cell-seg-sribd / finetune_convnext_stardist.py
Lewislou's picture
Upload 24 files
0ca2a11
raw
history blame
15.8 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Adapted form MONAI Tutorial: https://github.com/Project-MONAI/tutorials/tree/main/2d_segmentation/torch
"""
import argparse
import os
join = os.path.join
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from stardist import star_dist,edt_prob
from stardist import dist_to_coord, non_maximum_suppression, polygons_to_label
from stardist import random_label_cmap,ray_angles
import monai
from collections import OrderedDict
from compute_metric import eval_tp_fp_fn,remove_boundary_cells
from monai.data import decollate_batch, PILReader
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import (
Activations,
AsChannelFirstd,
AddChanneld,
AsDiscrete,
Compose,
LoadImaged,
SpatialPadd,
RandSpatialCropd,
RandRotate90d,
ScaleIntensityd,
RandAxisFlipd,
RandZoomd,
RandGaussianNoised,
RandAdjustContrastd,
RandGaussianSmoothd,
RandHistogramShiftd,
EnsureTyped,
EnsureType,
)
from monai.visualize import plot_2d_or_3d_image
import matplotlib.pyplot as plt
from datetime import datetime
import shutil
import tqdm
from models.unetr2d import UNETR2D
from models.swin_unetr import SwinUNETR
from models.flexible_unet import FlexibleUNet
from models.flexible_unet_convext import FlexibleUNetConvext
print("Successfully imported all requirements!")
torch.backends.cudnn.enabled =False
#os.environ["OMP_NUM_THREADS"] = "1"
#os.environ["MKL_NUM_THREADS"] = "1"
def main():
parser = argparse.ArgumentParser("Baseline for Microscopy image segmentation")
# Dataset parameters
parser.add_argument(
"--data_path",
default="",
type=str,
help="training data path; subfolders: images, labels",
)
parser.add_argument(
"--work_dir", default="/mntnfs/med_data5/louwei/nips_comp/stardist_finetune1/", help="path where to save models and logs"
)
parser.add_argument(
"--model_dir", default="/", help="path where to load pretrained model"
)
parser.add_argument("--seed", default=2022, type=int)
# parser.add_argument("--resume", default=False, help="resume from checkpoint")
parser.add_argument("--num_workers", default=4, type=int)
#parser.add_argument("--local_rank", type=int)
# Model parameters
parser.add_argument(
"--model_name", default="efficientunet", help="select mode: unet, unetr, swinunetr"
)
parser.add_argument("--num_class", default=3, type=int, help="segmentation classes")
parser.add_argument(
"--input_size", default=512, type=int, help="segmentation classes"
)
# Training parameters
parser.add_argument("--batch_size", default=16, type=int, help="Batch size per GPU")
parser.add_argument("--max_epochs", default=2000, type=int)
parser.add_argument("--val_interval", default=10, type=int)
parser.add_argument("--epoch_tolerance", default=100, type=int)
parser.add_argument("--initial_lr", type=float, default=1e-4, help="learning rate")
args = parser.parse_args()
#torch.cuda.set_device(args.local_rank)
#torch.distributed.init_process_group(backend='nccl')
monai.config.print_config()
n_rays = 32
pre_trained = True
#%% set training/validation split
np.random.seed(args.seed)
pre_trained_path = args.model_dir
model_path = join(args.work_dir, args.model_name + "_3class")
os.makedirs(model_path, exist_ok=True)
run_id = datetime.now().strftime("%Y%m%d-%H%M")
