Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +770 -0
- added_tokens.json +5 -0
- config.json +34 -0
- config_sentence_transformers.json +13 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +345 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +20 -0
- tokenizer.json +3 -0
- tokenizer_config.json +50 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1536,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 1536, "out_features": 1024, "bias": true, "activation_function": "torch.nn.modules.linear.Identity"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:464789c715d4c8c5c7073a7b2c0c857315e11ba106fb47a504451d5bebcfc304
|
3 |
+
size 6295712
|
README.md
ADDED
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:5220
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: NovaSearch/stella_en_1.5B_v5
|
10 |
+
widget:
|
11 |
+
- source_sentence: Identify the column that stores the uncertainty value.
|
12 |
+
sentences:
|
13 |
+
- "What is measuring equipment?\nMeasuring equipment refers to the devices that\
|
14 |
+
\ make up a measurement system. Each piece of equipment has:\n- A unique serial\
|
15 |
+
\ number for identification.\n- A technical name, such as transmitter, plate,\
|
16 |
+
\ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\
|
17 |
+
\ equipment is assigned to a measurement system, it is given a unique identifier\
|
18 |
+
\ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\
|
19 |
+
\ considered in use in a measurement system.\n- If it does not have a tag, it\
|
20 |
+
\ is considered spare or unused\n\nEquipment assignment based on technology:\n\
|
21 |
+
The type of equipment assigned to a measurement system depends on the technology\
|
22 |
+
\ used, for example:\n1. Differential technology (for gas measurement):\n -\
|
23 |
+
\ Static pressure transmitters\n - Differential pressure transmitters\n \
|
24 |
+
\ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\
|
25 |
+
\ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\
|
26 |
+
\ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \
|
27 |
+
\ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\
|
28 |
+
- A measurement system can have multiple pieces of equipment.\n- However, a piece\
|
29 |
+
\ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\
|
30 |
+
- The database includes a special table to manage the list of equipment assigned\
|
31 |
+
\ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\
|
32 |
+
\ are searching for operational equipment assigned to a measurement system.\n\
|
33 |
+
- If a user is looking for spare or unused equipment, they are searching for equipment\
|
34 |
+
\ not listed in the tagged equipment table.\n- Commonly used when user refers\
|
35 |
+
\ directly to an \"\"Equipment Tag\""
|
36 |
+
- 'What is equipment calibration?
|
37 |
+
|
38 |
+
Calibration is a metrological verification process used to ensure the accuracy
|
39 |
+
of measurement equipment. It is performed periodically, based on intervals set
|
40 |
+
by the company or a regulatory body.
|
41 |
+
|
42 |
+
|
43 |
+
Purpose of calibration:
|
44 |
+
|
45 |
+
The calibration process corrects any deviations in how the equipment measures
|
46 |
+
physical magnitudes (variables). This ensures the equipment provides accurate
|
47 |
+
and reliable data.
|
48 |
+
|
49 |
+
|
50 |
+
Calibration cycles:
|
51 |
+
|
52 |
+
There are two main calibration cycles:
|
53 |
+
|
54 |
+
1. As-found: Represents the equipment''s measurement accuracy before any adjustments
|
55 |
+
are made. This cycle is almost always implemented.
|
56 |
+
|
57 |
+
2. As-left: Represents the equipment''s measurement accuracy after adjustments
|
58 |
+
are made. This cycle is used depending on regulatory requirements.
|
59 |
+
|
60 |
+
|
61 |
+
Calibration uncertainty:
|
62 |
+
|
63 |
+
- Uncertainty is included in the results of a calibration.
|
64 |
+
|
65 |
+
- Calibration uncertainty refers to the margin of error in the device''s measurements,
|
66 |
+
which also affects the uncertainty of the measured variable or magnitude.'
|
67 |
+
- 'What kind of data store an equipment?
|
68 |
+
|
69 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
70 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
71 |
+
|
72 |
+
|
73 |
+
Data storage:
|
74 |
+
|
75 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
76 |
+
This table contains the values of the variables captured by the equipments.
|
77 |
+
|
78 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
79 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
80 |
+
uncertainty.
|
81 |
+
|
82 |
+
- The values stored in the variable values table are **different** from variable
|
83 |
+
uncertainty values, which are calculated separately and represent the margin of
|
84 |
+
error.
|
85 |
+
|
86 |
+
|
87 |
+
Accessing the data:
|
88 |
+
|
89 |
+
- Users typically access the data by referring to the readings from the measurement
|
90 |
+
system, not directly from the individual equipments.
|
91 |
+
|
92 |
+
- The readings are stored in a "variable values" table within the database.
|
93 |
+
|
94 |
+
|
95 |
+
Linking variable names:
|
96 |
+
|
97 |
+
If the user needs to know the name of a variable, they must link the data to another
|
98 |
+
table that stores information about the types of variables.'
|
99 |
+
- source_sentence: SELECT * FROM EquipmentType LIMIT 1
|
100 |
+
sentences:
|
101 |
+
- 'What kind of data store an equipment?
|
102 |
+
|
103 |
+
Equipments can capture meteorological data, such as pressure, temperature, and
|
104 |
+
volume (magnitudes). This data is essential for users to perform various calculations.
