Commit
·
1e61310
1
Parent(s):
1b23db2
Update README.md
Browse files
README.md
CHANGED
@@ -22,12 +22,12 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Test Pearson correlation coefficient
|
24 |
type: Pearson_correlation_coefficient
|
25 |
-
value:
|
26 |
---
|
|
|
27 |
## Pre-trained sentence embedding models are the state-of-the-art of Sentence Embeddings for French.
|
28 |
Model is Fine-tuned using pre-trained [flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) and
|
29 |
-
[Siamese BERT-Networks with 'sentences-transformers'](https://www.sbert.net/)
|
30 |
-
|
31 |
|
32 |
## Usage
|
33 |
The model can be used directly (without a language model) as follows:
|
@@ -35,11 +35,111 @@ The model can be used directly (without a language model) as follows:
|
|
35 |
```python
|
36 |
from sentence_transformers import SentenceTransformer
|
37 |
model = SentenceTransformer("Lajavaness/sentence-flaubert-base")
|
|
|
38 |
sentences = ["Un avion est en train de décoller.",
|
39 |
"Un homme joue d'une grande flûte.",
|
40 |
"Un homme étale du fromage râpé sur une pizza.",
|
41 |
"Une personne jette un chat au plafond.",
|
42 |
"Une personne est en train de plier un morceau de papier.",
|
43 |
]
|
|
|
44 |
embeddings = model.encode(sentences)
|
45 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
metrics:
|
23 |
- name: Test Pearson correlation coefficient
|
24 |
type: Pearson_correlation_coefficient
|
25 |
+
value: 87.14
|
26 |
---
|
27 |
+
|
28 |
## Pre-trained sentence embedding models are the state-of-the-art of Sentence Embeddings for French.
|
29 |
Model is Fine-tuned using pre-trained [flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) and
|
30 |
+
[Siamese BERT-Networks with 'sentences-transformers'](https://www.sbert.net/) combined with [Augmented SBERT](https://aclanthology.org/2021.naacl-main.28.pdf) on dataset [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train) along with Pair Sampling Strategies through 2 models [CrossEncoder-camembert-large](https://huggingface.co/dangvantuan/CrossEncoder-camembert-large) and [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)
|
|
|
31 |
|
32 |
## Usage
|
33 |
The model can be used directly (without a language model) as follows:
|
|
|
35 |
```python
|
36 |
from sentence_transformers import SentenceTransformer
|
37 |
model = SentenceTransformer("Lajavaness/sentence-flaubert-base")
|
38 |
+
|
39 |
sentences = ["Un avion est en train de décoller.",
|
40 |
"Un homme joue d'une grande flûte.",
|
41 |
"Un homme étale du fromage râpé sur une pizza.",
|
42 |
"Une personne jette un chat au plafond.",
|
43 |
"Une personne est en train de plier un morceau de papier.",
|
44 |
]
|
45 |
+
|
46 |
embeddings = model.encode(sentences)
|
47 |
+
```
|
48 |
+
|
49 |
+
## Evaluation
|
50 |
+
The model can be evaluated as follows on the French test data of stsb.
