cell-seg-sribd / train_convnext_hover..py
Lewislou's picture
Upload 24 files
0ca2a11
raw
history blame
20.3 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Adapted form MONAI Tutorial: https://github.com/Project-MONAI/tutorials/tree/main/2d_segmentation/torch
"""
import argparse
import os, sys
join = os.path.join
#sys.path.append('/data2/yuxinyi/stardist_pytorch')
from tqdm import tqdm
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import DataParallel
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR
from stardist import star_dist, edt_prob
from stardist import dist_to_coord, non_maximum_suppression, polygons_to_label
from stardist import random_label_cmap, ray_angles
import monai
from collections import OrderedDict
from compute_metric import eval_tp_fp_fn, remove_boundary_cells
from monai.data import decollate_batch, PILReader
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import (
Activations,
AsChannelFirstd,
AddChanneld,
AsDiscrete,
CenterSpatialCropd,
Compose,
Lambdad,
LoadImaged,
# LoadImaged_modified,
SpatialPadd,
RandSpatialCropd,
RandRotate90d,
ScaleIntensityd,
RandAxisFlipd,
RandZoomd,
RandGaussianNoised,
RandAdjustContrastd,
RandGaussianSmoothd,
RandHistogramShiftd,
EnsureTyped,
EnsureType,
apply_transform,
)
from monai.visualize import plot_2d_or_3d_image
import matplotlib.pyplot as plt
from datetime import datetime
import shutil
from skimage import io
from skimage.color import gray2rgb
from models.unetr2d import UNETR2D
from models.swin_unetr import SwinUNETR
from models.flexible_unet_convext import FlexibleUNet_hv
from utils import cropping_center, gen_targets, xentropy_loss, dice_loss, mse_loss, msge_loss
import warnings
warnings.filterwarnings("ignore")
print("Successfully imported all requirements!")
torch.backends.cudnn.enabled = False
def rm_n_mkdir(dir_path):
"""Remove and make directory."""
if os.path.isdir(dir_path):
shutil.rmtree(dir_path)
os.makedirs(dir_path)
class HoverDataset(Dataset):
def __init__(self, data, transform, mask_shape):
self.data = data
self.transform = transform
self.mask_shape = mask_shape
def __len__(self) -> int:
return len(self.data)
def _transform(self, index):
data_i = self.data[index]
return apply_transform(self.transform, data_i) if self.transform is not None else data_i
def __getitem__(self, index):
ret = self._transform(index)
# print(target_dict['img'].dtype, target_dict['label'].dtype)
# gen targets
inst_map = np.squeeze(ret['label'].numpy()).astype('int32') # 1HW -> HW
target_dict = gen_targets(inst_map, inst_map.shape[:2]) # original code: self.mask_shape -> current code: aug_size
np_map, hv_map = target_dict['np_map'], target_dict['hv_map']
np_map = cropping_center(np_map, self.mask_shape) # HW
hv_map = cropping_center(hv_map, self.mask_shape) # HW2
target_dict['np_map'] = torch.tensor(np_map)
target_dict['hv_map'] = torch.tensor(hv_map)
# centercrop img
img = cropping_center(ret['img'].permute(1,2,0), self.mask_shape).permute(2,0,1) # CHW -> HWC -> CHW
ret['img'] = img
ret.update(target_dict)
return ret
def valid_step(model, batch_data):
model.eval() # infer mode
####
imgs = batch_data["img"]
true_np = batch_data["np_map"]
true_hv = batch_data["hv_map"]
imgs_gpu = imgs.to("cuda").type(torch.float32) # NCHW
# HWC
true_np = torch.squeeze(true_np).type(torch.int64)
true_hv = torch.squeeze(true_hv).type(torch.float32)
true_dict = {
"np": true_np,
"hv": true_hv,
}
# --------------------------------------------------------------
with torch.no_grad(): # dont compute gradient
preds = model(imgs_gpu)
pred_dict = {'np': preds[1], 'hv': preds[0]}
pred_dict = OrderedDict(
[[k, v.permute(0, 2, 3, 1).contiguous()] for k, v in pred_dict.items()]
)
pred_dict["np"] = F.softmax(pred_dict["np"], dim=-1)[..., 1]