|
105 |
+
|
106 |
+
|
107 |
+
Data storage:
|
108 |
+
|
109 |
+
- The measured values are stored in a special table in the database for magnitudes.
|
110 |
+
This table contains the values of the variables captured by the equipments.
|
111 |
+
|
112 |
+
- These values are **direct measurements** from the fluid (e.g., raw pressure,
|
113 |
+
temperature, or volume readings). **They are not calculated values**, such as
|
114 |
+
uncertainty.
|
115 |
+
|
116 |
+
- The values stored in the variable values table are **different** from variable
|
117 |
+
uncertainty values, which are calculated separately and represent the margin of
|
118 |
+
error.
|
119 |
+
|
120 |
+
|
121 |
+
Accessing the data:
|
122 |
+
|
123 |
+
- Users typically access the data by referring to the readings from the measurement
|
124 |
+
system, not directly from the individual equipments.
|
125 |
+
|
126 |
+
- The readings are stored in a "variable values" table within the database.
|
127 |
+
|
128 |
+
|
129 |
+
Linking variable names:
|
130 |
+
|
131 |
+
If the user needs to know the name of a variable, they must link the data to another
|
132 |
+
table that stores information about the types of variables.'
|
133 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
134 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
135 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
136 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
137 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
138 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
139 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
140 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
141 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
142 |
+
\ each value in the reports, making it easier to interpret the data."
|
143 |
+
- 'What is a flow computer?
|
144 |
+
|
145 |
+
A flow computer is a device used in measurement engineering. It collects analog
|
146 |
+
and digital data from flow meters and other sensors.
|
147 |
+
|
148 |
+
|
149 |
+
Key features of a flow computer:
|
150 |
+
|
151 |
+
- It has a unique name, firmware version, and manufacturer information.
|
152 |
+
|
153 |
+
- It is designed to record and process data such as temperature, pressure, and
|
154 |
+
fluid volume (for gases or oils).
|
155 |
+
|
156 |
+
|
157 |
+
Main function:
|
158 |
+
|
159 |
+
The flow computer sends the collected data to a measurement system. This allows
|
160 |
+
measurement engineers to analyze the data and perform their tasks effectively.'
|
161 |
+
- source_sentence: What tables store measurement system data?
|
162 |
+
sentences:
|
163 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
164 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
165 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
166 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
167 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
168 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
169 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
170 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
171 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
172 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
173 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
174 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
175 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
176 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
177 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
178 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
179 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
180 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
181 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
182 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
183 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
184 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
185 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
186 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
187 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
188 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
189 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
190 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
191 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
192 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
193 |
+
\ systems table + uncertainty of magnitudes table)."
|
194 |
+
- "What is a measurement system?\nA measurement system, also referred to as a delivery\
|
195 |
+
\ point, measurement point, or reception point, is used to measure and monitor\
|
196 |
+
\ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\
|
197 |
+
1. Measurement technology:\n - Differential: Used for precise measurements.\n\
|
198 |
+
\ - Linear: Used for straightforward measurements.\n\n2. System identifier\
|
199 |
+
\ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\
|
200 |
+
\ system can measure gases, oils, condensates, water, steam, or other fluids.\n\
|
201 |
+
4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\
|
202 |
+
\ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\
|
203 |
+
\ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\
|
204 |
+
\ technologies; they are programmed differently.\"\n\n\nClassification of measurement\
|
205 |
+
\ systems:\nMeasurement systems are classified based on the stage of the process\
|
206 |
+
\ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\
|
207 |
+
- Appropriation\n- Custody\n- Production Poços"
|
208 |
+
- 'What do measurement equipment measure?
|
209 |
+
|
210 |
+
Each equipment measures a physical magnitude, also known as a variable. Based
|
211 |
+
on the type of variable they measure, devices are classified into different categories.
|
212 |
+
|
213 |
+
|
214 |
+
Equipment classification:
|
215 |
+
|
216 |
+
- Primary meter: Assigned by default to equipments like orifice plates.
|
217 |
+
|
218 |
+
- Secondary meter: Assigned by default to equipments like transmitters.
|
219 |
+
|
220 |
+
- Tertiary meter: Used for other types of equipments.
|
221 |
+
|
222 |
+
|
223 |
+
Equipment types in the database:
|
224 |
+
|
225 |
+
The database includes a table listing all equipment types. Examples of equipment
|
226 |
+
types are:
|
227 |
+
|
228 |
+
- Differential pressure transmitters
|
229 |
+
|
230 |
+
- RTDs (Resistance Temperature Detectors)
|
231 |
+
|
232 |
+
- Orifice plates
|
233 |
+
|
234 |
+
- Multivariable transmitters
|
235 |
+
|
236 |
+
- Ultrasonic meters
|
237 |
+
|
238 |
+
|
239 |
+
Meteorological checks for equipments:
|
240 |
+
|
241 |
+
Each equipment type is assigned a meteorological check, which can be either:
|
242 |
+
|
243 |
+
- Calibration: To ensure measurement accuracy.
|
244 |
+
|
245 |
+
- Inspection: To verify proper functioning.
