|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for LLaMA.""" |
|
import os |
|
from shutil import copyfile |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple |
|
|
|
import sentencepiece as spm |
|
|
|
from transformers.convert_slow_tokenizer import import_protobuf |
|
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer |
|
from transformers.utils import logging |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers.tokenization_utils_base import TextInput |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model", |
|
}, |
|
"tokenizer_file": { |
|
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json", |
|
}, |
|
} |
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"hf-internal-testing/llama-tokenizer": 2048, |
|
} |
|
SPIECE_UNDERLINE = "▁" |
|
|
|
B_INST, E_INST = "[INST]", "[/INST]" |
|
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" |
|
|
|
|
|
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \ |
|
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\ |
|
that your responses are socially unbiased and positive in nature. |
|
|
|
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \ |
|
correct. If you don't know the answer to a question, please don't share false information.""" |
|
|
|
|
|
|
|
class LlamaTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is |
|
no padding token in the original model. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): |
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. |
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): |
|
The end of sequence token. |
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*): |
|
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by |
|
attention mechanisms or loss computation. |
|
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*): |
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for |
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, |
|
to set: |
|
|
|
- `enable_sampling`: Enable subword regularization. |
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. |
|
|
|
- `nbest_size = {0,1}`: No sampling is performed. |
|
- `nbest_size > 1`: samples from the nbest_size results. |
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) |
|
using forward-filtering-and-backward-sampling algorithm. |
|
|
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for |
|
BPE-dropout. |
|
|
|
add_bos_token (`bool`, *optional*, defaults to `True`): |
|
Whether or not to add an `bos_token` at the start of sequences. |
|
add_eos_token (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add an `eos_token` at the end of sequences. |
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): |
|
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like |
|
extra spaces. |
|
use_default_system_prompt (`bool`, *optional*, defaults to `False`): |
|
Whether or not the default system prompt for Llama should be used. |
|
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add spaces between special tokens. |
|
legacy (`bool`, *optional*): |
|
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622 |
|
and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple |
|
example: |
|
|
|
- `legacy=True`: |
|
```python |
|
>>> from transformers import T5Tokenizer |
|
|
|
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True) |
|
>>> tokenizer.encode("Hello <extra_id_0>.") |
|
[8774, 32099, 3, 5, 1] |
|
``` |
|
- `legacy=False`: |
|
```python |
|
>>> from transformers import T5Tokenizer |
|
|
|
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False) |
|
>>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here |
|
[8774, 32099, 5, 1] |
|
``` |
|
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details. |
|
|
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
unk_token="<unk>", |
|
bos_token="<s>", |
|
eos_token="</s>", |
|
pad_token=None, |
|
sp_model_kwargs: Optional[Dict[str, Any]] = None, |
|
add_bos_token=True, |
|
add_eos_token=False, |
|
clean_up_tokenization_spaces=False, |
|
use_default_system_prompt=False, |
|
spaces_between_special_tokens=False, |
|
legacy=None, |
|
**kwargs, |
|
): |
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs |
|
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token |
|
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token |
|
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token |
|
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token |
|
|
|
if legacy is None: |
|
logger.warning_once( |
|
f"You are using the default legacy behaviour of the {self.__class__}. This is" |
|
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you." |
|
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it" |
|
" means, and thoroughly read the reason why this was added as explained in" |
|
" https://github.com/huggingface/transformers/pull/24565" |
|
) |
|
legacy = True |
|
|
|
self.legacy = legacy |
|
self.vocab_file = vocab_file |
|
self.add_bos_token = add_bos_token |
|
self.add_eos_token = add_eos_token |
|
self.use_default_system_prompt = use_default_system_prompt |
|
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) |
|
|
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
unk_token=unk_token, |
|
pad_token=pad_token, |
|
add_bos_token=add_bos_token, |
|
add_eos_token=add_eos_token, |
|
sp_model_kwargs=self.sp_model_kwargs, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
use_default_system_prompt=use_default_system_prompt, |
|
spaces_between_special_tokens=spaces_between_special_tokens, |
|
legacy=legacy, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def unk_token_length(self): |
|
return len(self.sp_model.encode(str(self.unk_token))) |
|
|
|
|
|
def get_spm_processor(self, from_slow=False): |
|
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
if self.legacy or from_slow: |
|
tokenizer.Load(self.vocab_file) |
|
return tokenizer |
|
|
|
with open(self.vocab_file, "rb") as f: |
|
sp_model = f.read() |
|
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)") |
|
model = model_pb2.ModelProto.FromString(sp_model) |
|
normalizer_spec = model_pb2.NormalizerSpec() |
|
normalizer_spec.add_dummy_prefix = False |
|
model.normalizer_spec.MergeFrom(normalizer_spec) |
|
sp_model = model.SerializeToString() |
|
tokenizer.LoadFromSerializedProto(sp_model) |
|
return tokenizer |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state["sp_model"] = None |
|
state["sp_model_proto"] = self.sp_model.serialized_model_proto() |