|
51 |
+
|
52 |
+
```python
|
53 |
+
from sentence_transformers import SentenceTransformer
|
54 |
+
from sentence_transformers.readers import InputExample
|
55 |
+
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
|
56 |
+
from datasets import load_dataset
|
57 |
+
def convert_dataset(dataset):
|
58 |
+
dataset_samples=[]
|
59 |
+
for df in dataset:
|
60 |
+
score = float(df['similarity_score'])/5.0 # Normalize score to range 0 ... 1
|
61 |
+
inp_example = InputExample(texts=[df['sentence1'],
|
62 |
+
df['sentence2']], label=score)
|
63 |
+
dataset_samples.append(inp_example)
|
64 |
+
return dataset_samples
|
65 |
+
|
66 |
+
# Loading the dataset for evaluation
|
67 |
+
df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev")
|
68 |
+
df_test = load_dataset("stsb_multi_mt", name="fr", split="test")
|
69 |
+
|
70 |
+
# Convert the dataset for evaluation
|
71 |
+
|
72 |
+
# For Dev set:
|
73 |
+
dev_samples = convert_dataset(df_dev)
|
74 |
+
val_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
|
75 |
+
val_evaluator(model, output_path="./")
|
76 |
+
|
77 |
+
# For Test set:
|
78 |
+
test_samples = convert_dataset(df_test)
|
79 |
+
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
|
80 |
+
test_evaluator(model, output_path="./")
|
81 |
+
```
|
82 |
+
|
83 |
+
**Test Result**:
|
84 |
+
The performance is measured using Pearson and Spearman correlation on the sts-benchmark:
|
85 |
+
- On dev
|
86 |
+
|
87 |
+
|
88 |
+
| Model | Pearson correlation | Spearman correlation | #params |
|
89 |
+
| ------------- | ------------- | ------------- |------------- |
|
90 |
+
| [Lajavaness/sentence-flaubert-base](https://huggingface.co/Lajavaness/sentence-flaubert-base)| 87.14 |87.10 | 137M |
|
91 |
+
| [Lajavaness/sentence-camembert-base](https://huggingface.co/Lajavaness/sentence-camembert-base)| 86.88 |86.73 | 110M |
|
92 |
+
| [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base)| 86.73 |86.54 | 110M |
|
93 |
+
[inokufu/flaubert-base-uncased-xnli-sts](https://huggingface.co/inokufu/flaubert-base-uncased-xnli-sts)| 85.85 |85.71 | 137M |
|
94 |
+
| [distiluse-base-multilingual-cased](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 79.22 | 79.16|135M |
|
95 |
+
|
96 |
+
|
97 |
+
- On test: Pearson and Spearman correlation are evaluated on many different benchmarks dataset:
|
98 |
+
|
99 |
+
**Pearson score**
|
100 |
+
| Model | [STS-B](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train) | [STS12-fr ](https://huggingface.co/datasets/Lajavaness/STS12-fr)| [STS13-fr](https://huggingface.co/datasets/Lajavaness/STS13-fr) | [STS14-fr](https://huggingface.co/datasets/Lajavaness/STS14-fr) | [STS15-fr](https://huggingface.co/datasets/Lajavaness/STS15-fr) | [STS16-fr](https://huggingface.co/datasets/Lajavaness/STS16-fr) | [SICK-fr](https://huggingface.co/datasets/Lajavaness/SICK-fr) | params |
|
101 |
+
|-----------------------------------------------------------|---------|----------|----------|----------|----------|----------|---------|--------|
|
102 |
+
| [Lajavaness/sentence-flaubert-base](https://huggingface.co/Lajavaness/sentence-flaubert-base) | 85.5 | 86.64 | 87.24 | 85.68 | 88.00 | 75.78 | 82.84 | 110M |
|
103 |
+
| [Lajavaness/sentence-camembert-base](https://huggingface.co/Lajavaness/sentence-camembert-base) | 83.46 | 84.49 | 84.61 | 83.94 | 86.94 | 75.20 | 82.86 | 110M |
|
104 |
+