|
246 |
+
|
247 |
+
|
248 |
+
Data storage in tables:
|
249 |
+
|
250 |
+
The database also includes a separate table for equipment classifications, which
|
251 |
+
are:
|
252 |
+
|
253 |
+
- Primary meter
|
254 |
+
|
255 |
+
- Secondary meter
|
256 |
+
|
257 |
+
- Tertiary meter
|
258 |
+
|
259 |
+
So, an equipment has equipment types and this types has classifications.'
|
260 |
+
- source_sentence: What is the table structure for equipment types?
|
261 |
+
sentences:
|
262 |
+
- "How does a flow computer generate and store reports?\nA flow computer generates\
|
263 |
+
\ daily or hourly reports to provide users with operational data. These reports\
|
264 |
+
\ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\
|
265 |
+
- Each report includes:\n- Date and time of the data recording.\n- Data recorded\
|
266 |
+
\ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\
|
267 |
+
\ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\
|
268 |
+
\ identifier.\n2. Detail table:\n - Stores the measured values associated with\
|
269 |
+
\ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\
|
270 |
+
\ are linked to a Modbus table. This table contains the names corresponding to\
|
271 |
+
\ each value in the reports, making it easier to interpret the data."
|
272 |
+
- "What is measuring equipment?\nMeasuring equipment refers to the devices that\
|
273 |
+
\ make up a measurement system. Each piece of equipment has:\n- A unique serial\
|
274 |
+
\ number for identification.\n- A technical name, such as transmitter, plate,\
|
275 |
+
\ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\
|
276 |
+
\ equipment is assigned to a measurement system, it is given a unique identifier\
|
277 |
+
\ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\
|
278 |
+
\ considered in use in a measurement system.\n- If it does not have a tag, it\
|
279 |
+
\ is considered spare or unused\n\nEquipment assignment based on technology:\n\
|
280 |
+
The type of equipment assigned to a measurement system depends on the technology\
|
281 |
+
\ used, for example:\n1. Differential technology (for gas measurement):\n -\
|
282 |
+
\ Static pressure transmitters\n - Differential pressure transmitters\n \
|
283 |
+
\ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\
|
284 |
+
\ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\
|
285 |
+
\ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \
|
286 |
+
\ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\
|
287 |
+
- A measurement system can have multiple pieces of equipment.\n- However, a piece\
|
288 |
+
\ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\
|
289 |
+
- The database includes a special table to manage the list of equipment assigned\
|
290 |
+
\ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\
|
291 |
+
\ are searching for operational equipment assigned to a measurement system.\n\
|
292 |
+
- If a user is looking for spare or unused equipment, they are searching for equipment\
|
293 |
+
\ not listed in the tagged equipment table.\n- Commonly used when user refers\
|
294 |
+
\ directly to an \"\"Equipment Tag\""
|
295 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
296 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
297 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
298 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
299 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
300 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
301 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
302 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
303 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
304 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
305 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
306 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
307 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
308 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
309 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
310 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
311 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
312 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
313 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
314 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
315 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
316 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
317 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
318 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
319 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
320 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
321 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
322 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
323 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
324 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
325 |
+
\ systems table + uncertainty of magnitudes table)."
|
326 |
+
- source_sentence: What columns store the uncertainty values?
|
327 |
+
sentences:
|
328 |
+
- "What is a measurement system?\nA measurement system, also referred to as a delivery\
|
329 |
+
\ point, measurement point, or reception point, is used to measure and monitor\
|
330 |
+
\ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\
|
331 |
+
1. Measurement technology:\n - Differential: Used for precise measurements.\n\
|
332 |
+
\ - Linear: Used for straightforward measurements.\n\n2. System identifier\
|
333 |
+
\ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\
|
334 |
+
\ system can measure gases, oils, condensates, water, steam, or other fluids.\n\
|
335 |
+
4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\
|
336 |
+
\ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\
|
337 |
+
\ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\
|
338 |
+
\ technologies; they are programmed differently.\"\n\n\nClassification of measurement\
|
339 |
+
\ systems:\nMeasurement systems are classified based on the stage of the process\
|
340 |
+
\ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\
|
341 |
+
- Appropriation\n- Custody\n- Production Poços"
|
342 |
+
- 'How are flow computers and measurement systems related?
|
343 |
+
|
344 |
+
Flow computers can have multiple systems assigned to them. However, a measurement
|
345 |
+
system can only be assigned to one flow computer.
|
346 |
+
|
347 |
+
|
348 |
+
Database terminology:
|
349 |
+
|
350 |
+
In the database, this relationship is referred to as:
|
351 |
+
|
352 |
+
- Meter streams
|
353 |
+
|
354 |
+
- Meter runs
|
355 |
+
|
356 |
+
- Sections
|
357 |
+
|
358 |
+
|
359 |
+
Storage of the relationship:
|
360 |
+
|
361 |
+
The relationship between a flow computer and its assigned measurement system is
|
362 |
+
stored in a special table.
|
363 |
+
|
364 |
+
|
365 |
+
User context:
|
366 |
+
|
367 |
+
When a user refers to a "meter stream," they are indicating that they are searching
|
368 |
+
for a measurement system assigned to a specific flow computer.'