# This must be change every runing time ! ! ! ! ! ! ! ! ! ! !
model_file = "models/flexible_unet_convext.py"
shutil.copyfile(
__file__, join(model_path, os.path.basename(__file__))
)
shutil.copyfile(
model_file, join(model_path, os.path.basename(model_file))
)
img_path = join(args.data_path, "train/images")
gt_path = join(args.data_path, "train/tif")
val_img_path = join(args.data_path, "valid/images")
val_gt_path = join(args.data_path, "valid/tif")
img_names = sorted(os.listdir(img_path))
gt_names = [img_name.split(".")[0] + ".tif" for img_name in img_names]
img_num = len(img_names)
val_frac = 0.1
val_img_names = sorted(os.listdir(val_img_path))
val_gt_names = [img_name.split(".")[0] + ".tif" for img_name in val_img_names]
#indices = np.arange(img_num)
#np.random.shuffle(indices)
#val_split = int(img_num * val_frac)
#train_indices = indices[val_split:]
#val_indices = indices[:val_split]
train_files = [
{"img": join(img_path, img_names[i]), "label": join(gt_path, gt_names[i])}
for i in range(len(img_names))
]
val_files = [
{"img": join(val_img_path, val_img_names[i]), "label": join(val_gt_path, val_gt_names[i])}
for i in range(len(val_img_names))
]
print(
f"training image num: {len(train_files)}, validation image num: {len(val_files)}"
)
#%% define transforms for image and segmentation
train_transforms = Compose(
[
LoadImaged(
keys=["img", "label"], reader=PILReader, dtype=np.float32
), # image three channels (H, W, 3); label: (H, W)
AddChanneld(keys=["label"], allow_missing_keys=True), # label: (1, H, W)
AsChannelFirstd(
keys=["img"], channel_dim=-1, allow_missing_keys=True
), # image: (3, H, W)
#ScaleIntensityd(
#keys=["img"], allow_missing_keys=True
#), # Do not scale label
SpatialPadd(keys=["img", "label"], spatial_size=args.input_size),
RandSpatialCropd(
keys=["img", "label"], roi_size=args.input_size, random_size=False
),
RandAxisFlipd(keys=["img", "label"], prob=0.5),
RandRotate90d(keys=["img", "label"], prob=0.5, spatial_axes=[0, 1]),
# # intensity transform
RandGaussianNoised(keys=["img"], prob=0.25, mean=0, std=0.1),
RandAdjustContrastd(keys=["img"], prob=0.25, gamma=(1, 2)),
RandGaussianSmoothd(keys=["img"], prob=0.25, sigma_x=(1, 2)),
RandHistogramShiftd(keys=["img"], prob=0.25, num_control_points=3),
RandZoomd(
keys=["img", "label"],
prob=0.15,
min_zoom=0.5,
max_zoom=2,
mode=["area", "nearest"],
),
EnsureTyped(keys=["img", "label"]),
]
)
val_transforms = Compose(
[
LoadImaged(keys=["img", "label"], reader=PILReader, dtype=np.float32),
AddChanneld(keys=["label"], allow_missing_keys=True),
AsChannelFirstd(keys=["img"], channel_dim=-1, allow_missing_keys=True),
#ScaleIntensityd(keys=["img"], allow_missing_keys=True),
# AsDiscreted(keys=['label'], to_onehot=3),
EnsureTyped(keys=["img", "label"]),
]
)
#% define dataset, data loader
check_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
check_loader = DataLoader(check_ds, batch_size=1, num_workers=4)
check_data = monai.utils.misc.first(check_loader)
print(
"sanity check:",
check_data["img"].shape,
torch.max(check_data["img"]),
check_data["label"].shape,
torch.max(check_data["label"]),
)
#%% create a training data loader
train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
# use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory =True,
)
# create a validation data loader
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=1)
dice_metric = DiceMetric(
include_background=False, reduction="mean", get_not_nans=False
)
post_pred = Compose(
[EnsureType(), Activations(softmax=True), AsDiscrete(threshold=0.5)]
)
post_gt = Compose([EnsureType(), AsDiscrete(to_onehot=None)])
# create UNet, DiceLoss and Adam optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.model_name.lower() == "efficientunet":
model = FlexibleUNetConvext(
in_channels=3,
out_channels=n_rays+1,
backbone='convnext_small',
pretrained=False,
).to(device)
#loss_masked_dice = monai.losses.DiceCELoss(softmax=True)
loss_dice = monai.losses.DiceLoss(squared_pred=True,jaccard=True)
loss_bce = nn.BCELoss()
loss_dist_mae = nn.L1Loss()
activatation = nn.ReLU()
sigmoid = nn.Sigmoid()
#loss_dist_mae = monai.losses.DiceCELoss(softmax=True)
initial_lr = args.initial_lr
encoder = list(map(id, model.encoder.parameters()))
base_params = filter(lambda p: id(p) not in encoder, model.parameters())
params = [
{"params": base_params, "lr":initial_lr},
{"params": model.encoder.parameters(), "lr": initial_lr * 0.1},
]
optimizer = torch.optim.AdamW(params, initial_lr)
if pre_trained == True:
checkpoint = torch.load(pre_trained_path, map_location=torch.device(device))
model.load_state_dict(checkpoint['model_state_dict'])
print('Load pretrained weights...')
