Laide commited on
Commit
5f1f959
·
1 Parent(s): b44d089

Upload LunarLander-v2 PPO trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 275.25 +/- 27.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f22597f1e10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f22597f1ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f22597f1f30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f22597f1fc0>", "_build": "<function ActorCriticPolicy._build at 0x7f22597f2050>", "forward": "<function ActorCriticPolicy.forward at 0x7f22597f20e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f22597f2170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f22597f2200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f22597f2290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f22597f2320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f22597f23b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f22597f2440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f22597f95c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685089948713515149, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEossj5o9V0/16EQPronK7+gN9c+Z0HLvQAAAAAAAAAATYFkvbie77mhNUo7mpRSNaLNoDtbVUc0AACAPwAAAAAN5Dc+BHR4PuPeD79tsHy+jaZfPZ61rr4AAAAAAAAAAM1sI76cdoM/IJrZvk6mK7+cmpC+sI9vvgAAAAAAAAAAJsPlPTL9tT/UCRM/Ut9MvgQn3D37pJQ+AAAAAAAAAACNIYu9e/6nun23Bz3Xdo48a50OvK1rdz0AAIA/AACAP5qejT0htmA+Br8GvjBHlb5dFAq7FfWovQAAAAAAAAAAZnG0PIDUoj++YEU+uYg0v98QBDz6Hrk9AAAAAAAAAAAAW8q8gJinP18AOb6axAG/Fxd7vUua5b0AAAAAAAAAAGZ20bpSWP25H5M/sxarMzAwugW7ZZfDMwAAgD8AAIA/Zm9tPW1YkD66iiu9JwDRvquyIT1bnYu8AAAAAAAAAABzagm+l7E3P73d5bzA8hu/rL5ZvjfXgD0AAAAAAAAAAEBqiz3DqS66Pf/Cu4vvxjjoYEs79u9qOAAAgD8AAIA/5uIWva6RqboYC/SzMDUmrU8AnjheA6ozAACAPwAAgD+a2Sm8CnczuRt4yDer+msy47jyupWP8bYAAIA/AACAPzNztbncJzG8Bp1ZvUzeCTztT5c9NejtvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUkvNeMQ3CMAWyUTegDjAF0lEdAmxIdn5BToHV9lChoBkdAcUdhN/OMVGgHS9RoCEdAmxKxTCLuQnV9lChoBkdAcnsoSL61s2gHS+9oCEdAmxNhTGYKIHV9lChoBkdAc6rWxyGSIWgHS+loCEdAmxNepn6EanV9lChoBkdAc4HtHQQcxWgHS9JoCEdAmxN1rM1TBXV9