LeonardPuettmann commited on
Commit
4849ea7
1 Parent(s): 31a4b39

Uploaded first RL model!

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.45 +/- 37.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fad24658c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fad24658ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fad24658d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fad24658dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fad24658e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fad24658ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fad24658f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fad24659000>", "_predict": "<function ActorCriticPolicy._predict at 0x7fad24659090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fad24659120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fad246591b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fad24659240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fad24655f00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1114112, "_total_timesteps": 1100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685466463832688386, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFpZk72k4Gm5D+eEPTQjtLJJSJa6PxQbMgAAgD8AAAAAI4N9vkLhzT4qIYU9v3CJvhZl270emwE+AAAAAAAAAADznCM+z4N8vBjAZjrXWSu5gW/bvVif2rkAAIA/AACAPwAlv7zoBI89iVQKPinLQb6KcBc9K1gYPQAAAAAAAAAAc226Pc+yDD6PlbO+treJvmtLBL76M4S9AAAAAAAAAADGzTk+UoDQPNaowL4AI1K+HffNvZ7cgLsAAAAAAAAAADrdO74OY8O8IqQbu2chm7kUpTA+ishVOgAAgD8AAIA/oA4IPkWDFj7KWsG9LmdyvmCNAj2+5gS9AAAAAAAAAADNjKI5I++cP5a/lTu8tCa/f2CVPFYk1TsAAAAAAAAAAGbUNjzszcS7YBu/vYep2TtI25Q8RrQwvQAAgD8AAIA/zaWWPiSrhD6Q+KC+byG7vnmBHT34u6C9AAAAAAAAAABm0TK+ToGDvJUF0rqSQyK5b8nzPYWmHToAAIA/AACAPwAtvL0SC8s8fmrXPTZuJL7V9py8n38lPQAAAAAAAAAAZvhCPXSQ9j0VSg++ig9+vsCeIL29EHW8AAAAAAAAAADAXic+RxMoP1TuAbw0AOy+SBbIPUQ1q70AAAAAAAAAAA2zh76OFuw+Xq8DPjxCvr7ulMS9p221PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.012829090909090901, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKhiBkI5YKMAWyUS+aMAXSUR0Cjz8OKXOW0dX2UKGgGR0BvQjsSkCV9aAdL32gIR0Cj0DRKHwgDdX2UKGgGR0ByKJ3IMjNZaAdL2GgIR0Cj0ELGR3eOdX2UKGgGR