# * Its up to user to define the protocol to process the raw output per step!
result_dict = { # protocol for contents exchange within `raw`
"raw": {
"imgs": imgs.numpy(),
"true_np": true_dict["np"].numpy(),
"true_hv": true_dict["hv"].numpy(),
"prob_np": pred_dict["np"].cpu().numpy(),
"pred_hv": pred_dict["hv"].cpu().numpy(),
}
}
return result_dict
def proc_valid_step_output(raw_data, nr_types=None):
track_dict = {}
def _dice_info(true, pred, label):
true = np.array(true == label, np.int32)
pred = np.array(pred == label, np.int32)
inter = (pred * true).sum()
total = (pred + true).sum()
return inter, total
over_inter = 0
over_total = 0
over_correct = 0
prob_np = raw_data["prob_np"]
true_np = raw_data["true_np"]
for idx in range(len(raw_data["true_np"])):
patch_prob_np = prob_np[idx]
patch_true_np = true_np[idx]
patch_pred_np = np.array(patch_prob_np > 0.5, dtype=np.int32)
inter, total = _dice_info(patch_true_np, patch_pred_np, 1)
correct = (patch_pred_np == patch_true_np).sum()
over_inter += inter
over_total += total
over_correct += correct
nr_pixels = len(true_np) * np.size(true_np[0])
acc_np = over_correct / nr_pixels
dice_np = 2 * over_inter / (over_total + 1.0e-8)
track_dict['np_acc'] = acc_np
track_dict['np_dice'] = dice_np
# * HV regression statistic
pred_hv = raw_data["pred_hv"]
true_hv = raw_data["true_hv"]
over_squared_error = 0
for idx in range(len(raw_data["true_np"])):
patch_pred_hv = pred_hv[idx]
patch_true_hv = true_hv[idx]
squared_error = patch_pred_hv - patch_true_hv
squared_error = squared_error * squared_error
over_squared_error += squared_error.sum()
mse = over_squared_error / nr_pixels
track_dict['hv_mse'] = mse
return track_dict
def main():
# class Args:
# def __init__(self, data_path, seed, num_workers, model_name, input_size, mask_size, batch_size, max_epochs,
# val_interval, save_interval, initial_lr, gpu_id, n_rays):
# self.data_path = data_path
# self.seed = seed
# self.num_workers = num_workers
# self.model_name = model_name
# self.input_size = input_size
# self.mask_size = mask_size
# self.batch_size = batch_size
# self.max_epochs = max_epochs
# self.val_interval = val_interval
# self.save_interval = save_interval
# self.initial_lr = initial_lr
# self.gpu_id = gpu_id
# self.n_rays = n_rays
# args = Args('/data2/yuxinyi/stardist_pytorch/dataset/class3_seed2', 2022, 4, 'efficientunet', 512, 256, 16, 600,
# 1, 10, 1e-4, '4', 32)
modelname = 'star-hover'
strategy = 'aug256_out256'
parser = argparse.ArgumentParser("Baseline for Microscopy image segmentation")
# Dataset parameters
parser.add_argument(
"--data_path",
default=f"/mntnfs/med_data5/louwei/consep/",
type=str,
help="training data path; subfolders: images, labels",
)
parser.add_argument("--seed", default=10, type=int)
# parser.add_argument("--resume", default=False, help="resume from checkpoint")
parser.add_argument("--num_workers", default=4, type=int)
# Model parameters
parser.add_argument(
"--model_name", default="efficientunet", help="select mode: unet, unetr, swinunetr"
)
parser.add_argument("--input_size", default=512, type=int, help="after rand crop")
parser.add_argument("--mask_size", default=256, type=int, help="after gen target")