lChoBkdAcOzB2OhkAmgHS/ZoCEdAmxSdZ/0/W3V9lChoBkdAcOUGcWj46GgHS/NoCEdAmxV0PMB6r3V9lChoBkdASW9jbzshPmgHS4toCEdAmxadyDIzWXV9lChoBkdAcvgT1kDp1WgHS+NoCEdAmxcl+NLlFXV9lChoBkdAcUJ3vhIe5mgHS7RoCEdAmxhaMir1d3V9lChoBkdAcwTjRlYlp2gHS9loCEdAmxjNqk/KQ3V9lChoBkdAcMkzOoo/imgHS8xoCEdAmxk1uvUz9HV9lChoBkdAcdYte2NNrWgHS9toCEdAmxr5RTCLuXV9lChoBkdAcFzW912aD2gHTRABaAhHQJsa+fTTfBN1fZQoaAZHQHH03BtUGV1oB0uzaAhHQJsbM7jkuHx1fZQoaAZHQHMgMEidJ8RoB0vzaAhHQJsbl+d9Ujt1fZQoaAZHQHPFCpNsWO9oB0u8aAhHQJsbpPbfxc51fZQoaAZHQHJAKWC2+f1oB0vPaAhHQJsbs4zabnZ1fZQoaAZHQHFm/fwZwXJoB0vZaAhHQJscrC53C9B1fZQoaAZHQGS4ZTIeYD1oB03oA2gIR0CbHM4tHxz8dX2UKGgGR0ByUlbiZOSGaAdLyGgIR0CbHSc9nscAdX2UKGgGR0BxLWlHjIaMaAdLvWgIR0CbHmBbfP5YdX2UKGgGR0ByrsG7jDKpaAdNBQFoCEdAmyAzPGACn3V9lChoBkdAUDOoFV1fV2gHS3toCEdAmyBIxk/bCnV9lChoBkdAcCpidJ8OTmgHS8toCEdAmyCA8OkLyHV9lChoBkdAcIvZMcp9Z2gHS+hoCEdAmyCUFOfukXV9lChoBkdAbtgzMzMzM2gHS8ZoCEdAmyCsoH9m6HV9lChoBkdAbedOJLuhK2gHS9RoCEdAmyF71uivgXV9lChoBkdAdBnEjPfKp2gHTaQBaAhHQJsjXevZAY51fZQoaAZHQHNtNTDO1OVoB0vjaAhHQJtYLIn0Cih1fZQoaAZHQHHS3jyWiURoB0vkaAhHQJtYvck+otN1fZQoaAZHQHBYC704BFNoB0vxaAhHQJtYxuWKMvR1fZQoaAZHQG6f2Af+0gNoB0vVaAhHQJtZKLLpzLh1fZQoaAZHQHEWXWSU1Q9oB0v4aAhHQJtZTGKhtch1fZQoaAZHQHERG7rcCYFoB0vmaAhHQJtZ9NM495h1fZQoaAZHQG7QHRsuWbBoB0vzaAhHQJtZ8PCl7+l1fZQoaAZHQHD1Qh4dIXloB0vCaAhHQJtbOMIeHSF1fZQoaAZHQHGE7MgU1yhoB00UAWgIR0CbXGtm+TNddX2UKGgGR0B0IwnAqNIcaAdL8mgIR0CbXTmaH9FXdX2UKGgGR0BxJ5cophF3aAdL/mgIR0CbXZL+xW1ddX2UKGgGR0Bxmbd1uBMBaAdL6mgIR0CbXcK8+RozdX2UKGgGR0ByTN3LV4HHaAdNEgFoCEdAm1350W/JvHV9lChoBkdAbrBxx1gYxmgHS9VoCEdAm17oQSSNfnV9lChoBkdAb6ibLEDQq2gHTSoBaAhHQJte82LpA2R1fZQoaAZHQHHncnE2pAFoB0vjaAhHQJtfArEtNBZ1fZQoaAZHQHG2Bt52QnxoB0u4aAhHQJtfIUzsQd11fZQoaAZHQG24XxvvSc9oB0vjaAhHQJtf1LmITGp1fZQoaAZHQHJlj0QK8cxoB0vWaAhHQJtf1Muez2R1fZQoaAZHQHLHIlpoK2NoB0vBaAhHQJtgAuzyBkJ1fZQoaAZHQEwjtZ3cHnloB0ueaAhHQJtgRP2wmmd1fZQoaAZHQHOTQOe8PFxoB00eAWgIR0CbYZcFhXr/dX2UKGgGR0BxaCLAHmihaAdL+WgIR0CbYbcoYvWZdX2UKGgGR0BD297v5P/JaAdLg2gIR0CbYtJRfnfVdX2UKGgGR0BwXIQ6IWP+aAdL1mgIR0CbYxIEbHZLdX2UKGgGR0BLFtiYsunNaAdLlmgIR0CbY3bHZK4AdX2UKGgGR0BzIiSW7e2vaAdLvmgIR0CbY7YXwb2ldX2UKGgGR0ByOjOJLuhLaAdL8WgIR0CbZP4+r2g4dX2UKGgGR0BwJb4REnb7aAdL7WgIR0CbZQtLL6k7dX2UKGgGR0BxTuQ9zOopaAdL/GgIR0CbZQwHqu8sdX2UKGgGR0ByvrscABDHaAdL02gIR0CbZlvAXVLBdX2UKGgGR0ByCDe54GD+aAdLxmgIR0CbZmlnh86WdX2UKGgGR0ByBC3Td+G5aAdNBwFoCEdAm2b7dBSk03V9lChoBkdATw/VwxWT5mgHS7BoCEdAm2c8/IKc/nV9lChoBkdAczEiILw4KmgHS+toCEdAm2dP0RODa3V9lChoBkdAb9VJI1+AmWgHS/JoCEdAm2decDr7f3V9lChoBkdAcNAfcN6PbWgHS9toCEdAm2hwo9cKPXV9lChoBkdAVLKFGoaUA2gHS4hoCEdAm2lQyRB/qnV9lChoBkdAcLhMfigkC2gHS8doCEdAm2nRX0XgtXV9lChoBkdAcD2Jk5IYnGgHS9doCEdAm2nmpAD7qXV9lChoBkdAcQCBAfMfR2gHS+1oCEdAm2pYYm9g4XV9lChoBkdAbmsFZgXuV2gHS+NoCEdAm2ryeumrKnV9lChoBkdAZeLIuoP07WgHTYoBaAhHQJtrWvdM0xd1fZQoaAZHQFKNVQyhzvJoB0uQaAhHQJtrgrjHXEt1fZQoaAZHQG94QF1SwW5oB0vYaAhHQJtrzpQk5ZN1fZQoaAZHQHCD8Nx2jfxoB0vmaAhHQJtsNPfsNUh1fZQoaAZHQG8rc/D+BH1oB0u/aAhHQJtsWvaDf3x1fZQoaAZHQHNadNvfj0doB0vQaAhHQJts3yZrpJR1fZQoaAZHQHF3AazeGfxoB0vhaAhHQJtuMHqu8sd1fZQoaAZHQHJOX1nM+vBoB0voaAhHQJtugqqfe1t1fZQoaAZHQHK57Nr0rbxoB0v7aAhHQJtvMeJYT0x1fZQoaAZHQHGQMWbgCOpoB0v6aAhHQJtwXAVO9Fp1fZQoaAZHQGPMt0vGp/BoB03oA2gIR0CbcF0oBq9HdX2UKGgGR0Bx5HRE4NqhaAdLxmgIR0CbcI7FsHjZdX2UKGgGR0BxeX4sVclgaAdL7GgIR0CbcSOXE61cdX2UKGgGR0Bx35F2FFlTaAdL62gIR0CbcS41P3zudX2UKGgGR0BwhcYekpI+aAdNCgFoCEdAm3GPJiiItXV9lChoBkdAcVM3pOerdWgHS8xoCEdAm3Geq7yxzXV9lChoBkdAcgXK0D2alWgHS9toCEdAm3Go2GZeA3V9lChoBkdAc3bJ7LMcImgHS9poCEdAm3JcCYCyQnV9lChoBkdAcKQchTwUg2gHS9doCEdAm3LBPKuB+XV9lChoBkdAcbSu7pV0cWgHS/RoCEdAm3LHxJ/XoXV9lChoBkdAbzeFEAo5P2gHS/loCEdAm3OBoduHe3V9lChoBkdAcdK+so2GZmgHS+1oCEdAm3PVdC3PRnV9lChoBkdAcVoL3sXzlWgHS8ZoCEdAm3PujdpItnV9lChoBkdAb0knndO6/mgHS9VoCEdAm3Unb/Ot4nV9lChoBkdAcmfI1tO2zGgHS/NoCEdAm3Vm29cry3V9lChoBkdAbrUt6ol2NmgHS9hoCEdAm3Yscp9ZzXV9lChoBkdAcWW0uUUwjGgHS91oCEdAm3aCJXQtz3V9lChoBkdAciwK9f1Hv2gHS8toCEdAm3aieNDMNnV9lChoBkdAUpFHy3CsO2gHS5FoCEdAm3a3n6l+E3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e15ba675e583121208ea5c8d0042d3ca66b6b6a296bad0627a81f96ca77ca053
3
+ size 146644