0Bwq2Q8wHqvaAdL/GgIR0Cj0FV1nuiOdX2UKGgGR0BwOvjo6jnFaAdLz2gIR0Cj0KBkqc3EdX2UKGgGR0ByrVE7W/ahaAdL0GgIR0Cj0KT1schldX2UKGgGR0Bv6IxrSE13aAdL02gIR0Cj0NtrsSkCdX2UKGgGR0Bylpeb/ffoaAdL3mgIR0Cj0S3ueBhAdX2UKGgGR0BxQpZ0Syt3aAdL6WgIR0Cj0TTHCGeudX2UKGgGR0Bu0JCD28IzaAdL5mgIR0Cj0XIWxhUjdX2UKGgGR0BxDDvYvnKXaAdL0WgIR0Cj0j9NFjNIdX2UKGgGR0Bx8OvpyIYWaAdNDAFoCEdAo9JGIyj59HV9lChoBkdAb7PAHmig02gHS/9oCEdAo9L694/u9nV9lChoBkdAcbIrjo6jnGgHTRMBaAhHQKPTBKaoddV1fZQoaAZHQGKFL/sE7nxoB03oA2gIR0Cj0zuJLuhLdX2UKGgGR0BxNH2oNutPaAdL6GgIR0Cj091/MGHIdX2UKGgGR0BxOlYFJQLvaAdL7GgIR0Cj1BQVKwpwdX2UKGgGR0BxKfIdU83daAdL5WgIR0Cj1EiDM/yHdX2UKGgGR0ByJnF2mpEQaAdNHAFoCEdAo9RKN0eU6nV9lChoBkdAcitZkkKNQ2gHTQEBaAhHQKPUumw7kn11fZQoaAZHQHGSoZZSvTxoB0vyaAhHQKPUuO938oB1fZQoaAZHQHHpM01qFh5oB0vSaAhHQKPU2hN/OMV1fZQoaAZHQHGozhcZ9/loB00rAWgIR0Cj1PoPK+zudX2UKGgGR0ByWtSsKb8WaAdNBgFoCEdAo9VUKJEYwnV9lChoBkdAcRoMiKR+0GgHS8poCEdAo9VpXhfjTHV9lChoBkdAcI6N34bjtGgHTRYBaAhHQKPVhpqynk11fZQoaAZHQHK2Lb+Lm6poB0vyaAhHQKPV63cYZVJ1fZQoaAZHQG6+XyAhB7hoB0vWaAhHQKPWJeNT9891fZQoaAZHQHD0rehwl0JoB0vqaAhHQKPWlyBkI5Z1fZQoaAZHQG6OPXkHUttoB0vNaAhHQKPWv9aUzKt1fZQoaAZHQG/oXo1UEPloB0vfaAhHQKPXMxtYSxt1fZQoaAZHQHCyA3PzFuNoB00tAWgIR0Cj11nTI/7jdX2UKGgGR0Bxr7Q3PzFuaAdLyGgIR0Cj1317hNucdX2UKGgGR0BvsKDGtITXaAdL4mgIR0Cj2AOAiFCcdX2UKGgGR0BxxZQzk6tDaAdNFwFoCEdAo9hCBClabHV9lChoBkdAcjAuk1uR92gHTQABaAhHQKPYWBQN0/51fZQoaAZHQHDecNDtw71oB0vSaAhHQKPYZdi2Dxt1fZQoaAZHQG+LcWj4595oB0vPaAhHQKPYd6BRQ791fZQoaAZHQHGykFB6a9doB0v/aAhHQKPYjpeu3c51fZQoaAZHQG0G+v6j325oB0vwaAhHQKPYviWE9Md1fZQoaAZHQGW1e7lJYkpoB03oA2gIR0Cj2ZaFM7EHdX2UKGgGR0BxGn1xsEaEaAdL7GgIR0Cj2fgwfyPNdX2UKGgGR0BwyT8ejmCAaAdLzmgIR0Cj2kjo6jnFdX2UKGgGR0Bv0hjtoi9qaAdL3mgIR0Cj2l48+zMSdX2UKGgGR0ByBuxwAEMcaAdNGQFoCEdAo9qLyBkI5nV9lChoBkdAce3zGPxQSGgHS9loCEdAo9tVQMx46nV9lChoBkdAcPTgM+eOGWgHTRUBaAhHQKPcgHJLdvd1fZQoaAZHQHLpw7kn1FpoB0vQaAhHQKPcoPVd5Y51fZQoaAZHQHC7aWLP2PFoB0vQaAhHQKPcuiFj/dZ1fZQoaAZHQHGFkutfXwtoB00WAWgIR0Cj3PO+ZgG9dX2UKGgGR0ByMLErGza9aAdL5mgIR0Cj3QPicXnAdX2UKGgGR0Bxh/LcKw6iaAdL+GgIR0Cj3QrZSNwSdX2UKGgGR0BwJv3ztkWiaAdL5GgIR0Cj3UVJDmbLdX2UKGgGR0ByYrJ4jbBXaAdL2WgIR0Cj3WxZU1htdX2UKGgGR0Bw5Da+N96UaAdL+GgIR0Cj3dUfxMFmdX2UKGgGR0BvWvyiEg4