File size: 4,302 Bytes
32da1fc
 
 
 
 
 
 
3d66330
32da1fc
 
 
 
 
 
 
 
 
 
 
82af11b
32da1fc
82af11b
 
 
 
 
 
 
 
 
32da1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82af11b
 
 
 
 
 
 
 
 
 
 
 
 
 
32da1fc
 
 
 
 
 
82af11b
 
32da1fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model: alignment-handbook/zephyr-7b-sft-full
library_name: peft
license: apache-2.0
tags:
- trl
- dpo
- alignment-handbook
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-lora-r16-20k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-lora-r16-20k

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on an unknown dataset.
It achieves the following results on the evaluation set:
- Logits/chosen: -2.5568
- Logits/rejected: -2.5135
- Logps/chosen: -362.1219
- Logps/rejected: -395.5133
- Loss: 0.5370
- Rewards/accuracies: 0.7063
- Rewards/chosen: -0.7888
- Rewards/margins: 0.6860
- Rewards/rejected: -1.4748

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
|:-------------:|:-----:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:|
| 0.6895        | 0.08  | 100  | -2.8901       | -2.8481         | -282.2447    | -247.7537      | 0.6896          | 0.6627             | 0.0099         | 0.0072          | 0.0028           |
| 0.653         | 0.16  | 200  | -2.8742       | -2.8339         | -284.5635    | -257.5692      | 0.6569          | 0.6865             | -0.0133        | 0.0821          | -0.0954          |
| 0.6385        | 0.24  | 300  | -2.8399       | -2.8031         | -310.6566    | -295.5536      | 0.6190          | 0.6905             | -0.2742        | 0.2011          | -0.4752          |
| 0.5689        | 0.32  | 400  | -2.8437       | -2.8083         | -312.9573    | -305.2159      | 0.6027          | 0.6944             | -0.2972        | 0.2747          | -0.5719          |
| 0.5689        | 0.4   | 500  | -2.7560       | -2.7152         | -349.3812    | -355.0662      | 0.5750          | 0.7242             | -0.6614        | 0.4089          | -1.0704          |
| 0.5884        | 0.48  | 600  | -2.6724       | -2.6322         | -352.8877    | -375.1053      | 0.5479          | 0.7123             | -0.6965        | 0.5743          | -1.2708          |
| 0.5366        | 0.56  | 700  | -2.6541       | -2.6144         | -355.7809    | -381.5439      | 0.5462          | 0.7123             | -0.7254        | 0.6097          | -1.3351          |
| 0.542         | 0.64  | 800  | -2.6163       | -2.5757         | -352.4363    | -374.8915      | 0.5451          | 0.7262             | -0.6920        | 0.5766          | -1.2686          |
| 0.5282        | 0.72  | 900  | -2.5716       | -2.5266         | -362.9279    | -390.7825      | 0.5412          | 0.7083             | -0.7969        | 0.6306          | -1.4275          |
| 0.5873        | 0.8   | 1000 | -2.5693       | -2.5254         | -365.5720    | -399.3072      | 0.5369          | 0.7083             | -0.8233        | 0.6894          | -1.5128          |
| 0.5152        | 0.88  | 1100 | -2.5620       | -2.5188         | -357.7025    | -389.9855      | 0.5384          | 0.7143             | -0.7446        | 0.6749          | -1.4196          |
| 0.5213        | 0.96  | 1200 | -2.5568       | -2.5135         | -362.1219    | -395.5133      | 0.5370          | 0.7063             | -0.7888        | 0.6860          | -1.4748          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1