File size: 12,126 Bytes
0ca2a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional, Sequence, Tuple, Union

import torch
from torch import nn

from monai.networks.blocks import UpSample
from monai.networks.layers.factories import Conv
from monai.networks.layers.utils import get_act_layer
from monai.networks.nets import EfficientNetBNFeatures
from monai.networks.nets.basic_unet import UpCat
from monai.utils import InterpolateMode

__all__ = ["FlexibleUNet"]

encoder_feature_channel = {
    "efficientnet-b0": (16, 24, 40, 112, 320),
    "efficientnet-b1": (16, 24, 40, 112, 320),
    "efficientnet-b2": (16, 24, 48, 120, 352),
    "efficientnet-b3": (24, 32, 48, 136, 384),
    "efficientnet-b4": (24, 32, 56, 160, 448),
    "efficientnet-b5": (24, 40, 64, 176, 512),
    "efficientnet-b6": (32, 40, 72, 200, 576),
    "efficientnet-b7": (32, 48, 80, 224, 640),
    "efficientnet-b8": (32, 56, 88, 248, 704),
    "efficientnet-l2": (72, 104, 176, 480, 1376),
}


def _get_encoder_channels_by_backbone(backbone: str, in_channels: int = 3) -> tuple:
    """
    Get the encoder output channels by given backbone name.

    Args:
        backbone: name of backbone to generate features, can be from [efficientnet-b0, ..., efficientnet-b7].
        in_channels: channel of input tensor, default to 3.

    Returns:
        A tuple of output feature map channels' length .
    """
    encoder_channel_tuple = encoder_feature_channel[backbone]
    encoder_channel_list = [in_channels] + list(encoder_channel_tuple)
    encoder_channel = tuple(encoder_channel_list)
    return encoder_channel


class UNetDecoder(nn.Module):
    """
    UNet Decoder.
    This class refers to `segmentation_models.pytorch
    <https://github.com/qubvel/segmentation_models.pytorch>`_.

    Args:
        spatial_dims: number of spatial dimensions.
        encoder_channels: number of output channels for all feature maps in encoder.
            `len(encoder_channels)` should be no less than 2.
        decoder_channels: number of output channels for all feature maps in decoder.
            `len(decoder_channels)` should equal to `len(encoder_channels) - 1`.
        act: activation type and arguments.
        norm: feature normalization type and arguments.
        dropout: dropout ratio.
        bias: whether to have a bias term in convolution blocks in this decoder.
        upsample: upsampling mode, available options are
            ``"deconv"``, ``"pixelshuffle"``, ``"nontrainable"``.
        pre_conv: a conv block applied before upsampling.
            Only used in the "nontrainable" or "pixelshuffle" mode.
        interp_mode: {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``}
            Only used in the "nontrainable" mode.
        align_corners: set the align_corners parameter for upsample. Defaults to True.
            Only used in the "nontrainable" mode.
        is_pad: whether to pad upsampling features to fit the encoder spatial dims.

    """

    def __init__(
        self,
        spatial_dims: int,
        encoder_channels: Sequence[int],
        decoder_channels: Sequence[int],
        act: Union[str, tuple],
        norm: Union[str, tuple],
        dropout: Union[float, tuple],
        bias: bool,
        upsample: str,
        pre_conv: Optional[str],
        interp_mode: str,
        align_corners: Optional[bool],
        is_pad: bool,
    ):

        super().__init__()
        if len(encoder_channels) < 2:
            raise ValueError("the length of `encoder_channels` should be no less than 2.")
        if len(decoder_channels) != len(encoder_channels) - 1:
            raise ValueError("`len(decoder_channels)` should equal to `len(encoder_channels) - 1`.")

        in_channels = [encoder_channels[-1]] + list(decoder_channels[:-1])
        skip_channels = list(encoder_channels[1:-1][::-1]) + [0]
        halves = [True] * (len(skip_channels) - 1)
        halves.append(False)
        blocks = []
        for in_chn, skip_chn, out_chn, halve in zip(in_channels, skip_channels, decoder_channels, halves):
            blocks.append(
                UpCat(
                    spatial_dims=spatial_dims,
                    in_chns=in_chn,
                    cat_chns=skip_chn,
                    out_chns=out_chn,
                    act=act,
                    norm=norm,
                    dropout=dropout,
                    bias=bias,
                    upsample=upsample,
                    pre_conv=pre_conv,
                    interp_mode=interp_mode,
                    align_corners=align_corners,
                    halves=halve,
                    is_pad=is_pad,
                )
            )
        self.blocks = nn.ModuleList(blocks)

    def forward(self, features: List[torch.Tensor], skip_connect: int = 4):
        skips = features[:-1][::-1]
        features = features[1:][::-1]

        x = features[0]
        for i, block in enumerate(self.blocks):
            if i < skip_connect:
                skip = skips[i]
            else:
                skip = None
            x = block(x, skip)

        return x


class SegmentationHead(nn.Sequential):
    """
    Segmentation head.
    This class refers to `segmentation_models.pytorch
    <https://github.com/qubvel/segmentation_models.pytorch>`_.

    Args:
        spatial_dims: number of spatial dimensions.
        in_channels: number of input channels for the block.
        out_channels: number of output channels for the block.
        kernel_size: kernel size for the conv layer.
        act: activation type and arguments.
        scale_factor: multiplier for spatial size. Has to match input size if it is a tuple.

