File size: 10,893 Bytes
a3172de 5601fc5 a3172de db63cb9 3154a54 a3172de 9141823 db63cb9 62a9d3b 81614cc 62a9d3b db63cb9 62a9d3b db63cb9 a3172de 3154a54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- leaderboard
- mistral
- trl
base_model: LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III
datasets:
- gretelai/synthetic_text_to_sql
- HuggingFaceTB/cosmopedia
- teknium/OpenHermes-2.5
- Open-Orca/SlimOrca
- Open-Orca/OpenOrca
- cognitivecomputations/dolphin-coder
- databricks/databricks-dolly-15k
- yahma/alpaca-cleaned
- uonlp/CulturaX
- mwitiderrick/SwahiliPlatypus
- swahili
- Rogendo/English-Swahili-Sentence-Pairs
- ise-uiuc/Magicoder-Evol-Instruct-110K
- meta-math/MetaMathQA
- abacusai/ARC_DPO_FewShot
- abacusai/MetaMath_DPO_FewShot
- abacusai/HellaSwag_DPO_FewShot
- HaltiaAI/Her-The-Movie-Samantha-and-Theodore-Dataset
- gretelai/synthetic_text_to_sql
- HuggingFaceTB/cosmopedia
- teknium/OpenHermes-2.5
- cognitivecomputations/dolphin-coder
- databricks/databricks-dolly-15k
- yahma/alpaca-cleaned
- uonlp/CulturaX
- mwitiderrick/SwahiliPlatypus
- swahili
- Rogendo/English-Swahili-Sentence-Pairs
- ise-uiuc/Magicoder-Evol-Instruct-110K
- meta-math/MetaMathQA
metrics:
- accuracy
- bertscore
- bleu
- brier_score
- cer
- character
- charcut_mt
- chrf
- code_eval
y-Gene:
- LeroyDyer/Mixtral_AI_DeepMind
- LeroyDyer/Mixtral_AI_CyberUltron_DPO
- LeroyDyer/Mixtral_AI_Chat_2.0
- LeroyDyer/Mixtral_AI_DeepMedicalMind
- LeroyDyer/Mixtral_AI_Samantha
x-Gene:
- LeroyDyer/Mixtral_AI_Chat_2.0
- LeroyDyer/Mixtral_BioMedical
- LeroyDyer/Mixtral_AI_Medic
- LeroyDyer/Mixtral_Cyber_BioMedic
- LeroyDyer/Mixtral_AI_DeepMedicalMind
Variant:
- LeroyDyer/MetaMath_LLM
- LeroyDyer/TruthfulQA_LLM
- LeroyDyer/HellaSwag_LLM
- LeroyDyer/Mixtral_AI_DeepMedicalMind
model-index:
- name: Mixtral_AI_CyberTron_DeepMind_III_UFT
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 61.86
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.15
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.95
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 49.41
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.98
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.86
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
name: Open LLM Leaderboard
---
[<img src="https://cdn-avatars.huggingface.co/v1/production/uploads/65d883893a52cd9bcd8ab7cf/tRsCJlHNZo1D02kBTmfy9.jpeg" width="200"/>
https://github.com/spydaz
# ::: DEEP MIND PROJECT :::
OH MY GOSH , GOOD WOW!
ARE WE MAKING BRAINS NOW!!!!! (Contact me to Sponser me PLEASE)
---- I NEED A CLOUD TO DESIGN THIS MIND! --(freeColab takes years! - i need the large data-sets in...
which need a few days on a server fine tuning until fully complete ! i NEED A COLABORATOR!! )
- Mistral models are GREAT!!!!!!! - we have supassed ChatGPT : (- without langchain!!!! )
- I now have amethodolgy to add any functionality to the model !
- we are in the future now :
- we do not want to code or buy software!
