Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.23 +/- 0.05
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c23c888811b81c6cc260728a962c9ff83b957097d78886c76afa7badf646bda
|
3 |
+
size 108131
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d8bc35c5a20>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d8bc35ba9c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1700130709752602273,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwgYbvzIx3D6zaaY+xPLavRIf3T76kGi+YXiIPpeDSLvx1ds+YqxOPx8plz+M1py/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqm3nvgpznT/EnWY/RFaXvrQvoj+NQWK/AKXTvjbNTD+Ga+q9emhJP/+Ibj9Mwom/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADCBhu/MjHcPrNppj6O6kK/WrTSPzQgYT/E8tq9Eh/dPvqQaL4Ws+6/zY7RP46msb9heIg+l4NIu/HV2z49nPY+b02SuxVPxj5irE4/HymXP4zWnL8fJv0+IGf6Pnj5xr+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-0.60557187 0.43006283 0.32502517]\n [-0.10690835 0.43187767 -0.22711554]\n [ 0.26654342 -0.0030596 0.42936662]\n [ 0.80731785 1.1809424 -1.2252975 ]]",
|
34 |
+
"desired_goal": "[[-0.45200855 1.2300732 0.9008448 ]\n [-0.29558003 1.2670808 -0.8838127 ]\n [-0.41336823 0.8000063 -0.1144629 ]\n [ 0.78675044 0.9317779 -1.076242 ]]",
|
35 |
+
"observation": "[[-0.60557187 0.43006283 0.32502517 -0.7613915 1.6461289 0.87939763]\n [-0.10690835 0.43187767 -0.22711554 -1.8648403 1.6371704 -1.3878953 ]\n [ 0.26654342 -0.0030596 0.42936662 0.48166075 -0.0044648 0.3873221 ]\n [ 0.80731785 1.1809424 -1.2252975 0.49443147 0.48906803 -1.5544882 ]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2FQ8PeGyBz50yMY7yRC3Ozg7jjr3CTg+FVAZPbIGJb2OpIc81UyKvdu9f71QukA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.04597935 0.1325183 0.00606638]\n [ 0.00558672 0.00108514 0.17972551]\n [ 0.03742989 -0.04028959 0.01655796]\n [-0.06752936 -0.06243692 