File size: 4,281 Bytes
32da1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82af11b
32da1fc
8c58f70
 
 
 
 
 
 
 
 
32da1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c58f70
 
 
 
 
 
 
 
 
 
 
 
 
 
32da1fc
 
 
 
 
 
8c58f70
82af11b
32da1fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model: alignment-handbook/zephyr-7b-sft-full
library_name: peft
license: apache-2.0
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-lora-r16-20k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-lora-r16-20k

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5301
- Rewards/chosen: -0.7870
- Rewards/rejected: -1.4645
- Rewards/accuracies: 0.7202
- Rewards/margins: 0.6775
- Logps/rejected: -394.4780
- Logps/chosen: -361.9388
- Logits/rejected: -2.5045
- Logits/chosen: -2.5477

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6899        | 0.08  | 100  | 0.6897          | 0.0098         | 0.0028           | 0.6667             | 0.0070          | -247.7543      | -282.2605    | -2.8468         | -2.8890       |
| 0.6532        | 0.16  | 200  | 0.6569          | -0.0128        | -0.0950          | 0.6885             | 0.0822          | -257.5306      | -284.5143    | -2.8386         | -2.8782       |
| 0.6372        | 0.24  | 300  | 0.6181          | -0.2381        | -0.4406          | 0.6825             | 0.2026          | -292.0921      | -307.0444    | -2.8033         | -2.8402       |
| 0.5699        | 0.32  | 400  | 0.6034          | -0.2658        | -0.5383          | 0.6964             | 0.2725          | -301.8563      | -309.8138    | -2.7952         | -2.8319       |
| 0.5622        | 0.4   | 500  | 0.5688          | -0.5565        | -0.9794          | 0.7143             | 0.4229          | -345.9727      | -338.8872    | -2.6913         | -2.7320       |
| 0.5826        | 0.48  | 600  | 0.5457          | -0.5456        | -1.1188          | 0.7242             | 0.5732          | -359.9116      | -337.7992    | -2.6523         | -2.6907       |
| 0.5313        | 0.56  | 700  | 0.5387          | -0.7142        | -1.3304          | 0.7242             | 0.6162          | -381.0734      | -354.6571    | -2.6173         | -2.6586       |
| 0.5332        | 0.64  | 800  | 0.5386          | -0.7256        | -1.3351          | 0.7183             | 0.6096          | -381.5442      | -355.7965    | -2.5760         | -2.6167       |
| 0.5334        | 0.72  | 900  | 0.5368          | -0.7061        | -1.3229          | 0.7163             | 0.6168          | -380.3204      | -353.8529    | -2.5574         | -2.5999       |
| 0.5837        | 0.8   | 1000 | 0.5302          | -0.7953        | -1.4787          | 0.7163             | 0.6834          | -395.8991      | -362.7657    | -2.5273         | -2.5706       |
| 0.5144        | 0.88  | 1100 | 0.5327          | -0.7410        | -1.4021          | 0.7123             | 0.6611          | -388.2353      | -357.3381    | -2.5162         | -2.5586       |
| 0.5196        | 0.96  | 1200 | 0.5301          | -0.7870        | -1.4645          | 0.7202             | 0.6775          | -394.4780      | -361.9388    | -2.5045         | -2.5477       |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1