faAdL0GgIR0Cj3hiaAnUldX2UKGgGR0Bus7sniNsFaAdL7WgIR0Cj3ylwDNhWdX2UKGgGR0ByUGMR6F/QaAdL4mgIR0Cj35WETQE7dX2UKGgGR0Bv8MZUDMePaAdL/2gIR0Cj4A+MAFPjdX2UKGgGR0BuuO8K5TZQaAdNGwFoCEdAo+Cg+8oQWnV9lChoBkdAcEKD4QBgeGgHS/ZoCEdAo+DxGhEjPnV9lChoBkdAbkj4fwI+n2gHS89oCEdAo+FaTyJ9A3V9lChoBkdAcQ+GXHBDX2gHS+toCEdAo+HsfzSThnV9lChoBkdAb4bkxREWqWgHS91oCEdAo+INALRa5nV9lChoBkdAchsBZ6lchWgHS/VoCEdAo+JjqdH2AXV9lChoBkdAcFAm7J4jbGgHS89oCEdAo+KtWyTpxHV9lChoBkdAcJMDR+jM3mgHS/hoCEdAo+L88q4H5nV9lChoBkdAcVZAoXsPa2gHTQ0BaAhHQKPjAA1ejVR1fZQoaAZHQG3rR9PUKAtoB0vbaAhHQKPjBWU8mrt1fZQoaAZHQHD/wZflZHNoB00eAWgIR0Cj428PnSv1dX2UKGgGR0BwJ42dd3SsaAdL5GgIR0Cj5BjFQ2uQdX2UKGgGR0BttnlwLmZFaAdL2WgIR0Cj5DznaFmGdX2UKGgGR0By459Tgl4UaAdNAAFoCEdAo+RCuIRAbHV9lChoBkdAbOK5AhStNmgHS+toCEdAo+TYeT3Zf3V9lChoBkdAcOCYIjW07mgHS81oCEdAo+TdW+49YHV9lChoBkdAcLER3NcGDGgHS+JoCEdAo+WMaIeo1nV9lChoBkdAccvc9nscAGgHS+RoCEdAo+WrV4HHFXV9lChoBkdAcIq7pV0cO2gHTRwBaAhHQKPl2cJdB0J1fZQoaAZHQHCjUZBLPD5oB0vVaAhHQKPmPQDV6NV1fZQoaAZHQFotyDZlFttoB03oA2gIR0Cj5mLIxQBQdX2UKGgGR0Bv24Z/CqIaaAdL3WgIR0Cj5mXfqHGkdX2UKGgGR0Bw23GBFuvVaAdNBAFoCEdAo+aaxPfsNXV9lChoBkdAbnjdepn6EmgHS9xoCEdAo+bLZ6D5CXV9lChoBkdAcocBz3h4uGgHTSgBaAhHQKPm7PoFFDx1fZQoaAZHQHGQPR7Z39toB00MAWgIR0Cj5weqaPS2dX2UKGgGR0Bwkv3PAwfyaAdLy2gIR0Cj50yBshxHdX2UKGgGR0BtCaZtvXK9aAdL0GgIR0Cj52F3Qla9dX2UKGgGR0BxhUg3cYZVaAdL82gIR0Cj6HgtnPE9dX2UKGgGR0BvRnEdeY2LaAdL02gIR0Cj6O5+YtxudX2UKGgGR0ByPlwuM+/yaAdL82gIR0Cj6U0LMLWqdX2UKGgGR0Bs42q94/u9aAdNBgFoCEdAo+mCROk+HXV9lChoBkdAbw31A7gbZWgHS+NoCEdAo+mlU4rBkHV9lChoBkdAciZ5H3Dej2gHS9xoCEdAo+muzQeFL3V9lChoBkdAcHRkOZssQWgHS+BoCEdAo+oARGtp23V9lChoBkdAcPdeBg/kemgHS/VoCEdAo+obq6e5F3V9lChoBkdAce2cc2itaWgHTZcBaAhHQKPqVBHCoCN1fZQoaAZHQHCiEf9xZMdoB0v4aAhHQKPqufZElVt1fZQoaAZHQG+J63RXwLFoB0vgaAhHQKPqxhLGrCF1fZQoaAZHQHIoMTviLl5oB00aAWgIR0Cj6xOdPLxJdX2UKGgGR0Bx5pDYywfRaAdNDwFoCEdAo+ucEV32VXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 340, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f7f18f25e12db006b4374880c638f1c9c5f2e1b04ec5bb9ed56376487bedde4
3
+ size 146662