|
369 |
+
- "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
|
370 |
+
\ and reliability of results obtained from equipment or measurement systems. It\
|
371 |
+
\ quantifies the potential error or margin of error in measurements.\n\nTypes\
|
372 |
+
\ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
|
373 |
+
\ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
|
374 |
+
\ such as temperature or pressure.\n - It is calculated after calibrating a\
|
375 |
+
\ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\
|
376 |
+
\ serves as a starting point for further calculations related to the equipment.\n\
|
377 |
+
\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\
|
378 |
+
\ for the overall flow measurement.\n - It depends on the uncertainties of\
|
379 |
+
\ the individual variables (magnitudes) and represents the combined margin of\
|
380 |
+
\ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\
|
381 |
+
\ (variables) are the foundation for calculating the uncertainty of the measurement\
|
382 |
+
\ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\
|
383 |
+
\ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\
|
384 |
+
\ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
|
385 |
+
\ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\
|
386 |
+
\ storage for uncertainties:\nIn the database, uncertainty calculations are stored\
|
387 |
+
\ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\
|
388 |
+
\ the uncertainty values for specific variables (e.g., temperature, pressure).\n\
|
389 |
+
\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\
|
390 |
+
\ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\
|
391 |
+
- To find the uncertainty of the measurement system, join the measurement systems\
|
392 |
+
\ table with the uncertainty of the measurement system table.\n- To find the uncertainty\
|
393 |
+
\ of a specific variable (magnitude), join the measurement systems table with\
|
394 |
+
\ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\
|
395 |
+
\ confuse the two types of uncertainty:\n- If the user requests the uncertainty\
|
396 |
+
\ of the measurement system, use the first join (measurement systems table + uncertainty\
|
397 |
+
\ of the measurement system table).\n- If the user requests the uncertainty of\
|
398 |
+
\ a specific variable (magnitude) in a report, use the second join (measurement\
|
399 |
+
\ systems table + uncertainty of magnitudes table)."
|
400 |
+
datasets:
|
401 |
+
- Lauther/embeddings-train-semantic
|
402 |
+
pipeline_tag: sentence-similarity
|
403 |
+
library_name: sentence-transformers
|
404 |
+
---
|
405 |
+
|
406 |
+
# SentenceTransformer based on NovaSearch/stella_en_1.5B_v5
|
407 |
+
|
408 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [NovaSearch/stella_en_1.5B_v5](https://huggingface.co/NovaSearch/stella_en_1.5B_v5) on the [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
409 |
+
|
410 |
+
## Model Details
|
411 |
+
|
412 |
+
### Model Description
|
413 |
+
- **Model Type:** Sentence Transformer
|
414 |
+
- **Base model:** [NovaSearch/stella_en_1.5B_v5](https://huggingface.co/NovaSearch/stella_en_1.5B_v5) <!-- at revision f10d4793289fa0d0a36978d6ecd0a9eaa6781f06 -->
|
415 |
+
- **Maximum Sequence Length:** 512 tokens
|
416 |
+
- **Output Dimensionality:** 1024 dimensions
|
417 |
+
- **Similarity Function:** Cosine Similarity
|
418 |
+
- **Training Dataset:**
|
419 |
+
- [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic)
|
420 |
+
<!-- - **Language:** Unknown -->
|
421 |
+
<!-- - **License:** Unknown -->
|
422 |
+
|
423 |
+
### Model Sources
|
424 |
+
|
425 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
426 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
427 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
428 |
+
|
429 |
+
### Full Model Architecture
|
430 |
+
|
431 |
+
```
|
432 |
+
SentenceTransformer(
|
433 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model
|
434 |
+
(1): Pooling({'word_embedding_dimension': 1536, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
435 |
+
(2): Dense({'in_features': 1536, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
436 |
+
)
|
437 |
+
```
|
438 |
+
|
439 |
+
## Usage
|
440 |
+
|
441 |
+
### Direct Usage (Sentence Transformers)
|
442 |
+
|
443 |
+
First install the Sentence Transformers library:
|
444 |
+
|
445 |
+
```bash
|
446 |
+
pip install -U sentence-transformers
|
447 |
+
```
|
448 |
+
|
449 |
+
Then you can load this model and run inference.