# Training parameters
parser.add_argument("--batch_size", default=12, type=int, help="Batch size per GPU")
parser.add_argument("--max_epochs", default=800, type=int)
parser.add_argument("--val_interval", default=1, type=int)
parser.add_argument("--save_interval", default=10, type=int)
parser.add_argument("--initial_lr", type=float, default=1e-4, help="learning rate")
parser.add_argument('--gpu_id', type=str, default='0', help='gpu id')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
work_dir = f'/mntnfs/med_data5/louwei/hover_stardist/class_{modelname}_{strategy}'
# monai.config.print_config()
pre_trained = False
# %% set training/validation split
np.random.seed(args.seed)
model_path = join(work_dir)
rm_n_mkdir(model_path)
run_id = datetime.now().strftime("%Y%m%d-%H%M")
shutil.copyfile(
__file__, join(model_path, run_id + "_" + os.path.basename(__file__))
)
img_path = join(args.data_path, "Train/Images_3channels")
gt_path = join(args.data_path, "Train/tif")
val_img_path = join(args.data_path, "Test/Images_3channels")
val_gt_path = join(args.data_path, "Test/tif")
img_names = sorted(os.listdir(img_path))
gt_names = [img_name.replace('.png', '.tif') for img_name in img_names]
img_num = len(img_names)
val_frac = 0.1
val_img_names = sorted(os.listdir(val_img_path))
val_gt_names = [img_name.replace('.png', '.tif') for img_name in val_img_names]
train_files = [
{"img": join(img_path, img_names[i]), "label": join(gt_path, gt_names[i]), 'name': img_names[i]}
for i in range(len(img_names))
]
val_files = [
{"img": join(val_img_path, val_img_names[i]), "label": join(val_gt_path, val_gt_names[i]),
'name': val_img_names[i]}
for i in range(len(val_img_names))
]
print(
f"training image num: {len(train_files)}, validation image num: {len(val_files)}"
)
def load_img(img):
ret = io.imread(img)
if len(ret.shape) == 2:
ret = gray2rgb(ret)
return ret.astype('float32')
def load_ann(ann):
ret = np.squeeze(io.imread(ann)).astype('float32')
return ret
# %% define transforms for image and segmentation
train_transforms = Compose(
[
Lambdad(('img',), load_img),
Lambdad(('label',), load_ann),
# LoadImaged(
# keys=["img", "label"], reader=PILReader, dtype=np.float32
# ), # image three channels (H, W, 3); label: (H, W)
AddChanneld(keys=["label"], allow_missing_keys=True), # label: (1, H, W)
AsChannelFirstd(
keys=["img"], channel_dim=-1, allow_missing_keys=True
), # image: (3, H, W)
# ScaleIntensityd(
# keys=["img"], allow_missing_keys=True
# ), # Do not scale label
# SpatialPadd(keys=["img", "label"], spatial_size=args.input_size),
# RandSpatialCropd(
# keys=["img", "label"], roi_size=args.input_size, random_size=False
# ),
RandAxisFlipd(keys=["img", "label"], prob=0.5),
RandRotate90d(keys=["img", "label"], prob=0.5, spatial_axes=[0, 1]),
# # intensity transform
RandGaussianNoised(keys=["img"], prob=0.25, mean=0, std=0.1),
RandAdjustContrastd(keys=["img"], prob=0.25, gamma=(1, 2)),
RandGaussianSmoothd(keys=["img"], prob=0.25, sigma_x=(1, 2)),
RandHistogramShiftd(keys=["img"], prob=0.25, num_control_points=3),
RandZoomd(
keys=["img", "label"],
prob=0.15,
min_zoom=0.5,
max_zoom=2.0,
mode=["area", "nearest"],
),
EnsureTyped(keys=["img", "label"]),
]
)
val_transforms = Compose(
[
Lambdad(('img',), load_img),
Lambdad(('label',), load_ann),
