File size: 10,968 Bytes
bd67152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b849117
bd67152
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
---
license: other
license_name: fair-ai-public-license-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
base_model:
- Laxhar/noobai-XL-Vpred-0.75
pipeline_tag: text-to-image
tags:
- safetensors
- diffusers
- stable-diffusion
- stable-diffusion-xl
- art
- not-for-all-audiences
library_name: diffusers
---

<h1 align="center"><strong style="font-size: 48px;">NoobAI XL V-Pred 1.0</strong></h1>

# Model Introduction

This image generation model, based on Laxhar/noobai-XL_v1.0, leverages full Danbooru and e621 datasets with native tags and natural language captioning.

Implemented as a v-prediction model (distinct from eps-prediction), it requires specific parameter configurations - detailed in following sections.

Special thanks to my teammate euge for the coding work, and we're grateful for the technical support from many helpful community members.

# ⚠️ IMPORTANT NOTICE ⚠️

## **THIS MODEL WORKS DIFFERENT FROM EPS MODELS!**

## **PLEASE READ THE GUIDE CAREFULLY!**

## Model Details

- **Developed by**: [Laxhar Lab](https://huggingface.co/Laxhar)
- **Model Type**: Diffusion-based text-to-image generative model
- **Fine-tuned from**: Laxhar/noobai-XL_v1.0
- **Sponsored by from**: [Lanyun Cloud](https://cloud.lanyun.net)

---

# How to Use the Model.

## Method I: [reForge](https://github.com/Panchovix/stable-diffusion-webui-reForge/tree/dev_upstream)

1. (If you haven't installed reForge) Install reForge by following the instructions in the repository;

2. Launch WebUI and use the model as usual!

## Method II: [ComfyUI](https://github.com/comfyanonymous/ComfyUI)

SAMLPLE with NODES 

[comfy_ui_workflow_sample](/Laxhar/noobai-XL-Vpred-0.5/blob/main/comfy_ui_workflow_sample.png)


## Method III: [WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui)

Note that dev branch is not stable and **may contain bugs**.

1. (If you haven't installed WebUI) Install WebUI by following the instructions in the repository. For simp
2. Switch to `dev` branch:

```bash
git switch dev
```

3. Pull latest updates:

```bash
git pull
```

4. Launch WebUI and use the model as usual!

## Method IV: [Diffusers](https://huggingface.co/docs/diffusers/en/index)

```python
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers import EulerDiscreteScheduler

ckpt_path = "/path/to/model.safetensors"
pipe = StableDiffusionXLPipeline.from_single_file(
    ckpt_path,
    use_safetensors=True,
    torch_dtype=torch.float16,
)
scheduler_args = {"prediction_type": "v_prediction", "rescale_betas_zero_snr": True}
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, **scheduler_args)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to("cuda")

prompt = """masterpiece, best quality,artist:john_kafka,artist:nixeu,artist:quasarcake, chromatic aberration, film grain, horror \(theme\), limited palette, x-shaped pupils, high contrast, color contrast, cold colors, arlecchino \(genshin impact\), black theme,  gritty, graphite \(medium\)"""
negative_prompt = "nsfw, worst quality, old, early, low quality, lowres, signature, username, logo, bad hands, mutated hands, mammal, anthro, furry, ambiguous form, feral, semi-anthro"

image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=832,
    height=1216,
    num_inference_steps=28,
    guidance_scale=5,
    generator=torch.Generator().manual_seed(42),
).images[0]

image.save("output.png")
```


**Note**: Please make sure Git is installed and environment is properly configured on your machine.

---

# Recommended Settings

## Parameters

- CFG: 4 ~ 5
- Steps: 28 ~ 35
- Sampling Method: **Euler** (⚠️ Other samplers will not work properly)
- Resolution: Total area around 1024x1024. Best to choose from: 768x1344, **832x1216**, 896x1152, 1024x1024, 1152x896, 1216x832, 1344x768

## Prompts

- Prompt Prefix:

```
masterpiece, best quality, newest, absurdres, highres, safe,
```

- Negative Prompt:

```
nsfw, worst quality, old, early, low quality, lowres, signature, username, logo, bad hands, mutated hands, mammal, anthro, furry, ambiguous form, feral, semi-anthro
```

# Usage Guidelines

## Caption

```
<1girl/1boy/1other/...>, <character>, <series>, <artists>, <special tags>, <general tags>, <other tags>
```

## Quality Tags

For quality tags, we evaluated image popularity through the following process:

- Data normalization based on various sources and ratings.
- Application of time-based decay coefficients according to date recency.
- Ranking of images within the entire dataset based on this processing.