|
450 |
+
```python
|
451 |
+
from sentence_transformers import SentenceTransformer
|
452 |
+
|
453 |
+
# Download from the 🤗 Hub
|
454 |
+
model = SentenceTransformer("Lauther/emb-stella_en_1.5B_v5-1e")
|
455 |
+
# Run inference
|
456 |
+
sentences = [
|
457 |
+
'What columns store the uncertainty values?',
|
458 |
+
'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
|
459 |
+
'What is uncertainty?\nUncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.\n\nTypes of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of magnitudes (variables):\n - Refers to the uncertainty of specific variables, such as temperature or pressure.\n - It is calculated after calibrating a device or obtained from the equipment manufacturer\'s manual.\n - This uncertainty serves as a starting point for further calculations related to the equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated for the overall flow measurement.\n - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of the measurement system. Think of them as the "building blocks."\n- Do not confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty of the measurement system**: Specific to the overall flow measurement.\n\nDatabase storage for uncertainties:\nIn the database, uncertainty calculations are stored in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores the uncertainty values for specific variables (e.g., temperature, pressure).\n\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n- To find the uncertainty of the measurement system, join the measurement systems table with the uncertainty of the measurement system table.\n- To find the uncertainty of a specific variable (magnitude), join the measurement systems table with the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not confuse the two types of uncertainty:\n- If the user requests the uncertainty of the measurement system, use the first join (measurement systems table + uncertainty of the measurement system table).\n- If the user requests the uncertainty of a specific variable (magnitude) in a report, use the second join (measurement systems table + uncertainty of magnitudes table).',
|
460 |
+
]
|
461 |
+
embeddings = model.encode(sentences)
|
462 |
+
print(embeddings.shape)
|
463 |
+
# [3, 1024]
|
464 |
+
|
465 |
+
# Get the similarity scores for the embeddings
|
466 |
+
similarities = model.similarity(embeddings, embeddings)
|
467 |
+
print(similarities.shape)
|
468 |
+
# [3, 3]
|
469 |
+
```
|
470 |
+
|
471 |
+
<!--
|
472 |
+
### Direct Usage (Transformers)
|
473 |
+
|
474 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
475 |
+
|
476 |
+
</details>
|
477 |
+
-->
|
478 |
+
|
479 |
+
<!--
|
480 |
+
### Downstream Usage (Sentence Transformers)
|
481 |
+
|
482 |
+
You can finetune this model on your own dataset.
|
483 |
+
|
484 |
+
<details><summary>Click to expand</summary>
|
485 |
+
|
486 |
+
</details>
|
487 |
+
-->
|
488 |
+
|
489 |
+
<!--
|
490 |
+
### Out-of-Scope Use
|
491 |
+
|
492 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
493 |
+
-->
|
494 |
+
|
495 |
+
<!--
|
496 |
+
## Bias, Risks and Limitations
|
497 |
+
|
498 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
499 |
+
-->
|
500 |
+
|
501 |
+
<!--
|
502 |
+
### Recommendations
|
503 |
+
|
504 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
505 |
+
-->
|
506 |
+
|
507 |
+
## Training Details
|
508 |
+
|
509 |
+
### Training Dataset
|
510 |
+
|
511 |
+
#### embeddings-train-semantic
|
512 |
+
|
513 |
+
* Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330)
|
514 |
+
* Size: 5,220 training samples
|
515 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
516 |
+
* Approximate statistics based on the first 1000 samples:
|
517 |
+
| | sentence1 | sentence2 | score |
|
518 |
+
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
519 |
+
| type | string | string | float |
|
520 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 14.22 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 105 tokens</li><li>mean: 219.9 tokens</li><li>max: 447 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> |
|
521 |
+
* Samples:
|
522 |
+
| sentence1 | sentence2 | score |
|
523 |
+
|:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
|
524 |
+
| <code>What is the data type of differential pressure in the measurement system?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> |
|
525 |
+
| <code>What is the structure of the &&&equipment_data&&& table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.35000000000000003</code> |
|
526 |
+
| <code>Find the columns in the flow computer table that identify the flow computer.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> |
|
527 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
528 |
+
```json
|
529 |
+
{
|
530 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
531 |
+
}
|
532 |
+
```
|
533 |
+
|
534 |
+
### Evaluation Dataset
|
535 |
+
|
536 |
+
#### embeddings-train-semantic
|
537 |
+
|
538 |
+
* Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330)
|
539 |
+
* Size: 652 evaluation samples
|
540 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
541 |
+
* Approximate statistics based on the first 652 samples:
|
542 |
+
| | sentence1 | sentence2 | score |
|
543 |
+
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