max_epochs = args.max_epochs
epoch_tolerance = args.epoch_tolerance
val_interval = args.val_interval
best_metric = -1
best_metric_epoch = -1
epoch_loss_values = list()
metric_values = list()
writer = SummaryWriter(model_path)
max_f1 = 0
for epoch in range(0, max_epochs):
model.train()
epoch_loss = 0
epoch_loss_prob = 0
epoch_loss_dist_2 = 0
epoch_loss_dist_1 = 0
for step, batch_data in enumerate(train_loader, 1):
print(step)
inputs, labels = batch_data["img"],batch_data["label"]
processes_labels = []
for i in range(labels.shape[0]):
label = labels[i][0]
distances = star_dist(label,n_rays,mode='opencl')
distances = np.transpose(distances,(2,0,1))
#print(distances.shape)
obj_probabilities = edt_prob(label.astype(int))
obj_probabilities = np.expand_dims(obj_probabilities,0)
#print(obj_probabilities.shape)
final_label = np.concatenate((distances,obj_probabilities),axis=0)
#print(final_label.shape)
processes_labels.append(final_label)
labels = np.stack(processes_labels)
#print(inputs.shape,labels.shape)
inputs, labels = torch.tensor(inputs).to(device), torch.tensor(labels).to(device)
#print(inputs.shape,labels.shape)
optimizer.zero_grad()
output_dist,output_prob = model(inputs)
#print(outputs.shape)
dist_output = output_dist
prob_output = output_prob
dist_label = labels[:,:n_rays,:,:]
prob_label = torch.unsqueeze(labels[:,-1,:,:], 1)
#print(dist_output.shape,prob_output.shape,dist_label.shape)
#labels_onehot = monai.networks.one_hot(
#labels, args.num_class
#) # (b,cls,256,256)
#print(prob_label.max(),prob_label.min())
loss_dist_1 = loss_dice(dist_output*prob_label,dist_label*prob_label)
#print(loss_dist_1)
loss_prob = loss_bce(prob_output,prob_label)
#print(prob_label.shape,dist_output.shape)
loss_dist_2 = loss_dist_mae(dist_output*prob_label,dist_label*prob_label)
#print(loss_dist_2)
loss = loss_prob + loss_dist_2*0.3 + loss_dist_1
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_loss_prob += loss_prob.item()
epoch_loss_dist_2 += loss_dist_2.item()
epoch_loss_dist_1 += loss_dist_1.item()
epoch_len = len(train_ds) // train_loader.batch_size
epoch_loss /= step
epoch_loss_prob /= step
epoch_loss_dist_2 /= step
epoch_loss_dist_1 /= step
epoch_loss_values.append(epoch_loss)
print(f"epoch {epoch} average loss: {epoch_loss:.4f}")
writer.add_scalar("train_loss", epoch_loss, epoch)
print('dist dice: '+str(epoch_loss_dist_1)+' dist mae: '+str(epoch_loss_dist_2)+' prob bce: '+str(epoch_loss_prob))
checkpoint = {
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": epoch_loss_values,
}
if epoch < 40:
continue
if epoch > 1 and epoch % val_interval == 0:
torch.save(checkpoint, join(model_path, str(epoch) + ".pth"))
model.eval()
with torch.no_grad():
val_images = None
val_labels = None
val_outputs = None
seg_metric = OrderedDict()
seg_metric['F1_Score'] = []
for val_data in tqdm.tqdm(val_loader):
val_images, val_labels = val_data["img"].to(device), val_data[
"label"
].to(device)
roi_size = (512, 512)
sw_batch_size = 4
output_dist,output_prob = sliding_window_inference(
val_images, roi_size, sw_batch_size, model
)
val_labels = val_labels[0][0].cpu().numpy()
prob = output_prob[0][0].cpu().numpy()
dist = output_dist[0].cpu().numpy()
#print(val_labels.shape,prob.shape,dist.shape)
dist = np.transpose(dist,(1,2,0))
dist = np.maximum(1e-3, dist)
points, probi, disti = non_maximum_suppression(dist,prob,prob_thresh=0.5, nms_thresh=0.4)
coord = dist_to_coord(disti,points)
star_label = polygons_to_label(disti, points, prob=probi,shape=prob.shape)
gt = remove_boundary_cells(val_labels.astype(np.int32))
seg = remove_boundary_cells(star_label.astype(np.int32))
tp, fp, fn = eval_tp_fp_fn(gt, seg, threshold=0.5)
if tp == 0:
precision = 0
recall = 0
f1 = 0
else:
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = 2*(precision * recall)/ (precision + recall)
f1 = np.round(f1, 4)
seg_metric['F1_Score'].append(np.round(f1, 4))
avg_f1 = np.mean(seg_metric['F1_Score'])
writer.add_scalar("val_f1score", avg_f1, epoch)
if avg_f1 > max_f1:
max_f1 = avg_f1
print(str(epoch) + 'f1 score: ' + str(max_f1))
torch.save(checkpoint, join(model_path, "best_model.pth"))
np.savez_compressed(
join(model_path, "train_log.npz"),
val_dice=metric_values,
epoch_loss=epoch_loss_values,
)
if __name__ == "__main__":
main()