| [inokufu/flaubert-base-uncased-xnli-sts](https://huggingface.co/inokufu/flaubert-base-uncased-xnli-sts) | 82.82 | 84.79 | 85.76 | 82.81 | 85.38 | 74.05 | 82.23 | 137M |
|
105 |
+
| [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base) | 82.36 | 82.06 | 84.08 | 81.51 | 85.54 | 73.97 | 80.91 | 110M |
|
106 |
+
| [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased)| 78.63 | 72.51 | 67.25 | 70.12 | 79.93 | 66.67 | 77.76 | 135M |
|
107 |
+
| [hugorosen/flaubert_base_uncased-xnli-sts](https://huggingface.co/hugorosen/flaubert_base_uncased-xnli-sts) | 78.38 | 79.00 | 77.61 | 76.56 | 79.03 | 71.22 | 80.58 | 137M |
|
108 |
+
| [antoinelouis/biencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-base-mmarcoFR) | 76.97 | 71.43 | 73.50 | 70.56 | 78.44 | 71.23 | 77.62 | 110M |
|
109 |
+
|
110 |
+
|
111 |
+
**Spearman score**
|
112 |
+
| Model | [STS-B](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train) | [STS12-fr ](https://huggingface.co/datasets/Lajavaness/STS12-fr)| [STS13-fr](https://huggingface.co/datasets/Lajavaness/STS13-fr) | [STS14-fr](https://huggingface.co/datasets/Lajavaness/STS14-fr) | [STS15-fr](https://huggingface.co/datasets/Lajavaness/STS15-fr) | [STS16-fr](https://huggingface.co/datasets/Lajavaness/STS16-fr) | [SICK-fr](https://huggingface.co/datasets/Lajavaness/SICK-fr) | params |
|
113 |
+
|-----------------------------------------------------------|---------|----------|----------|----------|----------|----------|---------|--------|
|
114 |
+
| [Lajavaness/sentence-flaubert-base](https://huggingface.co/Lajavaness/sentence-flaubert-base) | 85.67 | 80.00 | 86.91 | 84.59 | 88.10 | 77.84 | 77.55 | 110M |
|
115 |
+
| [inokufu/flaubert-base-uncased-xnli-sts](https://huggingface.co/inokufu/flaubert-base-uncased-xnli-sts) | 83.07 | 77.34 | 85.88 | 80.96 | 85.70 | 76.43 | 77.00 | 137M |
|
116 |
+
| [Lajavaness/sentence-camembert-base](https://huggingface.co/Lajavaness/sentence-camembert-base) | 82.92 | 77.71 | 84.19 | 81.83 | 87.04 | 76.81 | 76.36 | 110M |
|
117 |
+
| [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-base) | 81.64 | 75.45 | 83.86 | 78.63 | 85.66 | 75.36 | 74.18 | 110M |
|
118 |
+
| [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased) | 77.49 | 69.80 | 68.85 | 68.17 | 80.27 | 70.04 | 72.49 | 135M |
|
119 |
+
| [hugorosen/flaubert_base_uncased-xnli-sts](https://huggingface.co/hugorosen/flaubert_base_uncased-xnli-sts) | 76.93 | 68.96 | 77.62 | 71.87 | 79.33 | 72.86 | 73.91 | 137M |
|
120 |
+
| [antoinelouis/biencoder-camembert-base-mmarcoFR](https://huggingface.co/antoinelouis/biencoder-camembert-base-mmarcoFR) | 75.55 | 66.89 | 73.90 | 67.14 | 78.78 | 72.64 | 72.03 | 110M |
|
121 |
+
|
122 |
+
|
123 |
+
## Citation
|
124 |
+
|
125 |
+
|
126 |
+
@article{reimers2019sentence,
|
127 |
+
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
|
128 |
+
author={Nils Reimers, Iryna Gurevych},
|
129 |
+
journal={https://arxiv.org/abs/1908.10084},
|
130 |
+
year={2019}
|
131 |
+
}
|
132 |
+
|
133 |
+
|
134 |
+
@article{martin2020camembert,
|
135 |
+
title={CamemBERT: a Tasty French Language Mode},
|
136 |
+
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
|
137 |
+
journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
138 |
+
year={2020}
|
139 |
+
}
|
140 |
+
@article{thakur2020augmented,
|
141 |
+
title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
|
142 |
+
author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
|
143 |
+
journal={arXiv e-prints},
|
144 |
+
pages={arXiv--2010},
|
145 |
+
year={2020}
|