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fad24658c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fad24658ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fad24658d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fad24658dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fad24658e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fad24658ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fad24658f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fad24659000>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fad24659090>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fad24659120>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fad246591b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fad24659240>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fad24655f00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1114112,
25
+ "_total_timesteps": 1100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1685466463832688386,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFpZk72k4Gm5D+eEPTQjtLJJSJa6PxQbMgAAgD8AAAAAI4N9vkLhzT4qIYU9v3CJvhZl270emwE+AAAAAAAAAADznCM+z4N8vBjAZjrXWSu5gW/bvVif2rkAAIA/AACAPwAlv7zoBI89iVQKPinLQb6KcBc9K1gYPQAAAAAAAAAAc226Pc+yDD6PlbO+treJvmtLBL76M4S9AAAAAAAAAADGzTk+UoDQPNaowL4AI1K+HffNvZ7cgLsAAAAAAAAAADrdO74OY8O8IqQbu2chm7kUpTA+ishVOgAAgD8AAIA/oA4IPkWDFj7KWsG9LmdyvmCNAj2+5gS9AAAAAAAAAADNjKI5I++cP5a/lTu8tCa/f2CVPFYk1TsAAAAAAAAAAGbUNjzszcS7YBu/vYep2TtI25Q8RrQwvQAAgD8AAIA/zaWWPiSrhD6Q+KC+byG7vnmBHT34u6C9AAAAAAAAAABm0TK+ToGDvJUF0rqSQyK5b8nzPYWmHToAAIA/AACAPwAtvL0SC8s8fmrXPTZuJL7V9py8n38lPQAAAAAAAAAAZvhCPXSQ9j0VSg++ig9+vsCeIL29EHW8AAAAAAAAAADAXic+RxMoP1TuAbw0AOy+SBbIPUQ1q70AAAAAAAAAAA2zh76OFuw+Xq8DPjxCvr7ulMS9p221PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.012829090909090901,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV/AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKhiBkI5YKMAWyUS+aMAXSUR0Cjz8OKXOW0dX2UKGgGR0BvQjsSkCV9aAdL32gIR0Cj0DRKHwgDdX2UKGgGR0ByKJ3IMjNZaAdL2GgIR0Cj0ELGR3eOdX2UKGgGR0Bwq2Q8wHqvaAdL/GgIR0Cj0FV1nuiOdX2UKGgGR0BwOvjo6jnFaAdLz2gIR0Cj0KBkqc3EdX2UKGgGR0ByrVE7W/ahaAdL0GgIR0Cj0KT1schldX2UKGgGR0Bv6IxrSE13aAdL02gIR0Cj0NtrsSkCdX2UKGgGR0Bylpeb/ffoaAdL3mgIR0Cj0S3ueBhAdX2UKGgGR0BxQpZ0Syt3aAdL6WgIR0Cj0TTHCGeudX2UKGgGR0Bu0JCD28IzaAdL5mgIR0Cj0XIWxhUjdX2UKGgGR0BxDDvYvnKXaAdL0WgIR0Cj0j9NFjNIdX2UKGgGR0Bx8OvpyIYWaAdNDAFoCEdAo9JGIyj59HV9lChoBkdAb7PAHmig02gHS/9oCEdAo9L694/u9nV9lChoBkdAcbIrjo6jnGgHTRMBaAhHQKPTBKaoddV1fZQoaAZHQGKFL/sE7nxoB03oA2gIR0Cj0zuJLuhLdX2UKGgGR0BxNH2oNutPaAdL6GgIR0Cj091/MGHIdX2UKGgGR0BxOlYFJQLvaAdL7GgIR0Cj1BQVKwpwdX2UKGgGR0BxKfIdU83daAdL5WgIR0Cj1EiDM/yHdX2UKGgGR0ByJnF2mpEQaAdNHAFoCEdAo9RKN0eU6nV9lChoBkdAcitZkkKNQ2gHTQEBaAhHQKPUumw7kn11fZQoaAZHQHGSoZZSvTxoB0vyaAhHQKPUuO938oB1fZQoaAZHQHHpM01qFh5oB0vSaAhHQKPU2hN/OMV1fZQoaAZHQHGozhcZ9/loB00rAWgIR0Cj1PoPK+zudX2UKGgGR0ByWtSsKb8WaAdNBgFoCEdAo9VUKJEYwnV9lChoBkdAcRoMiKR+0GgHS8poCEdAo9VpXhfjTHV9lChoBkdAcI6N34bjtGgHTRYBaAhHQKPVhpqynk11fZQoaAZHQHK2Lb+Lm6poB0vyaAhHQKPV63cYZVJ1fZQoaAZHQG6+XyAhB7hoB0vWaAhHQKPWJeNT9891fZQoaAZHQHD0rehwl0JoB0vqaAhHQKPWlyBkI5Z1fZQoaAZHQG6OPXkHUttoB0vNaAhHQKPWv9aUzKt1fZQoaAZHQG/oXo1UEPloB0vfaAhHQKPXMxtYSxt1fZQoaAZHQHCyA3PzFuNoB00tAWgIR0Cj11nTI/7jdX2UKGgGR0Bxr7Q3PzFuaAdLyGgIR0Cj1317hNucdX2UKGgGR0BvsKDGtITXaAdL4mgIR0Cj2AOAiFCcdX2UKGgGR0BxxZQzk6tDaAdNFwFoCEdAo9hCBClabHV9lChoBkdAcjAuk1uR92gHTQABaAhHQKPYWBQN0/51fZQoaAZHQHDecNDtw71oB0vSaAhHQKPYZdi2Dxt1fZQoaAZHQG+LcWj4595oB0vPaAhHQKPYd6BRQ791fZQoaAZHQHGykFB6a9doB0v/aAhHQKPYjpeu3c51fZQoaAZHQG0G+v6j325oB0vwaAhHQKPYviWE9Md1fZQoaAZHQGW1e7lJYkpoB03oA2gIR0Cj2ZaFM7EHdX2UKGgGR0BxGn1xsEaEaAdL7GgIR0Cj2fgwfyPNdX2UKGgGR0BwyT8ejmCAaAdLzmgIR0Cj2kjo6jnFdX2UKGgGR0Bv0hjtoi9qaAdL3mgIR0Cj2l48+zMSdX2UKGgGR0ByBuxwAEMcaAdNGQFoCEdAo9qLyBkI5nV9lChoBkdAce3zGPxQSGgHS9loCEdAo9tVQMx46nV9lChoBkdAcPTgM+eOGWgHTRUBaAhHQKPcgHJLdvd1fZQoaAZHQHLpw7kn1FpoB0vQaAhHQKPcoPVd5Y51fZQoaAZHQHC7aWLP2PFoB0vQaAhHQKPcuiFj/dZ1fZQoaAZHQHGFkutfXwtoB00WAWgIR0Cj3PO+ZgG9dX2UKGgGR0ByMLErGza9aAdL5mgIR0Cj3QPicXnAdX2UKGgGR0Bxh/LcKw6iaAdL+GgIR0Cj3QrZSNwSdX2UKGgGR0BwJv3ztkWiaAdL5GgIR0Cj3UVJDmbLdX2UKGgGR0ByYrJ4jbBXaAdL2WgIR0Cj3WxZU1htdX2UKGgGR0Bw5Da+N96UaAdL+GgIR0Cj3dUfxMFmdX2UKGgGR0BvWvyiEg4faAdL0GgIR0Cj3hiaAnUldX2UKGgGR0Bus7sniNsFaAdL7WgIR0Cj3ylwDNhWdX2UKGgGR0ByUGMR6F/QaAdL4mgIR0Cj35WETQE7dX2UKGgGR0Bv8MZUDMePaAdL/2gIR0Cj4A+MAFPjdX2UKGgGR0BuuO8K5TZQaAdNGwFoCEdAo+Cg+8oQWnV9lChoBkdAcEKD4QBgeGgHS/ZoCEdAo+DxGhEjPnV9lChoBkdAbkj4fwI+n2gHS89oCEdAo+FaTyJ9A3V9lChoBkdAcQ+GXHBDX2gHS+toCEdAo+HsfzSThnV9lChoBkdAb4bkxREWqWgHS91oCEdAo+INALRa5nV9lChoBkdAchsBZ6lchWgHS/VoCEdAo+JjqdH2AXV9lChoBkdAcFAm7J4jbGgHS89oCEdAo+KtWyTpxHV9lChoBkdAcJMDR+jM3mgHS/hoCEdAo+L88q4H5nV9lChoBkdAcVZAoXsPa2gHTQ0BaAhHQKPjAA1ejVR1fZQoaAZHQG3rR9PUKAtoB0vbaAhHQKPjBWU8mrt1fZQoaAZHQHD/wZflZHNoB00eAWgIR0Cj428PnSv1dX2UKGgGR0BwJ42dd3SsaAdL5GgIR0Cj5BjFQ2uQdX2UKGgGR0BttnlwLmZFaAdL2WgIR0Cj5DznaFmGdX2UKGgGR0By459Tgl4UaAdNAAFoCEdAo+RCuIRAbHV9lChoBkdAbOK5AhStNmgHS+toCEdAo+TYeT3Zf3V9lChoBkdAcOCYIjW07mgHS81oCEdAo+TdW+49YHV9lChoBkdAcLER3NcGDGgHS+JoCEdAo+WMaIeo1nV9lChoBkdAccvc9nscAGgHS+RoCEdAo+WrV4HHFXV9lChoBkdAcIq7pV0cO2gHTRwBaAhHQKPl2cJdB0J1fZQoaAZHQHCjUZBLPD5oB0vVaAhHQKPmPQDV6NV1fZQoaAZHQFotyDZlFttoB03oA2gIR0Cj5mLIxQBQdX2UKGgGR0Bv24Z/CqIaaAdL3WgIR0Cj5mXfqHGkdX2UKGgGR0Bw23GBFuvVaAdNBAFoCEdAo+aaxPfsNXV9lChoBkdAbnjdepn6EmgHS9xoCEdAo+bLZ6D5CXV9lChoBkdAcocBz3h4uGgHTSgBaAhHQKPm7PoFFDx1fZQoaAZHQHGQPR7Z39toB00MAWgIR0Cj5weqaPS2dX2UKGgGR0Bwkv3PAwfyaAdLy2gIR0Cj50yBshxHdX2UKGgGR0BtCaZtvXK9aAdL0GgIR0Cj52F3Qla9dX2UKGgGR0BxhUg3cYZVaAdL82gIR0Cj6HgtnPE9dX2UKGgGR0BvRnEdeY2LaAdL02gIR0Cj6O5+YtxudX2UKGgGR0ByPlwuM+/yaAdL82gIR0Cj6U0LMLWqdX2UKGgGR0Bs42q94/u9aAdNBgFoCEdAo+mCROk+HXV9lChoBkdAbw31A7gbZWgHS+NoCEdAo+mlU4rBkHV9lChoBkdAciZ5H3Dej2gHS9xoCEdAo+muzQeFL3V9lChoBkdAcHRkOZssQWgHS+BoCEdAo+oARGtp23V9lChoBkdAcPdeBg/kemgHS/VoCEdAo+obq6e5F3V9lChoBkdAce2cc2itaWgHTZcBaAhHQKPqVBHCoCN1fZQoaAZHQHCiEf9xZMdoB0v4aAhHQKPqufZElVt1fZQoaAZHQG+J63RXwLFoB0vgaAhHQKPqxhLGrCF1fZQoaAZHQHIoMTviLl5oB00aAWgIR0Cj6xOdPLxJdX2UKGgGR0Bx5pDYywfRaAdNDwFoCEdAo+ucEV32VXVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 340,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63b1edde1b2fd0574588fb5e84535582c15ece64f5a9bcd3888c145ef9fe5df1
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d5d2c1ad0ae3c5b8f4b365b4a84e0050f3d6fecf34968a1be12dc63d15225ee
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (165 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.44578107516554, "std_reward": 37.123003294741125, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-30T17:41:59.137277"}