544 |
+
| type | string | string | float |
|
545 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 13.83 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 105 tokens</li><li>mean: 217.37 tokens</li><li>max: 447 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.24</li><li>max: 0.9</li></ul> |
|
546 |
+
* Samples:
|
547 |
+
| sentence1 | sentence2 | score |
|
548 |
+
|:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
|
549 |
+
| <code>How can I filter uncertainty reports by equipment tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.09999999999999999</code> |
|
550 |
+
| <code>What is the purpose of the flow_data table?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> |
|
551 |
+
| <code>What is the column name for the report date in the Reports table?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.1</code> |
|
552 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
553 |
+
```json
|
554 |
+
{
|
555 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
556 |
+
}
|
557 |
+
```
|
558 |
+
|
559 |
+
### Training Hyperparameters
|
560 |
+
#### Non-Default Hyperparameters
|
561 |
+
|
562 |
+
- `eval_strategy`: steps
|
563 |
+
- `per_device_train_batch_size`: 4
|
564 |
+
- `per_device_eval_batch_size`: 4
|
565 |
+
- `gradient_accumulation_steps`: 4
|
566 |
+
- `learning_rate`: 2e-05
|
567 |
+
- `num_train_epochs`: 1
|
568 |
+
- `warmup_ratio`: 0.1
|
569 |
+
|
570 |
+
#### All Hyperparameters
|
571 |
+
<details><summary>Click to expand</summary>
|
572 |
+
|
573 |
+
- `overwrite_output_dir`: False
|
574 |
+
- `do_predict`: False
|
575 |
+
- `eval_strategy`: steps
|
576 |
+
- `prediction_loss_only`: True
|
577 |
+
- `per_device_train_batch_size`: 4
|
578 |
+
- `per_device_eval_batch_size`: 4
|
579 |
+
- `per_gpu_train_batch_size`: None
|
580 |
+
- `per_gpu_eval_batch_size`: None
|
581 |
+
- `gradient_accumulation_steps`: 4
|
582 |
+
- `eval_accumulation_steps`: None
|
583 |
+
- `torch_empty_cache_steps`: None
|
584 |
+
- `learning_rate`: 2e-05
|
585 |
+
- `weight_decay`: 0.0
|
586 |
+
- `adam_beta1`: 0.9
|
587 |
+
- `adam_beta2`: 0.999
|
588 |
+
- `adam_epsilon`: 1e-08
|
589 |
+
- `max_grad_norm`: 1.0
|
590 |
+
- `num_train_epochs`: 1
|
591 |
+
- `max_steps`: -1
|
592 |
+
- `lr_scheduler_type`: linear
|
593 |
+
- `lr_scheduler_kwargs`: {}
|
594 |
+
- `warmup_ratio`: 0.1
|
595 |
+
- `warmup_steps`: 0
|
596 |
+
- `log_level`: passive
|
597 |
+
- `log_level_replica`: warning
|
598 |
+
- `log_on_each_node`: True
|
599 |
+
- `logging_nan_inf_filter`: True
|
600 |
+
- `save_safetensors`: True
|
601 |
+
- `save_on_each_node`: False
|
602 |
+
- `save_only_model`: False
|
603 |
+
- `restore_callback_states_from_checkpoint`: False
|
604 |
+
- `no_cuda`: False
|
605 |
+
- `use_cpu`: False
|
606 |
+
- `use_mps_device`: False
|
607 |
+
- `seed`: 42
|
608 |
+
- `data_seed`: None
|
609 |
+
- `jit_mode_eval`: False
|
610 |
+
- `use_ipex`: False
|
611 |
+
- `bf16`: False
|
612 |
+
- `fp16`: False
|
613 |
+
- `fp16_opt_level`: O1
|
614 |
+
- `half_precision_backend`: auto
|
615 |
+
- `bf16_full_eval`: False
|
616 |
+
- `fp16_full_eval`: False
|
617 |
+
- `tf32`: None
|
618 |
+
- `local_rank`: 0
|
619 |
+
- `ddp_backend`: None
|
620 |
+
- `tpu_num_cores`: None
|
621 |
+
- `tpu_metrics_debug`: False
|
622 |
+
- `debug`: []
|
623 |
+
- `dataloader_drop_last`: False
|
624 |
+
- `dataloader_num_workers`: 0
|
625 |
+
- `dataloader_prefetch_factor`: None
|
626 |
+
- `past_index`: -1
|
627 |
+
- `disable_tqdm`: False
|
628 |
+
- `remove_unused_columns`: True
|
629 |
+
- `label_names`: None
|
630 |
+
- `load_best_model_at_end`: False
|
631 |
+
- `ignore_data_skip`: False
|
632 |
+
- `fsdp`: []
|
633 |
+
- `fsdp_min_num_params`: 0
|
634 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
635 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
636 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
637 |
+
- `deepspeed`: None
|
638 |
+
- `label_smoothing_factor`: 0.0
|
639 |
+
- `optim`: adamw_torch
|
640 |
+
- `optim_args`: None
|
641 |
+
- `adafactor`: False
|
642 |
+
- `group_by_length`: False
|
643 |
+
- `length_column_name`: length
|
644 |
+
- `ddp_find_unused_parameters`: None
|
645 |
+
- `ddp_bucket_cap_mb`: None
|
646 |
+
- `ddp_broadcast_buffers`: False
|
647 |
+
- `dataloader_pin_memory`: True
|
648 |
+
- `dataloader_persistent_workers`: False
|
649 |
+
- `skip_memory_metrics`: True
|
650 |
+
- `use_legacy_prediction_loop`: False
|
651 |
+
- `push_to_hub`: False
|
652 |
+
- `resume_from_checkpoint`: None
|
653 |
+
- `hub_model_id`: None
|
654 |
+
- `hub_strategy`: every_save
|
655 |
+
- `hub_private_repo`: None
|
656 |
+
- `hub_always_push`: False
|
657 |
+
- `gradient_checkpointing`: False
|
658 |
+
- `gradient_checkpointing_kwargs`: None
|
659 |
+
- `include_inputs_for_metrics`: False
|
660 |
+
- `include_for_metrics`: []
|
661 |
+
- `eval_do_concat_batches`: True
|
662 |
+
- `fp16_backend`: auto
|
663 |
+
- `push_to_hub_model_id`: None
|
664 |
+
- `push_to_hub_organization`: None
|
665 |
+
- `mp_parameters`:
|
666 |
+
- `auto_find_batch_size`: False
|
667 |
+
- `full_determinism`: False
|
668 |
+
- `torchdynamo`: None
|
669 |
+
- `ray_scope`: last
|
670 |
+
- `ddp_timeout`: 1800
|
671 |
+
- `torch_compile`: False
|
672 |
+
- `torch_compile_backend`: None
|
673 |
+