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f22597f1e10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f22597f1ea0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f22597f1f30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f22597f1fc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f22597f2050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f22597f20e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f22597f2170>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f22597f2200>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f22597f2290>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f22597f2320>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f22597f23b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f22597f2440>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f22597f95c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1685089948713515149,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEossj5o9V0/16EQPronK7+gN9c+Z0HLvQAAAAAAAAAATYFkvbie77mhNUo7mpRSNaLNoDtbVUc0AACAPwAAAAAN5Dc+BHR4PuPeD79tsHy+jaZfPZ61rr4AAAAAAAAAAM1sI76cdoM/IJrZvk6mK7+cmpC+sI9vvgAAAAAAAAAAJsPlPTL9tT/UCRM/Ut9MvgQn3D37pJQ+AAAAAAAAAACNIYu9e/6nun23Bz3Xdo48a50OvK1rdz0AAIA/AACAP5qejT0htmA+Br8GvjBHlb5dFAq7FfWovQAAAAAAAAAAZnG0PIDUoj++YEU+uYg0v98QBDz6Hrk9AAAAAAAAAAAAW8q8gJinP18AOb6axAG/Fxd7vUua5b0AAAAAAAAAAGZ20bpSWP25H5M/sxarMzAwugW7ZZfDMwAAgD8AAIA/Zm9tPW1YkD66iiu9JwDRvquyIT1bnYu8AAAAAAAAAABzagm+l7E3P73d5bzA8hu/rL5ZvjfXgD0AAAAAAAAAAEBqiz3DqS66Pf/Cu4vvxjjoYEs79u9qOAAAgD8AAIA/5uIWva6RqboYC/SzMDUmrU8AnjheA6ozAACAPwAAgD+a2Sm8CnczuRt4yDer+msy47jyupWP8bYAAIA/AACAPzNztbncJzG8Bp1ZvUzeCTztT5c9NejtvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUkvNeMQ3CMAWyUTegDjAF0lEdAmxIdn5BToHV9lChoBkdAcUdhN/OMVGgHS9RoCEdAmxKxTCLuQnV9lChoBkdAcnsoSL61s2gHS+9oCEdAmxNhTGYKIHV9lChoBkdAc6rWxyGSIWgHS+loCEdAmxNepn6EanV9lChoBkdAc4HtHQQcxWgHS9JoCEdAmxN1rM1TBXV9lChoBkdAcOzB2OhkAmgHS/ZoCEdAmxSdZ/0/W3V9lChoBkdAcOUGcWj46GgHS/NoCEdAmxV0PMB6r3V9lChoBkdASW9jbzshPmgHS4toCEdAmxadyDIzWXV9lChoBkdAcvgT1kDp1WgHS+NoCEdAmxcl+NLlFXV9lChoBkdAcUJ3vhIe5mgHS7RoCEdAmxhaMir1d3V9lChoBkdAcwTjRlYlp2gHS9loCEdAmxjNqk/KQ3V9lChoBkdAcMkzOoo/imgHS8xoCEdAmxk1uvUz