File size: 1,221 Bytes
c943cda
daf0c39
 
c943cda
daf0c39
 
 
 
c943cda
 
daf0c39
 
c943cda
daf0c39
c943cda
daf0c39
c943cda
daf0c39
c943cda
daf0c39
c943cda
daf0c39
c943cda
daf0c39
c943cda
daf0c39
c943cda
daf0c39
c943cda
daf0c39
c943cda
daf0c39
c943cda
daf0c39
 
 
 
 
 
 
 
 
 
 
 
 
 
c943cda
daf0c39
c943cda
 
 
daf0c39
c943cda
daf0c39
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: mit
base_model: BAAI/bge-large-en-v1.5
tags:
- generated_from_trainer
model-index:
- name: PMC_bge
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# PMC_bge

This model is a fine-tuned version of [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20.0

### Training results



### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1