- `torch_compile_mode`: None
|
674 |
+
- `dispatch_batches`: None
|
675 |
+
- `split_batches`: None
|
676 |
+
- `include_tokens_per_second`: False
|
677 |
+
- `include_num_input_tokens_seen`: False
|
678 |
+
- `neftune_noise_alpha`: None
|
679 |
+
- `optim_target_modules`: None
|
680 |
+
- `batch_eval_metrics`: False
|
681 |
+
- `eval_on_start`: False
|
682 |
+
- `use_liger_kernel`: False
|
683 |
+
- `eval_use_gather_object`: False
|
684 |
+
- `average_tokens_across_devices`: False
|
685 |
+
- `prompts`: None
|
686 |
+
- `batch_sampler`: batch_sampler
|
687 |
+
- `multi_dataset_batch_sampler`: proportional
|
688 |
+
|
689 |
+
</details>
|
690 |
+
|
691 |
+
### Training Logs
|
692 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
693 |
+
|:------:|:----:|:-------------:|:---------------:|
|
694 |
+
| 0.0307 | 10 | 0.2817 | - |
|
695 |
+
| 0.0613 | 20 | 0.1694 | - |
|
696 |
+
| 0.0920 | 30 | 0.1173 | - |
|
697 |
+
| 0.1226 | 40 | 0.0953 | - |
|
698 |
+
| 0.1533 | 50 | 0.0959 | 0.0250 |
|
699 |
+
| 0.1839 | 60 | 0.0948 | - |
|
700 |
+
| 0.2146 | 70 | 0.1095 | - |
|
701 |
+
| 0.2452 | 80 | 0.1269 | - |
|
702 |
+
| 0.2759 | 90 | 0.1023 | - |
|
703 |
+
| 0.3065 | 100 | 0.0775 | 0.0220 |
|
704 |
+
| 0.3372 | 110 | 0.099 | - |
|
705 |
+
| 0.3678 | 120 | 0.077 | - |
|
706 |
+
| 0.3985 | 130 | 0.0837 | - |
|
707 |
+
| 0.4291 | 140 | 0.0677 | - |
|
708 |
+
| 0.4598 | 150 | 0.077 | 0.0198 |
|
709 |
+
| 0.4904 | 160 | 0.0793 | - |
|
710 |
+
| 0.5211 | 170 | 0.0847 | - |
|
711 |
+
| 0.5517 | 180 | 0.0786 | - |
|
712 |
+
| 0.5824 | 190 | 0.0601 | - |
|
713 |
+
| 0.6130 | 200 | 0.0474 | 0.0166 |
|
714 |
+
| 0.6437 | 210 | 0.0778 | - |
|
715 |
+
| 0.6743 | 220 | 0.0699 | - |
|
716 |
+
| 0.7050 | 230 | 0.066 | - |
|
717 |
+
| 0.7356 | 240 | 0.0741 | - |
|
718 |
+
| 0.7663 | 250 | 0.0576 | 0.0136 |
|
719 |
+
| 0.7969 | 260 | 0.0418 | - |
|
720 |
+
| 0.8276 | 270 | 0.0648 | - |
|
721 |
+
| 0.8582 | 280 | 0.0566 | - |
|
722 |
+
| 0.8889 | 290 | 0.0625 | - |
|
723 |
+
| 0.9195 | 300 | 0.0487 | 0.0131 |
|
724 |
+
| 0.9502 | 310 | 0.0533 | - |
|
725 |
+
| 0.9808 | 320 | 0.0405 | - |
|
726 |
+
|
727 |
+
|
728 |
+
### Framework Versions
|
729 |
+
- Python: 3.11.0
|
730 |
+
- Sentence Transformers: 3.4.0
|
731 |
+
- Transformers: 4.48.1
|
732 |
+
- PyTorch: 2.5.1+cu124
|
733 |
+
- Accelerate: 1.3.0
|
734 |
+
- Datasets: 3.2.0
|
735 |
+
- Tokenizers: 0.21.0
|
736 |
+
|
737 |
+
## Citation
|
738 |
+
|
739 |
+
### BibTeX
|
740 |
+
|
741 |
+
#### Sentence Transformers
|
742 |
+
```bibtex
|
743 |
+
@inproceedings{reimers-2019-sentence-bert,
|
744 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
745 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
746 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
747 |
+
month = "11",
|
748 |
+
year = "2019",
|
749 |
+
publisher = "Association for Computational Linguistics",
|
750 |
+
url = "https://arxiv.org/abs/1908.10084",
|
751 |
+
}
|
752 |
+
```
|
753 |
+
|
754 |
+
<!--
|
755 |
+
## Glossary
|
756 |
+
|
757 |
+
*Clearly define terms in order to be accessible across audiences.*
|
758 |
+
-->
|
759 |
+
|
760 |
+
<!--
|
761 |
+
## Model Card Authors
|
762 |
+
|
763 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
764 |
+
-->
|
765 |
+
|
766 |
+
<!--
|
767 |
+
## Model Card Contact
|
768 |
+
|
769 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
770 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "NovaSearch/stella_en_1.5B_v5",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2Model"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoModel": "NovaSearch/stella_en_1.5B_v5--modeling_qwen.Qwen2Model",
|
9 |
+
"AutoModelForCausalLM": "NovaSearch/stella_en_1.5B_v5--modeling_qwen.Qwen2ForCausalLM",
|
10 |
+
"AutoModelForSequenceClassification": "NovaSearch/stella_en_1.5B_v5--modeling_qwen.Qwen2ForSequenceClassification"
|
11 |
+
},
|
12 |
+
"bos_token_id": 151643,
|
13 |
+
"eos_token_id": 151643,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 1536,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 8960,
|
18 |
+
"max_position_embeddings": 131072,
|
19 |
+
"max_window_layers": 21,
|
20 |
+
"model_type": "qwen2",
|
21 |
+
"num_attention_heads": 12,
|
22 |
+
"num_hidden_layers": 28,
|
23 |
+
"num_key_value_heads": 2,
|
24 |
+
"rms_norm_eps": 1e-06,
|
25 |
+
"rope_scaling": null,
|
26 |
+
"rope_theta": 1000000.0,
|
27 |
+
"sliding_window": null,
|
28 |
+
"tie_word_embeddings": false,
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.48.1",
|
31 |
+
"use_cache": true,
|
32 |
+
"use_sliding_window": false,
|
33 |
+
"vocab_size": 151646
|
34 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0",
|
4 |
+
"transformers": "4.48.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"s2p_query": "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: ",
|
9 |
+
"s2s_query": "Instruct: Retrieve semantically similar text.\nQuery: "
|
10 |
+
},
|
11 |
+
"default_prompt_name": null,
|
12 |
+
"similarity_fn_name": "cosine"
|
13 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e499e68eb42b021043ab66e3ae7d13509288379837baeb31c846786f8c5caaf1
|
3 |
+
size 4994887136
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79fbbf072409d268af717b5cec330de29c65c18a9b262195e870137e169bee6e
|
3 |
+
size 1178224504
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6173075456