# LoadImaged(keys=["img", "label"], reader=PILReader, dtype=np.float32),
AddChanneld(keys=["label"], allow_missing_keys=True),
AsChannelFirstd(keys=["img"], channel_dim=-1, allow_missing_keys=True),
# ScaleIntensityd(keys=["img"], allow_missing_keys=True),
# AsDiscreted(keys=['label'], to_onehot=3),
# CenterSpatialCropd(
# keys=["img", "label"], roi_size=args.input_size
# ),
EnsureTyped(keys=["img", "label"]),
]
)
# % define dataset, data loader
# check_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
check_ds = HoverDataset(data=train_files, transform=train_transforms, mask_shape=(args.mask_size, args.mask_size))
print(len(check_ds))
tmp = check_ds[0]
print(tmp['img'].shape, tmp['label'].shape, tmp['hv_map'].shape, tmp['np_map'].shape)
check_loader = DataLoader(check_ds, batch_size=1, num_workers=4)
check_data = monai.utils.misc.first(check_loader)
print(
"sanity check:",
check_data["img"].shape,
torch.max(check_data["img"]),
check_data["label"].shape,
torch.max(check_data["label"]),
check_data["hv_map"].shape,
torch.max(check_data["hv_map"]),
check_data["np_map"].shape,
torch.max(check_data["np_map"]),
)
# %% create a training data loader
# train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
train_ds = HoverDataset(data=train_files, transform=train_transforms, mask_shape=(args.mask_size, args.mask_size))
print(len(train_ds))
# example = train_ds[0]
# plt.imshow(np.array(example['img']).transpose(1,2,0).astype('uint8'))
# plt.imshow(np.squeeze(example['np_map'].numpy()).astype('uint8'), 'gray')
# plt.imshow(example['hv_map'].numpy()[...,0])
# plt.imshow(example['hv_map'].numpy()[..., 1])
# plt.show()
# use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=torch.cuda.is_available(),
)
# create a validation data loader
# val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
val_ds = HoverDataset(data=val_files, transform=val_transforms, mask_shape=(args.mask_size, args.mask_size))
val_loader = DataLoader(val_ds, batch_size=16, shuffle=False, num_workers=4)
model = FlexibleUNet_hv(
in_channels=3,
out_channels=2+2,
backbone='convnext_small',
pretrained=True,
n_rays=2,
prob_out_channels=2,
)
activatation = nn.ReLU()
sigmoid = nn.Sigmoid()
initial_lr = args.initial_lr
optimizer = torch.optim.AdamW(model.parameters(), initial_lr)
scheduler = StepLR(optimizer, 100, 0.1)
#if pre_trained == True:
#print('Load pretrained weights...')
#checkpoint = torch.load('/data2/yuxinyi/stardist_pytorch/pretrained/overall/330.pth')
#model.load_state_dict(checkpoint['model_state_dict'])
# model = DataParallel(model)
model = model.to('cuda')
# start a typical PyTorch training
max_epochs = args.max_epochs
val_interval = args.val_interval
save_interval = args.save_interval
epoch_loss_values = []
writer = SummaryWriter(model_path)
#*# record loss and f1
loss_file = f'{work_dir}/train_loss.txt'
f1_file = f'{work_dir}/train_loss.txt'
if os.path.exists(loss_file):
os.remove(loss_file)
if os.path.exists(f1_file):
os.remove(f1_file)
#*#
for epoch in range(1, args.max_epochs):
model.train()
epoch_loss = 0
running_np_1, running_np_2, running_hv_1, running_hv_2 = 0.0, 0.0, 0.0, 0.0
stream = tqdm(train_loader)
for step, batch_data in enumerate(stream, start=1):
#*# hv map