    """

    def __init__(
        self,
        spatial_dims: int,
        in_channels: int,
        out_channels: int,
        kernel_size: int = 3,
        act: Optional[Union[Tuple, str]] = None,
        scale_factor: float = 1.0,
    ):

        conv_layer = Conv[Conv.CONV, spatial_dims](
            in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=kernel_size // 2
        )
        up_layer: nn.Module = nn.Identity()
        if scale_factor > 1.0:
            up_layer = UpSample(
                spatial_dims=spatial_dims,
                scale_factor=scale_factor,
                mode="nontrainable",
                pre_conv=None,
                interp_mode=InterpolateMode.LINEAR,
            )
        if act is not None:
            act_layer = get_act_layer(act)
        else:
            act_layer = nn.Identity()
        super().__init__(conv_layer, up_layer, act_layer)


class FlexibleUNet(nn.Module):
    """
    A flexible implementation of UNet-like encoder-decoder architecture.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        backbone: str,
        pretrained: bool = False,
        decoder_channels: Tuple = (256, 128, 64, 32, 16),
        spatial_dims: int = 2,
        norm: Union[str, tuple] = ("batch", {"eps": 1e-3, "momentum": 0.1}),
        act: Union[str, tuple] = ("relu", {"inplace": True}),
        dropout: Union[float, tuple] = 0.0,
        decoder_bias: bool = False,
        upsample: str = "nontrainable",
        interp_mode: str = "nearest",
        is_pad: bool = True,
    ) -> None:
        """
        A flexible implement of UNet, in which the backbone/encoder can be replaced with
        any efficient network. Currently the input must have a 2 or 3 spatial dimension
        and the spatial size of each dimension must be a multiple of 32 if is pad parameter
        is False

        Args:
            in_channels: number of input channels.
            out_channels: number of output channels.
            backbone: name of backbones to initialize, only support efficientnet right now,
                can be from [efficientnet-b0,..., efficientnet-b8, efficientnet-l2].
            pretrained: whether to initialize pretrained ImageNet weights, only available
                for spatial_dims=2 and batch norm is used, default to False.
            decoder_channels: number of output channels for all feature maps in decoder.
                `len(decoder_channels)` should equal to `len(encoder_channels) - 1`,default
                to (256, 128, 64, 32, 16).
            spatial_dims: number of spatial dimensions, default to 2.
            norm: normalization type and arguments, default to ("batch", {"eps": 1e-3,
                "momentum": 0.1}).
            act: activation type and arguments, default to ("relu", {"inplace": True}).
            dropout: dropout ratio, default to 0.0.
            decoder_bias: whether to have a bias term in decoder's convolution blocks.
            upsample: upsampling mode, available options are``"deconv"``, ``"pixelshuffle"``,
                ``"nontrainable"``.
            interp_mode: {``"nearest"``, ``"linear"``, ``"bilinear"``, ``"bicubic"``, ``"trilinear"``}
                Only used in the "nontrainable" mode.
            is_pad: whether to pad upsampling features to fit features from encoder. Default to True.
                If this parameter is set to "True", the spatial dim of network input can be arbitary
                size, which is not supported by TensorRT. Otherwise, it must be a multiple of 32.
        """
        super().__init__()

        if backbone not in encoder_feature_channel:
            raise ValueError(f"invalid model_name {backbone} found, must be one of {encoder_feature_channel.keys()}.")

        if spatial_dims not in (2, 3):
            raise ValueError("spatial_dims can only be 2 or 3.")

        adv_prop = "ap" in backbone

        self.backbone = backbone
        self.spatial_dims = spatial_dims
        model_name = backbone
        encoder_channels = _get_encoder_channels_by_backbone(backbone, in_channels)
        self.encoder = EfficientNetBNFeatures(
            model_name=model_name,
            pretrained=pretrained,
            in_channels=in_channels,
            spatial_dims=spatial_dims,
            norm=norm,
            adv_prop=adv_prop,
        )
        self.decoder = UNetDecoder(
            spatial_dims=spatial_dims,
            encoder_channels=encoder_channels,
            decoder_channels=decoder_channels,
            act=act,
            norm=norm,
            dropout=dropout,
            bias=decoder_bias,
            upsample=upsample,
            interp_mode=interp_mode,
            pre_conv=None,
            align_corners=None,
            is_pad=is_pad,
        )
        self.dist_head = SegmentationHead(
            spatial_dims=spatial_dims,
            in_channels=decoder_channels[-1],
            out_channels=32,
            kernel_size=1,
            act='relu',
        )
        self.prob_head = SegmentationHead(
            spatial_dims=spatial_dims,
            in_channels=decoder_channels[-1],
            out_channels=1,
            kernel_size=1,
            act='sigmoid',
        )

    def forward(self, inputs: torch.Tensor):
        """
        Do a typical encoder-decoder-header inference.

        Args:
            inputs: input should have spatially N dimensions ``(Batch, in_channels, dim_0[, dim_1, ..., dim_N])``,
                N is defined by `dimensions`.

        Returns:
            A torch Tensor of "raw" predictions in shape ``(Batch, out_channels, dim_0[, dim_1, ..., dim_N])``.

        """
        x = inputs
        enc_out = self.encoder(x)
        decoder_out = self.decoder(enc_out)
        dist = self.dist_head(decoder_out)
        prob = self.prob_head(decoder_out)
        return dist,prob