Lovely model !!! Very knowledgeabe :: (sometimes requires coaxing !! but it has options to choose from so for a single thing there may be multiple response so you can ask in another way !
good for oneshot prompts and it actually uses the history in the chat !!! )
but we have TASKS!
we can now ask the model to perform these tasks and get the right output without special programming !
take a model !!! This model CONVERGES on ANYTHING! ( i also previously trained it will the clip training for captioning also but never used it ! but i pluged it in and it was spot on!(so if you choose to incorperate the model into a decoder/encoder model (vision) its ready !))
VERY HAPPY! (need more good data (my problem acually is not data (its converting it to json from CSV and other forms! (pre-structured ))))
here we begin the models for Deep mind : Whoop! as we move forwards we have begun to let the model teach itself like a child and optimize!
this model created from the first trained models : deepmind!
these models contain:
## thoughts and processes :
## SelfRAG:
## Agent Generation:
## Chain of thoughts :
## Deep thinking and memory recall:
## Training Prompt version - Working GREAT! -(cant blow my own horn enough!!!!)
checks itsef discussing complex questions (question it does not know the answer to ... it trys to discuss with itself to find a result(sometimes unsucessfully))
It generates Mini agents to perform small tasks such as entity recognition; step by step definitions, write psuedo codebases , generare uscases... perform calculations, analize content
It thinks.... sometimes sarcasim , sometimes reflection... sometimes random thoughts ...
it has personalitys : by installing various long discussions with chat gpt in persona it weas able to generate role coversation data, which was added to its conversation chat Q/A; as well as a datset from the samantha tv show ... and HER!.... so it is a personal assistant and very friendly;
It has been really training mainly on coding datasets and medical information : from experiments to research to patient/doctor .. to diagnosis ... to problem solving :
it has been trained to be a counseller and assist with psycological problems :: empathtetic discussion :
this one has its own thoughts despite the prompt given : (if you allow the thought prompt it will display the thoughts)
this is a highly focused model :
### Methodology:
many functions such as defining words andnlp task we also added via datsets and very complexed datstructures and prompts :
These prompts are removed after training and standard alpaca training given on top:(this enables for the previous highly over fit task to become embedded underneath the previous layer):
its important to Change Lora configuration for Embedding layers within the model as well as fine tuning above previous training:
Usually i deploy a factor of 8 calcuculation for my loras by this one i chose factor of 9 (9-18/18/36) .... which actually trained so smoothly that i was able to train many different datsets in a signle sitting ; to below 0.9 all varioations of the alpaca prompt !
after testing the was absolutly 0 loss from previous knowledge as well as enhancing some responses and providing comparitive responses for others;
I personally use a topK of 1000....
this allows the model to have many choices (this is the context window of results),
i put my topP to 0.68(68%)....
hence it will select from that percentage of probabiltys...
enabling for my temp to be 1 ..
therfore it will normalize the selected quartile of next probablity selection enabling for the lower probabiltys to have a scaled chace in being selected :
It is important to have a degree of randomness in the respopnse or you will ask the same question and get the same answer ! .... we need varied answer to ome querys and focues for other ? how do we do this ?..... Duplicates!!!!! raising the probability of some information by repetition : as this is how the human learns truth ! truth is that which has been repeated so many times it cannot be disputed!
hence some information being absolute and others being transient and constantly updateing:
As a predictve model it needs to be ables to have the ability to calculate and predicte and cclassify as wel as recall exact information :
hence when utilizing a rag : the conversation history is the dats to be fine tuned into the model as frequent data!
as well as producing multiple simular querys to query the rag system for Q/A pairs : also to be updted onto the model :
as we are in this development period we are focused on BRAIN cureently .......
# Uploaded model
- **Developed by:** LeroyDyer
- **License:** apache-2.0
- **Finetuned from model :** LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_LeroyDyer__Mixtral_AI_CyberTron_DeepMind_III_UFT)
| Metric |Value|
|---------------------------------|----:|
|Avg. |64.37|
|AI2 Reasoning Challenge (25-Shot)|61.86|
|HellaSwag (10-Shot) |83.15|
|MMLU (5-Shot) |61.95|
|TruthfulQA (0-shot) |49.41|
|Winogrande (5-shot) |77.98|
|GSM8k (5-shot) |51.86|
|