ppo-LunarLander-v2 / config.json
Laide's picture
Upload LunarLander-v2 PPO trained agent
9bc126f
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f22597f1e10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f22597f1ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f22597f1f30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f22597f1fc0>", "_build": "<function ActorCriticPolicy._build at 0x7f22597f2050>", "forward": "<function ActorCriticPolicy.forward at 0x7f22597f20e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f22597f2170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f22597f2200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f22597f2290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f22597f2320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f22597f23b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f22597f2440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f22597f95c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2007808, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685093435344252419, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3yEz3TA1c/DRJbPfW2E794rJ89z0OAvAAAAAAAAAAAM2kvvbiWtz/IHLe+VPocvc9aGr1BrTm+AAAAAAAAAACAwzk9XJMYuqN/0roZgBW5mgB0ug69nzkAAIA/AACAP8N6ij7LHMM+LaKQvlMIv74cZVk+1go5vgAAAAAAAAAAAMCXuvYcR7p1c986C/DGNXxmCLoNYP65AACAPwAAgD9mm5w89NyevEz0xjvgYsy87MravS9Kgr4AAIA/AACAPxqu+71SzW8+fjuZPnMu5r7WCZk9P8QcPgAAAAAAAAAAgJOMvdIx0jxjaxo9Cy+yvl3rHLwCpnu8AAAAAAAAAABOZ4++p1RsP4lZlT0kTAa/BumyviJCGz4AAAAAAAAAAFbKgj6kqus+LURduzNUBb/Ej5c+yl3mvQAAAAAAAAAAZk72OxwYT7yi9Tq+waPAvUixNT1atQA/AACAPwAAgD8NYJ69jiOPP4NJlr5hatq+OQApvvzBgL4AAAAAAAAAAAB8azxpyFU9rWEgvsDTWr6ufWy9yky9vQAAAAAAAAAAM2+Ou8FDpryKxpA9EH3qvUyNrLz/Q6K+AACAPwAAgD8zj/C7H7i6u3rTKr3iH3u+fBGxO1PDwT4AAIA/AACAPzMpBLz+jeI9YIyCvIKepL7YHgS89hnzPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0039039999999999075, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKHzIeYD1aMAWyUS8OMAXSUR0C6zuivC/GmdX2UKGgGR0BzxyXNTtLMaAdL2GgIR0C6zveRxLkCdX2UKGgGR0BzIAipvP1MaAdLv2gIR0C6zxGhdt2tdX2UKGgGR0Bz5tosZpBYaAdL62gIR0C6z0F2V3UydX2UKGgGR0BxP8Gs3hn8aAdLxGgIR0C6z1FSbYsedX2UKGgGR0ByuRhiLEUCaAdL5WgIR0C6z3GYWtU5dX2UKGgGR0BurWzQeFL4aAdL0mgIR0C6z6WXPZ7HdX2UKGgGR0By1L2kBS1maAdL3WgIR0C6z6W6K+BZdX2UKGgGR0BvKRlFtsN2aAdL4GgIR0C6z9JVGTcJdX2UKGgGR0Bw1LMdLg4waAdLzmgIR0C6z9FfJFLGdX2UKGgGR0Bx1xCZ4Oc2aAdL2WgIR0C6z+PJ/5LzdX2UKGgGR0BuokFr2xptaAdL3WgIR0C6z+dlNDc/dX2UKGgGR0BvjrDdgv12aAdLt2gIR0C6z+qyfL9udX2UKGgGR0BzrOfNA1NyaAdL4GgIR0C60BiR4hUzdX2UKGgGR0BzMP/T9bX6aAdLwmgIR0C60Bgjps42dX2UKGgGR0BvfqjYZl4DaAdLxmgIR0C60C0tmL9/dX2UKGgGR0Byz6pXIU8FaAdL+GgIR0C60EqCpWFOdX2UKGgGR0BzX84KhL5AaAdL5mgIR0C60HBvitJWdX2UKGgGR0BxL8ONHYpVaAdLu2gIR0C60IXmJWNndX2UKGgGR0BxC1zeXRgJaAdLt2gIR0C60KAhGH58dX2UKGgGR0ByQRO32EkCaAdL+2gIR0C60K3/T9bYdX2UKGgGR0BwHI42jwhGaAdL4WgIR0C60LUmhM8HdX2UKGgGR0BwdW3DvVmSaAdL32gIR0C60Q71qWTpdX2UKGgGR0BysfoRqXWwaAdLyWgIR0C60RNxyXD4dX2UKGgGR0ByX3cEeQuFaAdLwWgIR0C60RxBeHBUdX2UKGgGR0ByXZfdAPd3aAdLzmgIR0C60Tnc580DdX2UKGgGR0ByuKy0KJEZaAdL92gIR0C60TtMTN+tdX2UKGgGR0ByvCLP2PDHaAdL4WgIR0C60VGrwOOKdX2UKGgGR0ByZp/e+Eh8aAdL7WgIR0C60VKCL/CJdX2UKGgGR0Bw1+CmMwUQaAdLv2gIR0C60WYx59mZdX2UKGgGR0Bx34fSx7iRaAdL0WgIR0C60W6yrxRVdX2UKGgGR0BxavgR9PUKaAdL0GgIR0C60ZxYvFm4dX2UKGgGR0BwFLN1QqI8aAdLvmgIR0C60aZEQXhwdX2UKGgGR0B0HX2kBS1maAdL/GgIR0C60bDp5eJIdX2UKGgGR0BwaeoLofSyaAdLyWgIR0C60cvCVKPGdX2UKGgGR0Bzbw6tDD0laAdL2GgIR0C60foLb5/LdX2UKGgGR0BxlqZuyeI3aAdL1WgIR0C60gnfQ8fWdX2UKGgGR0ByfaPwNLDiaAdL22gIR0C60g26PKdQdX2UKGgGR0ByLIMiKR+0aAdL0mgIR0C60l6gh8pkdX2UKGgGR0BwzqV+qioLaAdLwWgIR0C60mmipNsWdX2UKGgGR0BzZKaEzwc6aAdLxGgIR0C60nDXFtKqdX2UKGgGR0BzCyP5pJwsaAdL5WgIR0C60ozaXa8IdX2UKGgGR0BwqW2Dxsl+aAdL92gIR0C60qOryUcGdX2UKGgGR0BwLzaGpMpPaAdL02gIR0C60sLvw3HadX2UKGgGR0BzWFmthd+oaAdL7WgIR0C60s3v2GqQdX2UKGgGR0Bw22uHN5dGaAdL4GgIR0C60s+LvTgEdX2UKGgGR0BzbujYZl4DaAdL92gIR0C60t0KZ2IPdX2UKGgGR0BxvPdAPd2xaAdLvGgIR0C60uIwZflZdX2UKGgGR0BviMYsNDtxaAdL02gIR0C60vHkxREXdX2UKGgGR0Bv3mszVMEiaAdL3mgIR0C60wu3hGYsdX2UKGgGR0BwlwLx7RfGaAdL2GgIR0C60yZDmbLEdX2UKGgGR0BwOq8jAzpHaAdLymgIR0C600An2IwedX2UKGgGR0BwzXcEeQuFaAdLzmgIR0C601i6MBIXdX2UKGgGR0BxM3D4xk/baAdLvmgIR0C605qZ+hGpdX2UKGgGR0BzLmXokiUxaAdLsmgIR0C606lwcYIjdX2UKGgGR0Bzb0H7gsK9aAdNAgFoCEdAutOrjhky13V9lChoBkdAb+w4HX2/SGgHS81oCEdAutO49jgAInV9lChoBkdAcld2+PBBRmgHS75oCEdAutPOnIhhY3V9lChoBkdAce01og3cYmgHS+xoCEdAutPYLThHb3V9lChoBkdAcQVP1+RYBGgHS7VoCEdAutP8SL61s3V9lChoBkdAcWkeGwiaAmgHS8RoCEdAutQARQJokHV9lChoBkdAcUscwQDmsGgHS8NoCEdAutQm8scyWXV9lChoBkdActDXJYDDCWgHS+ZoCEdAutQxMFlkH3V9lChoBkdAcMcobXHzYmgHS95oCEdAutQwv38GcHV9lChoBkdAcjzjrRjSX2gHS9poCEdAutQ5kNFz+3V9lChoBkdAbotxPwd8zGgHS8JoCEdAutReW2PT5XV9lChoBkdAcxmVCXyAhGgHS+VoCEdAutR5R8+ianV9lChoBkdAc2ZHO8kD6mgHS8BoCEdAutSO69TP0XV9lChoBkdAcR8jlPrOaGgHS9JoCEdAutSSTOgQH3V9lChoBkdAcPpcm0E5hmgHS8poCEdAutTtYq5LAnV9lChoBkdAb7bmapgkT2gHS8BoCEdAutTsRh+fAnV9lChoBkdAcza7x/d69mgHS+RoCEdAutUKY7aIvnV9lChoBkdAcsbBmPHT7WgHS99oCEdAutUR9E1EVnV9lChoBkdAcIlLg4wRG2gHS9hoCEdAutU4psoDxXV9lChoBkdAcvoZnctXgmgHS+FoCEdAutU82GZeA3V9lChoBkdAcQO+6iCaqmgHS8JoCEdAutU9SwW30HV9lChoBkdAcS0UFSsKcGgHS8ZoCEdAutWBaV2RrHV9lChoBkdAcCpmlZX+2mgHS9toCEdAutWo4n4O+nV9lChoBkdAc3j1PFefI2gHS/VoCEdAutWuv/zasnV9lChoBkdAc8wn4O+ZgGgHS+RoCEdAutXbZZjhDXV9lChoBkdAcEtchC+lCWgHS8toCEdAutXbg1m8NHV9lChoBkdAcf88h9srNGgHS+9oCEdAutXp/4Irv3V9lChoBkdAcZuaYu01ImgHS9toCEdAutZD6O5rg3V9lChoBkdAcislPacqfGgHS/loCEdAutZlYcNpd3V9lChoBkdAdFjnTiKiwmgHS+9oCEdAutZti9ZieHV9lChoBkdAbe1tWMju8mgHS8xoCEdAutbXZYgaFXV9lChoBkdAbn+sq8UVSGgHS+FoCEdAutbaP8yeqnV9lChoBkdAcE1txuKoAGgHS+loCEdAutbrGLk0anV9lChoBkdAcRhoBaLXMGgHS9poCEdAutbwBJZntnV9lChoBkdAbYe0ygwoLGgHS8xoCEdAutcUfT1CgXV9lChoBkdActIJXQtz0mgHS9loCEdAutcv5gw483V9lChoBkdAcJfBhQWN3mgHS+JoCEdAutc/F+/gznV9lChoBkdAceHWkrPMS2gHS8JoCEdAutdDA+IM0HV9lChoBkdAcRXx2B8QZmgHS8BoCEdAutdkKKHfuXV9lChoBkdAc4YR1X/5tWgHS9poCEdAuteagte2NXV9lChoBkdAcHKRSxZ+yGgHS8xoCEdAute1ZB9kSXV9lChoBkdAcVcH7xd6cGgHS9NoCEdAute4ZYPoV3V9lChoBkdAcQ39NN8E3mgHS9NoCEdAute4a0hNd3V9lChoBkdAcyOLP2PDHmgHS8doCEdAutgyV0Lc9HV9lChoBkdAcQjokzGgjGgHS+FoCEdAuthSecx0uHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}