LeroyDyer commited on
Commit
ed3059c
·
verified ·
1 Parent(s): 9c38204

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -5
README.md CHANGED
@@ -1,6 +1,8 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
  # Model Card for Model ID
@@ -211,7 +213,35 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
211
 
212
  ### Model Architecture and Objective
213
 
214
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215
 
216
  ### Compute Infrastructure
217
 
@@ -253,6 +283,4 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
253
 
254
  ## Model Card Contact
255
 
256
- [More Information Needed]
257
-
258
-
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
  ---
7
 
8
  # Model Card for Model ID
 
213
 
214
  ### Model Architecture and Objective
215
 
216
+ ``` python
217
+
218
+ from transformers import MistralConfig, ViTConfig, VisionEncoderDecoderConfig, VisionEncoderDecoderModel
219
+
220
+ # Initializing a ViT & Mistral style configuration
221
+ config_encoder = ViTConfig()
222
+ config_decoder = MistralConfig()
223
+
224
+ config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
225
+
226
+ # Initializing a ViTBert model (with random weights) from a ViT & Mistral style configurations
227
+ model = VisionEncoderDecoderModel(config=config)
228
+
229
+ # Accessing the model configuration
230
+ config_encoder = model.config.encoder
231
+ config_decoder = model.config.decoder
232
+ # set decoder config to causal lm
233
+ config_decoder.is_decoder = True
234
+ config_decoder.add_cross_attention = True
235
+
236
+ # Saving the model, including its configuration
237
+ model.save_pretrained("my-model")
238
+
239
+ # loading model and config from pretrained folder
240
+ encoder_decoder_config = VisionEncoderDecoderConfig.from_pretrained("my-model")
241
+ model = VisionEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config)
242
+
243
+
244
+ ```
245
 
246
  ### Compute Infrastructure
247
 
 
283
 
284
  ## Model Card Contact
285
 
286
+ [More Information Needed]