
|
290 |
+
}
|
291 |
+
],
|
292 |
+
"logging_steps": 10,
|
293 |
+
"max_steps": 482,
|
294 |
+
"num_input_tokens_seen": 0,
|
295 |
+
"num_train_epochs": 1,
|
296 |
+
"save_steps": 100,
|
297 |
+
"total_flos": 6.625291354656461e+17,
|
298 |
+
"train_batch_size": 1,
|
299 |
+
"trial_name": null,
|
300 |
+
"trial_params": null
|
301 |
+
}
|
user-baichuan2-13b-v2-3.6/checkpoint-400/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1abab34fc571ab2be46c8abdf765b96b9a09ab4144528e95270f1af465c0f19c
|
3 |
+
size 4475
|
user-baichuan2-13b-v2-3.6/runs/Mar06_16-02-53_u/events.out.tfevents.1709741241.u.349083.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3014282355673d8fdcaa570d4c5296d240c5dd75bf87a842af9ec4b76a4e9116
|
3 |
+
size 5162
|
user-baichuan2-13b-v2-3.6/runs/Mar06_16-15-19_u/events.out.tfevents.1709741991.u.349593.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9058c4ffc24a76a37dcc37c3d6b8fc0c8aa81301fb6b58fe0305a01b7081d8f2
|
3 |
+
size 5162
|
user-baichuan2-13b-v2-3.6/runs/Mar06_16-27-57_u/events.out.tfevents.1709742755.u.350734.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a35a2b472b2864493ef9958235b77f8c4c7af27b4b88b478d703f99b4f10f718
|
3 |
+
size 5162
|
user-baichuan2-13b-v2-3.6/runs/Mar06_16-37-25_u/events.out.tfevents.1709743386.u.351776.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c388e6f60bbcf55c3e512b8af87941e03d9a7648390ab77bfe714ffdc48c7bac
|
3 |
+
size 5162
|
user-baichuan2-13b-v2-3.6/runs/Mar06_16-46-23_u/events.out.tfevents.1709743925.u.352180.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a087c12a11786c7f7b12c642ee0a6c4098d3859d1e2df9abf3e218f2e3365ec
|
3 |
+
size 5162
|
user-baichuan2-13b-v2-3.6/runs/Mar06_16-55-14_u/events.out.tfevents.1709744402.u.352650.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0aca9a5ecc84224df331de22088bfa3fe20a25c6903fd402a0be863a9566699d
|
3 |
+
size 5162
|
user-baichuan2-13b-v2-3.6/runs/Mar06_17-03-22_u/events.out.tfevents.1709744890.u.353116.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfea604250d4aac14bc3ed7c865337977033589c98558e199805f39e062fa8d8
|
3 |
+
size 5162
|
user-baichuan2-13b-v2-3.6/runs/Mar06_17-13-29_u/events.out.tfevents.1709745516.u.353684.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94b3e44490b8dd88a5a161c7a6b9a835026ef7a8218a9fb171acaa8737033db7
|
3 |
+
size 5162
|
user-baichuan2-13b-v2-3.6/runs/Mar06_17-30-51_u/events.out.tfevents.1709746552.u.354572.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2a7c82c63e3cb38c34975b02f2f0e377684b0dfa72aa1dfcfaad954da7c93e2
|
3 |
+
size 5162
|
user-baichuan2-13b-v2-3.6/runs/Mar06_17-42-56_u/events.out.tfevents.1709747302.u.355650.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf7786e2daf0473ba392d547dc007aaa018e30f7c97ce3bca26d196f68798142
|
3 |
+
size 5164
|