inputs, true_np, true_hv = batch_data["img"], batch_data["np_map"], batch_data['hv_map']
true_np = true_np.to("cuda").type(torch.int64) # NHW
true_hv = true_hv.to("cuda").type(torch.float32) # NHWC
true_np_onehot = (F.one_hot(true_np, num_classes=2)).type(torch.float32) # NHWC
inputs = torch.tensor(inputs).to('cuda')
# print(inputs.shape, true_np.shape, true_hv.shape)
optimizer.zero_grad()
pred_hv, pred_np = model(inputs) # NCHW
pred_hv = pred_hv.permute(0, 2, 3, 1).contiguous() # NHWC
pred_np = pred_np.permute(0, 2, 3, 1).contiguous() # NHWC
pred_np = F.softmax(pred_np, dim=-1)
# losses
loss_np_1 = xentropy_loss(true_np_onehot, pred_np) # bce
loss_np_2 = dice_loss(true_np_onehot, pred_np) # dice
loss_hv_1 = mse_loss(true_hv, pred_hv) # mse
loss_hv_2 = msge_loss(true_hv, pred_hv, true_np_onehot[...,1]) # msge
loss = loss_np_1 + loss_np_2 + loss_hv_1 + loss_hv_2
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_len = len(train_ds) // train_loader.batch_size
running_np_1 += loss_np_1.item()
running_np_2 += loss_np_2.item()
running_hv_1 += loss_hv_1.item()
running_hv_2 += loss_hv_2.item()
#*#
stream.set_description(
f'Epoch {epoch} | np bce: {running_np_1 / step:.4f}, np dice: {running_np_2 / step:.4f}, hv mse: {running_hv_1 / step:.4f}, hv msge: {running_hv_2 / step:.4f}')
epoch_loss /= step
epoch_loss_values.append(epoch_loss)
writer.add_scalar("train_loss", epoch_loss, epoch)
writer.add_scalar("np_bce", running_np_1 / step, epoch)
writer.add_scalar("np_dice", running_np_2 / step, epoch)
writer.add_scalar("hv_mse", running_hv_1 / step, epoch)
writer.add_scalar("hv_msge", running_hv_2 / step, epoch)
print(f"epoch {epoch} average loss: {epoch_loss:.4f}, lr: {optimizer.param_groups[0]['lr']}")
#*# record
with open(loss_file, 'a') as f:
f.write(f'Epoch{epoch}\tloss:{epoch_loss:.4f}\tnp_bce:{running_np_1/step:.4f}\tnp_dice:{running_np_2/step:.4f}\thv_mse:{running_hv_1/step:.4f}\thv_msge:{running_hv_2/step:.4f}\n')
#*#
checkpoint = {
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": epoch_loss_values,
}
if epoch % save_interval == 0:
torch.save(checkpoint, join(model_path, str(epoch) + ".pth"))
running_np_acc, running_np_dice, running_hv_mse = 0.0, 0.0, 0.0
stream_val = tqdm(val_loader)
for step, batch_data in enumerate(stream_val, start=1):
raw_data = valid_step(model, batch_data)['raw']
track_dict = proc_valid_step_output(raw_data)
running_np_acc += track_dict['np_acc']
running_np_dice += track_dict['np_dice']
running_hv_mse += track_dict['hv_mse']
stream.set_description(f'Epoch {epoch} | np acc: {running_np_acc / step:.4f}, np dice: {running_np_dice / step:.4f}, hv mse: {running_hv_mse / step:.4f}')
writer.add_scalar("np_acc", running_np_acc / step, epoch)
writer.add_scalar("np_dice", running_np_dice / step, epoch)
writer.add_scalar("hv_mse", running_hv_mse / step, epoch)
print(f'Epoch {epoch} | np acc: {running_np_acc / step:.4f}, np dice: {running_np_dice / step:.4f}, hv mse: {running_hv_mse / step:.4f}')
#*# record
with open(loss_file, 'a') as f:
f.write(f'Validation | Epoch{epoch}\tloss:{epoch_loss:.4f}\tnp_acc:{running_np_acc/step:.4f}\tnp_dice:{running_np_dice/step:.4f}\thv_mse:{running_hv_mse/step:.4f}\n')
#*#
scheduler.step()
if __name__ == "__main__":
main()