Our ultimate goal is to ensure that quality tags effectively track user preferences in recent years.

| Percentile Range | Quality Tags   |
| :--------------- | :------------- |
| > 95th           | masterpiece    |
| > 85th, <= 95th  | best quality   |
| > 60th, <= 85th  | good quality   |
| > 30th, <= 60th  | normal quality |
| <= 30th          | worst quality  |

## Aesthetic Tags

| Tag             | Description                                                                                                                                                                                                       |
| :-------------- | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| very awa        | Top 5% of images in terms of aesthetic score by [waifu-scorer](https://huggingface.co/Eugeoter/waifu-scorer-v4-beta)                                                                                              |
| worst aesthetic | All the bottom 5% of images in terms of aesthetic score by [waifu-scorer](https://huggingface.co/Eugeoter/waifu-scorer-v4-beta) and [aesthetic-shadow-v2](https://huggingface.co/shadowlilac/aesthetic-shadow-v2) |
| ...             | ...                                                                                                                                                                                                               |

## Date Tags

There are two types of date tags: **year tags** and **period tags**. For year tags, use `year xxxx` format, i.e., `year 2021`. For period tags, please refer to the following table:

| Year Range | Period tag |
| :--------- | :--------- |
| 2005-2010  | old        |
| 2011-2014  | early      |
| 2014-2017  | mid        |
| 2018-2020  | recent     |
| 2021-2024  | newest     |

## Dataset

- The latest Danbooru images up to the training date (approximately before 2024-10-23)
- E621 images [e621-2024-webp-4Mpixel](https://huggingface.co/datasets/NebulaeWis/e621-2024-webp-4Mpixel) dataset on Hugging Face

**Communication**

- **QQ Groups:**

  - 875042008
  - 914818692
  - 635772191

- **Discord:** [Laxhar Dream Lab SDXL NOOB](https://discord.com/invite/DKnFjKEEvH)

**How to train a LoRA on v-pred SDXL model**

A tutorial is intended for LoRA trainers based on sd-scripts.

article link: https://civitai.com/articles/8723

**Utility Tool**

Laxhar Lab is training a dedicated ControlNet model for NoobXL, and the models are being released progressively. So far, the normal, depth, and canny have been released.

Model link: https://civitai.com/models/929685

# Model License

This model's license inherits from https://huggingface.co/OnomaAIResearch/Illustrious-xl-early-release-v0 fair-ai-public-license-1.0-sd and adds the following terms. Any use of this model and its variants is bound by this license.

## I. Usage Restrictions

- Prohibited use for harmful, malicious, or illegal activities, including but not limited to harassment, threats, and spreading misinformation.
- Prohibited generation of unethical or offensive content.
- Prohibited violation of laws and regulations in the user's jurisdiction.

## II. Commercial Prohibition

We prohibit any form of commercialization, including but not limited to monetization or commercial use of the model, derivative models, or model-generated products.

## III. Open Source Community

To foster a thriving open-source community,users MUST comply with the following requirements:

- Open source derivative models, merged models, LoRAs, and products based on the above models.
- Share work details such as synthesis formulas, prompts, and workflows.
- Follow the fair-ai-public-license to ensure derivative works remain open source.

## IV. Disclaimer

Generated models may produce unexpected or harmful outputs. Users must assume all risks and potential consequences of usage.

# Participants and Contributors

## Participants

- **L_A_X:** [Civitai](https://civitai.com/user/L_A_X) | [Liblib.art](https://www.liblib.art/userpage/9e1b16538b9657f2a737e9c2c6ebfa69) | [Huggingface](https://huggingface.co/LAXMAYDAY)
- **li_li:** [Civitai](https://civitai.com/user/li_li) | [Huggingface](https://huggingface.co/heziiiii)
- **nebulae:** [Civitai](https://civitai.com/user/kitarz) | [Huggingface](https://huggingface.co/NebulaeWis)
- **Chenkin:** [Civitai](https://civitai.com/user/Chenkin) | [Huggingface](https://huggingface.co/windsingai)
- **Euge:** [Civitai](https://civitai.com/user/Euge_) | [Huggingface](https://huggingface.co/Eugeoter) | [Github](https://github.com/Eugeoter)

## Contributors

- **Narugo1992**: Thanks to [narugo1992](https://github.com/narugo1992) and the [deepghs](https://huggingface.co/deepghs) team for open-sourcing various training sets, image processing tools, and models.

- **Mikubill**: Thanks to [Mikubill](https://github.com/Mikubill) for the [Naifu](https://github.com/Mikubill/naifu) trainer.

- **Onommai**: Thanks to [OnommAI](https://onomaai.com/) for open-sourcing a powerful base model.

- **V-Prediction**: Thanks to the following individuals for their detailed instructions and experiments.

  - adsfssdf
  - [bluvoll](https://civitai.com/user/bluvoll)
  - [bvhari](https://github.com/bvhari)
  - [catboxanon](https://github.com/catboxanon)
  - [parsee-mizuhashi](https://huggingface.co/parsee-mizuhashi)
  - [very-aesthetic](https://github.com/very-aesthetic)
  - [momoura](https://civitai.com/user/momoura)
  - madmanfourohfour
  - David

- **Community**: [aria1th261](https://civitai.com/user/aria1th261), [neggles](https://github.com/neggles/neurosis), [sdtana](https://huggingface.co/sdtana), [chewing](https://huggingface.co/chewing), [irldoggo](https://github.com/irldoggo), [reoe](https://huggingface.co/reoe), [kblueleaf](https://civitai.com/user/kblueleaf), [Yidhar](https://github.com/Yidhar), ageless, 白玲可, Creeper, KaerMorh, 吟游诗人, SeASnAkE, [zwh20081](https://civitai.com/user/zwh20081), Wenaka⁧~喵, 稀里哗啦, 幸运二副, 昨日の約, 445, [EBIX](https://civitai.com/user/EBIX), [Sopp](https://huggingface.co/goyishsoyish), [Y_X](https://civitai.com/user/Y_X), [Minthybasis](https://civitai.com/user/Minthybasis), [Rakosz](https://civitai.com/user/Rakosz)