0.18821073]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6ht+CsfaHuMAWyUSwGMAXSUR0Cl9+zyz5XVdX2UKGgGR7/AVrRBu4wzaAdLAmgIR0Cl961m8M/hdX2UKGgGR7++8e0Xxe9jaAdLAmgIR0Cl9yMmOU+tdX2UKGgGR7/A3z+WGATaaAdLAmgIR0Cl9/5jYqXodX2UKGgGR7/TZ5iVjZtfaAdLBGgIR0Cl94dld1MedX2UKGgGR7+6AmReTmnwaAdLAmgIR0Cl+AsLWqcWdX2UKGgGR7/aDzAeq7yyaAdLBGgIR0Cl98tX5nDjdX2UKGgGR7/WntfG+9J0aAdLBGgIR0Cl90DDCP6sdX2UKGgGR7+8kka/ATIvaAdLAmgIR0Cl99sB6rvLdX2UKGgGR7/RdilSCOFQaAdLA2gIR0Cl953dKujidX2UKGgGR7/K3AEdNnGsaAdLA2gIR0Cl+CFTNt65dX2UKGgGR7+ctTUAksz3aAdLAWgIR0Cl96RxDLKWdX2UKGgGR7/T212JSBK+aAdLA2gIR0Cl91dIGyHEdX2UKGgGR7+lcQiA2AG0aAdLAWgIR0Cl96srNGExdX2UKGgGR7/OxcE/0NBoaAdLA2gIR0Cl9+9MCcPOdX2UKGgGR7+pfShJyyUtaAdLAWgIR0Cl9/Z8BuGcdX2UKGgGR7++thd+ocaPaAdLAmgIR0Cl97jmjj7zdX2UKGgGR7/QylenhsInaAdLA2gIR0Cl92uZ1FH8dX2UKGgGR7/WcPe54GD+aAdLBGgIR0Cl+EBv73wkdX2UKGgGR7/Sj5KvmozfaAdLA2gIR0Cl+A4P5HmSdX2UKGgGR7/J6CUX531SaAdLA2gIR0Cl94PJq7AddX2UKGgGR7/G/0ulGgBcaAdLA2gIR0Cl+FUG/vfCdX2UKGgGR7+gwwj+rELqaAdLAWgIR0Cl+BWA5JbudX2UKGgGR7/WxPO6d1+zaAdLBGgIR0Cl99ii7CizdX2UKGgGR7+33vhIe5nUaAdLAmgIR0Cl95KkM1CPdX2UKGgGR7/CE8JUo8ZDaAdLAmgIR0Cl9+sKb8WLdX2UKGgGR7/P+sHSnccmaAdLA2gIR0Cl+G7lijL0dX2UKGgGR7/QZAY51eSkaAdLA2gIR0Cl+DA0Kqn4dX2UKGgGR7/BFefI0ZWJaAdLAmgIR0Cl9/nX/YJ3dX2UKGgGR7/K6oVEd/8VaAdLA2gIR0Cl960LlV94dX2UKGgGR7/K8nNPgvUSaAdLA2gIR0Cl+ISUTtb+dX2UKGgGR7/AXjU/fO2RaAdLAmgIR0Cl+AgFHJ9zdX2UKGgGR7/Fhn8KohpyaAdLAmgIR0Cl97ryMDOkdX2UKGgGR7/bEgW8AaNuaAdLBGgIR0Cl+E/Ot4iYdX2UKGgGR7+iUVzp5eJIaAdLAWgIR0Cl+BLA57w8dX2UKGgGR7+jsniNsFdLaAdLAWgIR0Cl98W3azu4dX2UKGgGR7+nTgEU0vXcaAdLAWgIR0Cl98xdY4hmdX2UKGgGR7/C1gH/tICmaAdLAmgIR0Cl+F2FFlTWdX2UKGgGR7/YATIvJzT4aAdLBGgIR0Cl+KOH31zydX2UKGgGR7/QRqXWvr4WaAdLA2gIR0Cl+Ca/IsAedX2UKGgGR7+61hLGrCFcaAdLAmgIR0Cl99mkep4sdX2UKGgGR7+yyquKXOW0aAdLAmgIR0Cl+Gr+HaexdX2UKGgGR7/OQK8cuJ1raAdLA2gIR0Cl+LsfaHsUdX2UKGgGR7/I4jKPn0TUaAdLA2gIR0Cl+D5NwiqydX2UKGgGR7/T1r6+FlCkaAdLA2gIR0Cl9/F8XvYwdX2UKGgGR7/Kt1ZDArQPaAdLA2gIR0Cl+ILaEi+tdX2UKGgGR7/Bc7hegL7XaAdLAmgIR0Cl+EwFcIJJdX2UKGgGR7/N83Mpw0fpaAdLA2gIR0Cl+M+N1hb4dX2UKGgGR7/TvIwM6RyPaAdLA2gIR0Cl+AVpTMq0dX2UKGgGR7/K2y9mHxjKaAdLA2gIR0Cl+Jol+mWMdX2UKGgGR7+938n/kvK2aAdLAmgIR0Cl+OCDdxhldX2UKGgGR7/LBvaURnOCaAdLA2gIR0Cl+GOuaF23dX2UKGgGR7/TKbKA8SwoaAdLA2gIR0Cl+B1Fx4pudX2UKGgGR7+6AiFCb+cZaAdLAmgIR0Cl+O4VZcLSdX2UKGgGR7/Vk+X7cfvGaAdLA2gIR0Cl+K6Ogg5jdX2UKGgGR7/BCJGe+VTraAdLAmgIR0Cl+P4iX6ZZdX2UKGgGR7+59nbqQiiZaAdLAmgIR0Cl+L60Y0l7dX2UKGgGR7/RjIaLn9vTaAdLBGgIR0Cl+IGSyMUAdX2UKGgGR7/Z/T9bX6InaAdLBGgIR0Cl+Dvm5lOHdX2UKGgGR7+2oIfKZDzAaAdLAmgIR0Cl+M065oXbdX2UKGgGR7/GXE61b7j1aAdLAmgIR0Cl+JBTGYKIdX2UKGgGR7/QaQ3gk1MuaAdLA2gIR0Cl+RQ9aEBbdX2UKGgGR7+e67NB4UvgaAdLAWgIR0Cl+Jd+w1R+dX2UKGgGR7+hFqi48U22aAdLAWgIR0Cl+RsDGLk0dX2UKGgGR7+4UqQRwqAjaAdLAmgIR0Cl+NtTUAktdX2UKGgGR7/QapgkTpPiaAdLA2gIR0Cl+FDq4YrKdX2UKGgGR7/QoLG7z06HaAdLA2gIR0Cl+K4x+KCQdX2UKGgGR7/HOjZcs189aAdLA2gIR0Cl+THtF8XvdX2UKGgGR7/F0VafSQYDaAdLA2gIR0Cl+PKISDh+dX2UKGgGR7/SrsjVx0dSaAdLA2gIR0Cl+GgtnPE9dX2UKGgGR7+my5Zr56+naAdLAWgIR0Cl+Plpfx+bdX2UKGgGR7+ggFHJ9y93aAdLAWgIR0Cl+G7rC3w1dX2UKGgGR7/DHCGetjkNaAdLAmgIR0Cl+T/xc3VDdX2UKGgGR7/XUMXrMTviaAdLA2gIR0Cl+MMYVIqcdX2UKGgGR7/U1oxpL26DaAdLA2gIR0Cl+RDv3JxOdX2UKGgGR7/Pp22Xsw+MaAdLA2gIR0Cl+Ib79AHFdX2UKGgGR7/QZyuIRAbAaAdLA2gIR0Cl+Vguh9LIdX2UKGgGR7/S6shgVoHtaAdLA2gIR0Cl+NswL3K0dX2UKGgGR7+2iHqNZNfxaAdLAmgIR0Cl+WXCTEBKdX2UKGgGR7/Re2d/axoqaAdLA2gIR0Cl+SZcLSeAdX2UKGgGR7/KolUp/gBLaAdLA2gIR0Cl+JwXqJMydX2UKGgGR7/BUMG5c1O1aAdLAmgIR0Cl+Te7tiQUdX2UKGgGR7/XqAz544ZNaAdLBGgIR0Cl+PtsnAqNdX2UKGgGR7/AdMCcPOIJaAdLAmgIR0Cl+K59mYjTdX2UKGgGR7/QvJzT4L1FaAdLA2gIR0Cl+X+TvAoHdX2UKGgGR7/EqxTsIE8raAdLA2gIR0Cl+U7BwdbQdX2UKGgGR7/Lopx3mmtRaAdLA2gIR0Cl+MRAKOT8dX2UKGgGR7/Sxd6cAimmaAdLA2gIR0Cl+Zh4Uvf1dX2UKGgGR7/b15Sm65G0aAdLBGgIR0Cl+RuwX668dX2UKGgGR7/ABjnV5KODaAdLAmgIR0Cl+V+xnnMddX2UKGgGR7/UmzSkTHsDaAdLA2gIR0Cl+TAqmTC+dX2UKGgGR7/bl7dBSk0raAdLBGgIR0Cl+OQEhaC+dX2UKGgGR7/VsnRb8m8eaAdLBGgIR0Cl+bWjoIOZdX2UKGgGR7/Zje9Ba9saaAdLBGgIR0Cl+YJw84gidX2UKGgGR7+5eVs1sLv1aAdLAmgIR0Cl+ciZv1lHdX2UKGgGR7/PtgrpaA4GaAdLA2gIR0Cl+UvKuB+XdX2UKGgGR7/WVGCqZML4aAdLBGgIR0Cl+QWpyZKGdX2UKGgGR7/AKTB68g6maAdLAmgIR0Cl+dZmAbyZdX2UKGgGR7/QuwX668QJaAdLA2gIR0Cl+ZbZezD5dX2UKGgGR7/PN0NjLB9DaAdLA2gIR0Cl+V9tl7MQdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:623065a1a2a0017d40c1d996dd67af8806a9800cf547e7fbe85641acbbfcc039
|
3 |
+
size 45167
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9de3f2821e4d1a69a38fd4870ebec2f5ba2adf318168bf592d1ab8c9815550d