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
193 |
+
"layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
196 |
+
"layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
198 |
+
"layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
205 |
+
"layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
208 |
+
"layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
210 |
+
"layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
217 |
+
"layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
219 |
+
"layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
220 |
+
"layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
222 |
+
"layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
229 |
+
"layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
232 |
+
"layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
234 |
+
"layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
241 |
+
"layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
243 |
+
"layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
244 |
+
"layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
245 |
+
"layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
246 |
+
"layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
247 |
+
"layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
253 |
+
"layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
256 |
+
"layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
257 |
+
"layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
258 |
+
"layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
259 |
+
"layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
277 |
+
"layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
280 |
+
"layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
282 |
+
"layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
297 |
+
"layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
298 |
+
"layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
299 |
+
"layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
300 |
+
"layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
301 |
+
"layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
302 |
+
"layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
303 |
+
"layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
304 |
+
"layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
305 |
+
"layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
306 |
+
"layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
307 |
+
"layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
309 |
+
"layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
310 |
+
"layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
312 |
+
"layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
313 |
+
"layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
314 |
+
"layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
315 |
+
"layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
316 |
+
"layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
317 |
+
"layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
318 |
+
"layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
322 |
+
"layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
323 |
+
"layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
324 |
+
"layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
325 |
+
"layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
327 |
+
"layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
328 |
+
"layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
329 |
+
"layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
330 |
+
"layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
331 |
+
"layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
332 |
+
"layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
333 |
+
"layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
334 |
+
"layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
336 |
+
"layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
337 |
+
"layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
338 |
+
"layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
340 |
+
"layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
342 |
+
"layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"norm.weight": "model-00002-of-00002.safetensors"
|
344 |
+
}
|
345 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f79052deba517b0663d877714e117a31a4a6243cddb85fc4443c80a2fa65a20
|
3 |
+
size 11419302
|
tokenizer_config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"auto_map": {
|
34 |
+
"AutoTokenizer": [
|
35 |
+
"NovaSearch/stella_en_1.5B_v5--tokenization_qwen.Qwen2Tokenizer",
|
36 |
+
"NovaSearch/stella_en_1.5B_v5--tokenization_qwen.Qwen2TokenizerFast"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
"bos_token": null,
|
40 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
41 |
+
"clean_up_tokenization_spaces": false,
|
42 |
+
"eos_token": "<|endoftext|>",
|
43 |
+
"errors": "replace",
|
44 |
+
"extra_special_tokens": {},
|
45 |
+
"model_max_length": 512,
|
46 |
+
"pad_token": "<|endoftext|>",
|
47 |
+
"split_special_tokens": false,
|
48 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
49 |
+
"unk_token": null
|
50 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|