9HV9lChoBkdAcdYte2NNrWgHS9toCEdAmxr5RTCLuXV9lChoBkdAcFzW912aD2gHTRABaAhHQJsa+fTTfBN1fZQoaAZHQHH03BtUGV1oB0uzaAhHQJsbM7jkuHx1fZQoaAZHQHMgMEidJ8RoB0vzaAhHQJsbl+d9Ujt1fZQoaAZHQHPFCpNsWO9oB0u8aAhHQJsbpPbfxc51fZQoaAZHQHJAKWC2+f1oB0vPaAhHQJsbs4zabnZ1fZQoaAZHQHFm/fwZwXJoB0vZaAhHQJscrC53C9B1fZQoaAZHQGS4ZTIeYD1oB03oA2gIR0CbHM4tHxz8dX2UKGgGR0ByUlbiZOSGaAdLyGgIR0CbHSc9nscAdX2UKGgGR0BxLWlHjIaMaAdLvWgIR0CbHmBbfP5YdX2UKGgGR0ByrsG7jDKpaAdNBQFoCEdAmyAzPGACn3V9lChoBkdAUDOoFV1fV2gHS3toCEdAmyBIxk/bCnV9lChoBkdAcCpidJ8OTmgHS8toCEdAmyCA8OkLyHV9lChoBkdAcIvZMcp9Z2gHS+hoCEdAmyCUFOfukXV9lChoBkdAbtgzMzMzM2gHS8ZoCEdAmyCsoH9m6HV9lChoBkdAbedOJLuhK2gHS9RoCEdAmyF71uivgXV9lChoBkdAdBnEjPfKp2gHTaQBaAhHQJsjXevZAY51fZQoaAZHQHNtNTDO1OVoB0vjaAhHQJtYLIn0Cih1fZQoaAZHQHHS3jyWiURoB0vkaAhHQJtYvck+otN1fZQoaAZHQHBYC704BFNoB0vxaAhHQJtYxuWKMvR1fZQoaAZHQG6f2Af+0gNoB0vVaAhHQJtZKLLpzLh1fZQoaAZHQHEWXWSU1Q9oB0v4aAhHQJtZTGKhtch1fZQoaAZHQHERG7rcCYFoB0vmaAhHQJtZ9NM495h1fZQoaAZHQG7QHRsuWbBoB0vzaAhHQJtZ8PCl7+l1fZQoaAZHQHD1Qh4dIXloB0vCaAhHQJtbOMIeHSF1fZQoaAZHQHGE7MgU1yhoB00UAWgIR0CbXGtm+TNddX2UKGgGR0B0IwnAqNIcaAdL8mgIR0CbXTmaH9FXdX2UKGgGR0BxJ5cophF3aAdL/mgIR0CbXZL+xW1ddX2UKGgGR0Bxmbd1uBMBaAdL6mgIR0CbXcK8+RozdX2UKGgGR0ByTN3LV4HHaAdNEgFoCEdAm1350W/JvHV9lChoBkdAbrBxx1gYxmgHS9VoCEdAm17oQSSNfnV9lChoBkdAb6ibLEDQq2gHTSoBaAhHQJte82LpA2R1fZQoaAZHQHHncnE2pAFoB0vjaAhHQJtfArEtNBZ1fZQoaAZHQHG2Bt52QnxoB0u4aAhHQJtfIUzsQd11fZQoaAZHQG24XxvvSc9oB0vjaAhHQJtf1LmITGp1fZQoaAZHQHJlj0QK8cxoB0vWaAhHQJtf1Muez2R1fZQoaAZHQHLHIlpoK2NoB0vBaAhHQJtgAuzyBkJ1fZQoaAZHQEwjtZ3cHnloB0ueaAhHQJtgRP2wmmd1fZQoaAZHQHOTQOe8PFxoB00eAWgIR0CbYZcFhXr/dX2UKGgGR0BxaCLAHmihaAdL+WgIR0CbYbcoYvWZdX2UKGgGR0BD297v5P/JaAdLg2gIR0CbYtJRfnfVdX2UKGgGR0BwXIQ6IWP+aAdL1mgIR0CbYxIEbHZLdX2UKGgGR0BLFtiYsunNaAdLlmgIR0CbY3bHZK4AdX2UKGgGR0BzIiSW7e2vaAdLvmgIR0CbY7YXwb2ldX2UKGgGR0ByOjOJLuhLaAdL8WgIR0CbZP4+r2g4dX2UKGgGR0BwJb4REnb7aAdL7WgIR0CbZQtLL6k7dX2UKGgGR0BxTuQ9zOopaAdL/GgIR0CbZQwHqu8sdX2UKGgGR0ByvrscABDHaAdL02gIR0CbZlvAXVLBdX2UKGgGR0ByCDe54GD+aAdLxmgIR0CbZmlnh86WdX2UKGgGR0ByBC3Td+G5aAdNBwFoCEdAm2b7dBSk03V9lChoBkdATw/VwxWT5mgHS7BoCEdAm2c8/IKc/nV9lChoBkdAczEiILw4KmgHS+toCEdAm2dP0RODa3V9lChoBkdAb9VJI1+AmWgHS/JoCEdAm2decDr7f3V9lChoBkdAcNAfcN6PbWgHS9toCEdAm2hwo9cKPXV9lChoBkdAVLKFGoaUA2gHS4hoCEdAm2lQyRB/qnV9lChoBkdAcLhMfigkC2gHS8doCEdAm2nRX0XgtXV9lChoBkdAcD2Jk5IYnGgHS9doCEdAm2nmpAD7qXV9lChoBkdAcQCBAfMfR2gHS+1oCEdAm2pYYm9g4XV9lChoBkdAbmsFZgXuV2gHS+NoCEdAm2ryeumrKnV9lChoBkdAZeLIuoP07WgHTYoBaAhHQJtrWvdM0xd1fZQoaAZHQFKNVQyhzvJoB0uQaAhHQJtrgrjHXEt1fZQoaAZHQG94QF1SwW5oB0vYaAhHQJtrzpQk5ZN1fZQoaAZHQHCD8Nx2jfxoB0vmaAhHQJtsNPfsNUh1fZQoaAZHQG8rc/D+BH1oB0u/aAhHQJtsWvaDf3x1fZQoaAZHQHNadNvfj0doB0vQaAhHQJts3yZrpJR1fZQoaAZHQHF3AazeGfxoB0vhaAhHQJtuMHqu8sd1fZQoaAZHQHJOX1nM+vBoB0voaAhHQJtugqqfe1t1fZQoaAZHQHK57Nr0rbxoB0v7aAhHQJtvMeJYT0x1fZQoaAZHQHGQMWbgCOpoB0v6aAhHQJtwXAVO9Fp1fZQoaAZHQGPMt0vGp/BoB03oA2gIR0CbcF0oBq9HdX2UKGgGR0Bx5HRE4NqhaAdLxmgIR0CbcI7FsHjZdX2UKGgGR0BxeX4sVclgaAdL7GgIR0CbcSOXE61cdX2UKGgGR0Bx35F2FFlTaAdL62gIR0CbcS41P3zudX2UKGgGR0BwhcYekpI+aAdNCgFoCEdAm3GPJiiItXV9lChoBkdAcVM3pOerdWgHS8xoCEdAm3Geq7yxzXV9lChoBkdAcgXK0D2alWgHS9toCEdAm3Go2GZeA3V9lChoBkdAc3bJ7LMcImgHS9poCEdAm3JcCYCyQnV9lChoBkdAcKQchTwUg2gHS9doCEdAm3LBPKuB+XV9lChoBkdAcbSu7pV0cWgHS/RoCEdAm3LHxJ/XoXV9lChoBkdAbzeFEAo5P2gHS/loCEdAm3OBoduHe3V9lChoBkdAcdK+so2GZmgHS+1oCEdAm3PVdC3PRnV9lChoBkdAcVoL3sXzlWgHS8ZoCEdAm3PujdpItnV9lChoBkdAb0knndO6/mgHS9VoCEdAm3Unb/Ot4nV9lChoBkdAcmfI1tO2zGgHS/NoCEdAm3Vm29cry3V9lChoBkdAbrUt6ol2NmgHS9hoCEdAm3Yscp9ZzXV9lChoBkdAcWW0uUUwjGgHS91oCEdAm3aCJXQtz3V9lChoBkdAciwK9f1Hv2gHS8toCEdAm3aieNDMNnV9lChoBkdAUpFHy3CsO2gHS5FoCEdAm3a3n6l+E3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 620,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cd8b5a91a26f228a05d522ae54a48b0e27d70a2cd437d7d125504c98c4b46bb
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81ba90e41dff7be014ce1ade15ea469cbf2254a735a7ede411537b304263b564
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (183 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 275.24999512975626, "std_reward": 26.999655722243816, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-26T09:14:35.343479"}