|
return state |
|
|
|
def __setstate__(self, d): |
|
self.__dict__ = d |
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) |
|
self.sp_model.LoadFromSerializedProto(self.sp_model_proto) |
|
|
|
@property |
|
def vocab_size(self): |
|
"""Returns vocab size""" |
|
return self.sp_model.get_piece_size() |
|
|
|
def get_vocab(self): |
|
"""Returns vocab as a dict""" |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
|
|
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]: |
|
""" |
|
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the |
|
first token is special. |
|
""" |
|
if self.legacy or len(text) == 0: |
|
return super().tokenize(text, **kwargs) |
|
|
|
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs) |
|
|
|
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: |
|
tokens = tokens[1:] |
|
return tokens |
|
|
|
|
|
def _tokenize(self, text, **kwargs): |
|
""" |
|
Returns a tokenized string. |
|
|
|
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any |
|
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give |
|
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the |
|
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. |
|
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. |
|
""" |
|
tokens = self.sp_model.encode(text, out_type=str) |
|
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")): |
|
return tokens |
|
|
|
|
|
tokens = self.sp_model.encode(self.unk_token + text, out_type=str) |
|
|
|
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.sp_model.piece_to_id(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
token = self.sp_model.IdToPiece(index) |
|
return token |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
|
|
if tokens[0].startswith(SPIECE_UNDERLINE): |
|
tokens[0] = tokens[0][1:] |
|
|
|
current_sub_tokens = [] |
|
out_string = "" |
|
prev_is_special = False |
|
for i, token in enumerate(tokens): |
|
|
|
if token in self.all_special_tokens: |
|
if not prev_is_special and i != 0 and self.legacy: |
|
out_string += " " |
|
out_string += self.sp_model.decode(current_sub_tokens) + token |
|
prev_is_special = True |
|
current_sub_tokens = [] |
|
else: |
|
current_sub_tokens.append(token) |
|
prev_is_special = False |
|
out_string += self.sp_model.decode(current_sub_tokens) |
|
return out_string |
|
|
|
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
""" |
|
Save the vocabulary and special tokens file to a directory. |
|
|
|
Args: |
|
save_directory (`str`): |
|
The directory in which to save the vocabulary. |
|
|
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, "wb") as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
|
|
return (out_vocab_file,) |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id |
|
|
|
if token_ids_1 is not None: |
|
output = output + bos_token_id + token_ids_1 + eos_token_id |
|
|
|
return output |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
bos_token_id = [1] if self.add_bos_token else [] |
|
eos_token_id = [1] if self.add_eos_token else [] |
|
|
|
if token_ids_1 is None: |
|
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id |
|
return ( |
|
bos_token_id |
|
+ ([0] * len(token_ids_0)) |
|
+ eos_token_id |
|
+ bos_token_id |
|
+ ([0] * len(token_ids_1)) |
|
+ eos_token_id |
|
) |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT |
|
sequence pair mask has the following format: |
|
|
|
``` |
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 |
|
| first sequence | second sequence | |
|
``` |
|
|
|
if token_ids_1 is None, only returns the first portion of the mask (0s). |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of ids. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). |
|
""" |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) |
|
|
|
if token_ids_1 is not None: |
|
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) |
|
|
|
return output |
|
|
|
@property |
|
def default_chat_template(self): |
|
""" |
|
LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages. |
|
Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict |
|
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering |
|
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which |
|
results in an unusual token ordering when it is present. This template should definitely be changed if you wish |
|
to fine-tune a model with more flexible role ordering! |
|
|
|
The output should look something like: |
|
|
|
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos> |
|
<bos>[INST] Prompt [/INST] |
|
|
|
The reference for this chat template is [this code |
|
snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362) |
|
in the original repository. |
|
""" |
|
logger.warning_once( |
|
"\nNo chat template is defined for this tokenizer - using the default template " |
|
f"for the {self.__class__.__name__} class. If the default is not appropriate for " |
|
"your model, please set `tokenizer.chat_template` to an appropriate template. " |
|
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" |
|
) |
|
template = ( |
|
"{% if messages[0]['role'] == 'system' %}" |
|
"{% set loop_messages = messages[1:] %}" |
|
"{% set system_message = messages[0]['content'] %}" |
|
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}" |
|
"{% set loop_messages = messages %}" |
|
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" |
|
"{% else %}" |
|
"{% set loop_messages = messages %}" |
|
"{% set system_message = false %}" |
|
"{% endif %}" |
|
"{% for message in loop_messages %}" |
|
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" |
|
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" |
|
"{% endif %}" |
|
"{% if loop.index0 == 0 and system_message != false %}" |
|
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}" |
|
"{% else %}" |
|
"{% set content = message['content'] %}" |
|
"{% endif %}" |
|
"{% if message['role'] == 'user' %}" |
|
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}" |
|
"{% elif message['role'] == 'system' %}" |
|
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}" |
|
"{% elif message['role'] == 'assistant' %}" |
|
"{{ ' ' + content.strip() + ' ' + eos_token }}" |
|
"{% endif %}" |
|
"{% endfor %}" |
|
) |
|
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false") |
|
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") |
|
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) |
|
|
|
return template |