|
3 |
+
size 46447
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d8bc35c5a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d8bc35ba9c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700130709752602273, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwgYbvzIx3D6zaaY+xPLavRIf3T76kGi+YXiIPpeDSLvx1ds+YqxOPx8plz+M1py/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqm3nvgpznT/EnWY/RFaXvrQvoj+NQWK/AKXTvjbNTD+Ga+q9emhJP/+Ibj9Mwom/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADCBhu/MjHcPrNppj6O6kK/WrTSPzQgYT/E8tq9Eh/dPvqQaL4Ws+6/zY7RP46msb9heIg+l4NIu/HV2z49nPY+b02SuxVPxj5irE4/HymXP4zWnL8fJv0+IGf6Pnj5xr+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.60557187 0.43006283 0.32502517]\n [-0.10690835 0.43187767 -0.22711554]\n [ 0.26654342 -0.0030596 0.42936662]\n [ 0.80731785 1.1809424 -1.2252975 ]]", "desired_goal": "[[-0.45200855 1.2300732 0.9008448 ]\n [-0.29558003 1.2670808 -0.8838127 ]\n [-0.41336823 0.8000063 -0.1144629 ]\n [ 0.78675044 0.9317779 -1.076242 ]]", "observation": "[[-0.60557187 0.43006283 0.32502517 -0.7613915 1.6461289 0.87939763]\n [-0.10690835 0.43187767 -0.22711554 -1.8648403 1.6371704 -1.3878953 ]\n [ 0.26654342 -0.0030596 0.42936662 0.48166075 -0.0044648 0.3873221 ]\n [ 0.80731785 1.1809424 -1.2252975 0.49443147 0.48906803 -1.5544882 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2FQ8PeGyBz50yMY7yRC3Ozg7jjr3CTg+FVAZPbIGJb2OpIc81UyKvdu9f71QukA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04597935 0.1325183 0.00606638]\n [ 0.00558672 0.00108514 0.17972551]\n [ 0.03742989 -0.04028959 0.01655796]\n [-0.06752936 -0.06243692 0.18821073]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6ht+CsfaHuMAWyUSwGMAXSUR0Cl9+zyz5XVdX2UKGgGR7/AVrRBu4wzaAdLAmgIR0Cl961m8M/hdX2UKGgGR7++8e0Xxe9jaAdLAmgIR0Cl9yMmOU+tdX2UKGgGR7/A3z+WGATaaAdLAmgIR0Cl9/5jYqXodX2UKGgGR7/TZ5iVjZtfaAdLBGgIR0Cl94dld1MedX2UKGgGR7+6AmReTmnwaAdLAmgIR0Cl+AsLWqcWdX2UKGgGR7/aDzAeq7yyaAdLBGgIR0Cl98tX5nDjdX2UKGgGR7/WntfG+9J0aAdLBGgIR0Cl90DDCP6sdX2UKGgGR7+8kka/ATIvaAdLAmgIR0Cl99sB6rvLdX2UKGgGR7/RdilSCOFQaAdLA2gIR0Cl953dKujidX2UKGgGR7/K3AEdNnGsaAdLA2gIR0Cl+CFTNt65dX2UKGgGR7+ctTUAksz3aAdLAWgIR0Cl96RxDLKWdX2UKGgGR7/T212JSBK+aAdLA2gIR0Cl91dIGyHEdX2UKGgGR7+lcQiA2AG0aAdLAWgIR0Cl96srNGExdX2UKGgGR7/OxcE/0NBoaAdLA2gIR0Cl9+9MCcPOdX2UKGgGR7+pfShJyyUtaAdLAWgIR0Cl9/Z8BuGcdX2UKGgGR7++thd+ocaPaAdLAmgIR0Cl97jmjj7zdX2UKGgGR7/QylenhsInaAdLA2gIR0Cl92uZ1FH8dX2UKGgGR7/WcPe54GD+aAdLBGgIR0Cl+EBv73wkdX2UKGgGR7/Sj5KvmozfaAdLA2gIR0Cl+A4P5HmSdX2UKGgGR7/J6CUX531SaAdLA2gIR0Cl94PJq7AddX2UKGgGR7/G/0ulGgBcaAdLA2gIR0Cl+FUG/vfCdX2UKGgGR7+gwwj+rELqaAdLAWgIR0Cl+BWA5JbudX2UKGgGR7/WxPO6d1+zaAdLBGgIR0Cl99ii7CizdX2UKGgGR7+33vhIe5nUaAdLAmgIR0Cl95KkM1CPdX2UKGgGR7/CE8JUo8ZDaAdLAmgIR0Cl9+sKb8WLdX2UKGgGR7/P+sHSnccmaAdLA2gIR0Cl+G7lijL0dX2UKGgGR7/QZAY51eSkaAdLA2gIR0Cl+DA0Kqn4dX2UKGgGR7/BFefI0ZWJaAdLAmgIR0Cl9/nX/YJ3dX2UKGgGR7/K6oVEd/8VaAdLA2gIR0Cl960LlV94dX2UKGgGR7/K8nNPgvUSaAdLA2gIR0Cl+ISUTtb+dX2UKGgGR7/AXjU/fO2RaAdLAmgIR0Cl+AgFHJ9zdX2UKGgGR7/Fhn8KohpyaAdLAmgIR0Cl97ryMDOkdX2UKGgGR7/bEgW8AaNuaAdLBGgIR0Cl+E/Ot4iYdX2UKGgGR7+iUVzp5eJIaAdLAWgIR0Cl+BLA57w8dX2UKGgGR7+jsniNsFdLaAdLAWgIR0Cl98W3azu4dX2UKGgGR7+nTgEU0vXcaAdLAWgIR0Cl98xdY4hmdX2UKGgGR7/C1gH/tICmaAdLAmgIR0Cl+F2FFlTWdX2UKGgGR7/YATIvJzT4aAdLBGgIR0Cl+KOH31zydX2UKGgGR7/QRqXWvr4WaAdLA2gIR0Cl+Ca/IsAedX2UKGgGR7+61hLGrCFcaAdLAmgIR0Cl99mkep4sdX2UKGgGR7+yyquKXOW0aAdLAmgIR0Cl+Gr+HaexdX2UKGgGR7/OQK8cuJ1raAdLA2gIR0Cl+LsfaHsUdX2UKGgGR7/I4jKPn0TUaAdLA2gIR0Cl+D5NwiqydX2UKGgGR7/T1r6+FlCkaAdLA2gIR0Cl9/F8XvYwdX2UKGgGR7/Kt1ZDArQPaAdLA2gIR0Cl+ILaEi+tdX2UKGgGR7/Bc7hegL7XaAdLAmgIR0Cl+EwFcIJJdX2UKGgGR7/N83Mpw0fpaAdLA2gIR0Cl+M+N1hb4dX2UKGgGR7/TvIwM6RyPaAdLA2gIR0Cl+AVpTMq0dX2UKGgGR7/K2y9mHxjKaAdLA2gIR0Cl+Jol+mWMdX2UKGgGR7+938n/kvK2aAdLAmgIR0Cl+OCDdxhldX2UKGgGR7/LBvaURnOCaAdLA2gIR0Cl+GOuaF23dX2UKGgGR7/TKbKA8SwoaAdLA2gIR0Cl+B1Fx4pudX2UKGgGR7+6AiFCb+cZaAdLAmgIR0Cl+O4VZcLSdX2UKGgGR7/Vk+X7cfvGaAdLA2gIR0Cl+K6Ogg5jdX2UKGgGR7/BCJGe+VTraAdLAmgIR0Cl+P4iX6ZZdX2UKGgGR7+59nbqQiiZaAdLAmgIR0Cl+L60Y0l7dX2UKGgGR7/RjIaLn9vTaAdLBGgIR0Cl+IGSyMUAdX2UKGgGR7/Z/T9bX6InaAdLBGgIR0Cl+Dvm5lOHdX2UKGgGR7+2oIfKZDzAaAdLAmgIR0Cl+M065oXbdX2UKGgGR7/GXE61b7j1aAdLAmgIR0Cl+JBTGYKIdX2UKGgGR7/QaQ3gk1MuaAdLA2gIR0Cl+RQ9aEBbdX2UKGgGR7+e67NB4UvgaAdLAWgIR0Cl+Jd+w1R+dX2UKGgGR7+hFqi48U22aAdLAWgIR0Cl+RsDGLk0dX2UKGgGR7+4UqQRwqAjaAdLAmgIR0Cl+NtTUAktdX2UKGgGR7/QapgkTpPiaAdLA2gIR0Cl+FDq4YrKdX2UKGgGR7/QoLG7z06HaAdLA2gIR0Cl+K4x+KCQdX2UKGgGR7/HOjZcs189aAdLA2gIR0Cl+THtF8XvdX2UKGgGR7/F0VafSQYDaAdLA2gIR0Cl+PKISDh+dX2UKGgGR7/SrsjVx0dSaAdLA2gIR0Cl+GgtnPE9dX2UKGgGR7+my5Zr56+naAdLAWgIR0Cl+Plpfx+bdX2UKGgGR7+ggFHJ9y93aAdLAWgIR0Cl+G7rC3w1dX2UKGgGR7/DHCGetjkNaAdLAmgIR0Cl+T/xc3VDdX2UKGgGR7/XUMXrMTviaAdLA2gIR0Cl+MMYVIqcdX2UKGgGR7/U1oxpL26DaAdLA2gIR0Cl+RDv3JxOdX2UKGgGR7/Pp22Xsw+MaAdLA2gIR0Cl+Ib79AHFdX2UKGgGR7/QZyuIRAbAaAdLA2gIR0Cl+Vguh9LIdX2UKGgGR7/S6shgVoHtaAdLA2gIR0Cl+NswL3K0dX2UKGgGR7+2iHqNZNfxaAdLAmgIR0Cl+WXCTEBKdX2UKGgGR7/Re2d/axoqaAdLA2gIR0Cl+SZcLSeAdX2UKGgGR7/KolUp/gBLaAdLA2gIR0Cl+JwXqJMydX2UKGgGR7/BUMG5c1O1aAdLAmgIR0Cl+Te7tiQUdX2UKGgGR7/XqAz544ZNaAdLBGgIR0Cl+PtsnAqNdX2UKGgGR7/AdMCcPOIJaAdLAmgIR0Cl+K59mYjTdX2UKGgGR7/QvJzT4L1FaAdLA2gIR0Cl+X+TvAoHdX2UKGgGR7/EqxTsIE8raAdLA2gIR0Cl+U7BwdbQdX2UKGgGR7/Lopx3mmtRaAdLA2gIR0Cl+MRAKOT8dX2UKGgGR7/Sxd6cAimmaAdLA2gIR0Cl+Zh4Uvf1dX2UKGgGR7/b15Sm65G0aAdLBGgIR0Cl+RuwX668dX2UKGgGR7/ABjnV5KODaAdLAmgIR0Cl+V+xnnMddX2UKGgGR7/UmzSkTHsDaAdLA2gIR0Cl+TAqmTC+dX2UKGgGR7/bl7dBSk0raAdLBGgIR0Cl+OQEhaC+dX2UKGgGR7/VsnRb8m8eaAdLBGgIR0Cl+bWjoIOZdX2UKGgGR7/Zje9Ba9saaAdLBGgIR0Cl+YJw84gidX2UKGgGR7+5eVs1sLv1aAdLAmgIR0Cl+ciZv1lHdX2UKGgGR7/PtgrpaA4GaAdLA2gIR0Cl+UvKuB+XdX2UKGgGR7/WVGCqZML4aAdLBGgIR0Cl+QWpyZKGdX2UKGgGR7/AKTB68g6maAdLAmgIR0Cl+dZmAbyZdX2UKGgGR7/QuwX668QJaAdLA2gIR0Cl+ZbZezD5dX2UKGgGR7/PN0NjLB9DaAdLA2gIR0Cl+V9tl7MQdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (664 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.23454677052795886, "std_reward": 0.04785116811004817, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-16T11:19:17.574359"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f8421079cdeda615e5e405b8bb76bf51acc0a8ab6ca5a227ce64919af4aebdf
|
3 |
+
size 2616
|