File size: 16,525 Bytes
ec3cf21
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d8bc35c5a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d8bc35ba9c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700134031596744120, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbXS1P+mOYj9DwcQ9QWCQv6KhJj1CzcQ9s2uSvzJEkj83ycQ9vxGfvqg37747yMQ9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADRyVv5TYA78z2PI+t1qLv4Ofkj927ou/BPnGP0EMnz/O+6E+MdN2vnasrz8+lRY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABRL9U+nww/PkNCRr7yxV4/UjiVPxSmVj+oBVG/bXS1P+mOYj9DwcQ9OEIVuyil6bxMCIi7IkmrPKCeBj1DrTc9pvnVuzpOi7xZlT080PwfPhbsED8ix7U7y/cdP4tD0T+dSoI/svNRv0FgkL+ioSY9Qs3EPY8Q8ro8t+i8UmpYu76cpTzJswg9kK02PY8xHLw5NJq8he9APPcFHD8fPYU/Qrn2vhnsnj6XCui+WS6QP6S3mT+za5K/MkSSPzfJxD2Kl+26sd/nvOZ1Jbs3Y608OtUEPUOtNz1a+dW7S06LvJviSjwBNvA+XIJjP9RXIb92Xk4/GrBQv2Kn0T6mDkK/vxGfvqg37747yMQ9u7UAu7ar5rxQkYy7x+uoPKXsBT1DrTc9o/nVuzpOi7wx4z08lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.4176155   0.88499314  0.09607174]\n [-1.1279374   0.04068149  0.09609462]\n [-1.1439117   1.1427062   0.09608691]\n [-0.31068227 -0.4672215   0.09608503]]", "desired_goal": "[[-1.1649185  -0.51502347  0.47430572]\n [-1.0887059   1.1454929  -1.0932148 ]\n [ 1.5544744   1.2425615   0.31637424]\n [-0.24104     1.3724506   0.58821476]]", "observation": "[[ 0.41637662  0.18657158 -0.19361214  0.8702079   1.1657813   0.83847165\n  -0.81649256  1.4176155   0.88499314  0.09607174 -0.00227751 -0.02852114\n  -0.00415138  0.0209089   0.03286612  0.04484297 -0.00653    -0.01700507\n   0.01157125]\n [ 0.15623784  0.5661024   0.00554742  0.6170623   1.6348737   1.017902\n  -0.82012475 -1.1279374   0.04068149  0.09609462 -0.00184681 -0.02840769\n  -0.00330224  0.02021634  0.03337458  0.04459912 -0.0095333  -0.01882373\n   0.01177586]\n [ 0.609466    1.0409278  -0.48188215  0.31039503 -0.4532058   1.1264144\n   1.2009168  -1.1439117   1.1427062   0.09608691 -0.00181268 -0.02830491\n  -0.00252473  0.02116547  0.03242991  0.04484297 -0.00652997 -0.01700511\n   0.01238313]\n [ 0.46916202  0.8887079  -0.6302464   0.80612886 -0.8151871   0.40948015\n  -0.758036   -0.31068227 -0.4672215   0.09608503 -0.00196396 -0.02815805\n  -0.00428978  0.02062024  0.03269638  0.04484297 -0.00653    -0.01700507\n   0.01158981]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAudnFu+LAdboK16M8AJkYPc1lr70K16M8uHQCPpd1BT4K16M8zmc+vfgrB74K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWKTavWuzgj2fros9Acvmvc5VzL0K16M8IsTevf9AEz5Qcog9MIqtPfW3KT0G1jE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAudnFu+LAdboK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAACZGD3NZa+9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAC4dAI+l3UFPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAzmc+vfgrB74K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.00603792 -0.00093748  0.02      ]\n [ 0.03725529 -0.08564339  0.02      ]\n [ 0.12739837  0.13033138  0.02      ]\n [-0.04648571 -0.13200366  0.02      ]]", "desired_goal": "[[-0.10675877  0.06381878  0.06820416]\n [-0.11269189 -0.09977303  0.02      ]\n [-0.10877253  0.14380263  0.06662428]\n [ 0.08473623  0.0414352   0.173668  ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -6.0379175e-03\n  -9.3747501e-04  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  3.7255287e-02\n  -8.5643388e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00  1.2739837e-01\n   1.3033138e-01  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -4.6485715e-02\n  -1.3200366e-01  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cngk58a4tpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CngvJqIrOJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cng0f3nIQwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cngvc9GI9DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cng19i+cpcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhAHscABDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhFpr1uiwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhAai9IwudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhGz8YQ8PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhRPZRKpUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhW078vVWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhRiudPLxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhYEka/ATdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhijTKDChdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhoZZbILgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhjFhXr+pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnhpc3VCokdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhzyTY/VzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnh5h1s+FDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnh0PicXnAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnh60cGTs6dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cnh7KCHymRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CniFFBY3efdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CniKvpQk5ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CniFkO7QLNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CniMYrBj4IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CniWTNMXabdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CniboC2c8UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CniWYhllK9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnidJkwvg4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CninaOgg5jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CniskcS5AhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CninYt6HCXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CniuQAdXDFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cni4LMLWqcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cni9cbaRISdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cni4e0gKWtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cni/cRlHz6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnjJvttyggdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnjO2lEZzgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnjJnrpqyodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnjQTyauwHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnjaSVW0Z4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnjfk43m3fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnjaUVi4KAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnjhdH+ZPVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnjrdFfAsTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnjyCVB2OidX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cnjyim2sq8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnjt+Z5Rj0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnj2H31zySdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnkBFyimEXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnkMCBwuM/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnkHq1w5vMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnkPzcqOLjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnkaxsEaESdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnkkhTOxB3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnkgoG6f8NdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnkpBmXgLrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnk0Kujh1ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnk/v+wTufdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnk7u1WsBAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnlEggow23dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnlPtCiRGMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnlbYJ3PiUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnlV1feDWcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnlctOM2m6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnlmqcurZKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnlsRUedTYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnlmu3DvVmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnltZuqFRHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnl3UiILw4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnl8mu1WsBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnl22b5M11dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnl9fDUExJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnmHV1Oj7AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnmMzbeuV5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnmHT/ACXAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnmOPJiiItdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnmYU8/2TQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnmeX5N47jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnmYz6ab4KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnmflPSDywdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnmpcyeqaPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnmu8UmD15dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnmpZid8RddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnmwOUliSadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnm6PXCj1xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnm/+XRgJDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnm6Vvl2eQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnnA7jtG/fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnnK0G/vfCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnnQheokzHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnnLEV32VWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnnRxUvPC3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnnbxCx/utdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnnhZVGTcJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnnbzURWcSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnnihtLteEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnnsjUNKAbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True]", "bounded_above": "[ True  True  True  True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}