Update README.md
Browse files
README.md
CHANGED
@@ -91,21 +91,37 @@ special_tokens:
|
|
91 |
|
92 |
# SmolLM-135M-instruct-de
|
93 |
|
94 |
-
This model is a fine-tuned version of [LemiSt/SmolLM-135M-de](https://huggingface.co/LemiSt/SmolLM-135M-de) on
|
95 |
It achieves the following results on the evaluation set:
|
96 |
- Loss: 0.7453
|
97 |
|
98 |
## Model description
|
99 |
|
100 |
-
|
101 |
|
102 |
## Intended uses & limitations
|
103 |
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
## Training and evaluation data
|
107 |
|
108 |
-
|
109 |
|
110 |
## Training procedure
|
111 |
|
|
|
91 |
|
92 |
# SmolLM-135M-instruct-de
|
93 |
|
94 |
+
This model is a fine-tuned version of [LemiSt/SmolLM-135M-de](https://huggingface.co/LemiSt/SmolLM-135M-de) on an internal testing dataset with general chat examples.
|
95 |
It achieves the following results on the evaluation set:
|
96 |
- Loss: 0.7453
|
97 |
|
98 |
## Model description
|
99 |
|
100 |
+
For more information, see the mode card of the [base model](https://huggingface.co/LemiSt/SmolLM-135M-de). This adapter was trained using qlora at rank 32 with alpha 16, applying a dataset of around 200k german chat samples for two epochs.
|
101 |
|
102 |
## Intended uses & limitations
|
103 |
|
104 |
+
Mainly playing around with tiny chat models - while the output is generally intact German and the model somewhat follows instructions, it makes too many mistakes to be deployed in a real world setting.
|
105 |
+
|
106 |
+
### Usage example
|
107 |
+
```python
|
108 |
+
import torch
|
109 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
110 |
+
checkpoint = "LemiSt/SmolLM-135M-instruct-de"
|
111 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
112 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
113 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map=device, torch_dtype=torch.bfloat16)
|
114 |
+
messages = [
|
115 |
+
{"role": "system", "content": "Du bist ein hilfreicher Assistent."},
|
116 |
+
{"role": "user", "content": "Wie viele Hände hat ein normaler Mensch?"}
|
117 |
+
]
|
118 |
+
inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", add_generation_prompt=True).to(device)
|
119 |
+
outputs = model.generate(inputs, max_new_tokens=256, do_sample=True, temperature=0.5, top_p=0.9)
|
120 |
+
print(tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True))
|
121 |
+
```
|
122 |
## Training and evaluation data
|
123 |
|
124 |
+
Internal dataset which was compiled for another experiment.
|
125 |
|
126 |
## Training procedure
|
127 |
|