Labib11 commited on
Commit
c85728b
·
verified ·
1 Parent(s): 43d722d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +2603 -0
README.md ADDED
@@ -0,0 +1,2603 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - mteb
8
+ model-index:
9
+ - name: SGPT-5.8B-weightedmean-msmarco-specb-bitfit
10
+ results:
11
+ - task:
12
+ type: Classification
13
+ dataset:
14
+ type: mteb/amazon_counterfactual
15
+ name: MTEB AmazonCounterfactualClassification (en)
16
+ config: en
17
+ split: test
18
+ revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996
19
+ metrics:
20
+ - type: accuracy
21
+ value: 69.22388059701493
22
+ - type: ap
23
+ value: 32.04724673950256
24
+ - type: f1
25
+ value: 63.25719825770428
26
+ - task:
27
+ type: Classification
28
+ dataset:
29
+ type: mteb/amazon_polarity
30
+ name: MTEB AmazonPolarityClassification
31
+ config: default
32
+ split: test
33
+ revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1
34
+ metrics:
35
+ - type: accuracy
36
+ value: 71.26109999999998
37
+ - type: ap
38
+ value: 66.16336378255403
39
+ - type: f1
40
+ value: 70.89719145825303
41
+ - task:
42
+ type: Classification
43
+ dataset:
44
+ type: mteb/amazon_reviews_multi
45
+ name: MTEB AmazonReviewsClassification (en)
46
+ config: en
47
+ split: test
48
+ revision: c379a6705fec24a2493fa68e011692605f44e119
49
+ metrics:
50
+ - type: accuracy
51
+ value: 39.19199999999999
52
+ - type: f1
53
+ value: 38.580766731113826
54
+ - task:
55
+ type: Retrieval
56
+ dataset:
57
+ type: arguana
58
+ name: MTEB ArguAna
59
+ config: default
60
+ split: test
61
+ revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3
62
+ metrics:
63
+ - type: map_at_1
64
+ value: 27.311999999999998
65
+ - type: map_at_10
66
+ value: 42.620000000000005
67
+ - type: map_at_100
68
+ value: 43.707
69
+ - type: map_at_1000
70
+ value: 43.714999999999996
71
+ - type: map_at_3
72
+ value: 37.624
73
+ - type: map_at_5
74
+ value: 40.498
75
+ - type: mrr_at_1
76
+ value: 27.667
77
+ - type: mrr_at_10
78
+ value: 42.737
79
+ - type: mrr_at_100
80
+ value: 43.823
81
+ - type: mrr_at_1000
82
+ value: 43.830999999999996
83
+ - type: mrr_at_3
84
+ value: 37.743
85
+ - type: mrr_at_5
86
+ value: 40.616
87
+ - type: ndcg_at_1
88
+ value: 27.311999999999998
89
+ - type: ndcg_at_10
90
+ value: 51.37500000000001
91
+ - type: ndcg_at_100
92
+ value: 55.778000000000006
93
+ - type: ndcg_at_1000
94
+ value: 55.96600000000001
95
+ - type: ndcg_at_3
96
+ value: 41.087
97
+ - type: ndcg_at_5
98
+ value: 46.269
99
+ - type: precision_at_1
100
+ value: 27.311999999999998
101
+ - type: precision_at_10
102
+ value: 7.945
103
+ - type: precision_at_100
104
+ value: 0.9820000000000001
105
+ - type: precision_at_1000
106
+ value: 0.1
107
+ - type: precision_at_3
108
+ value: 17.046
109
+ - type: precision_at_5
110
+ value: 12.745000000000001
111
+ - type: recall_at_1
112
+ value: 27.311999999999998
113
+ - type: recall_at_10
114
+ value: 79.445
115
+ - type: recall_at_100
116
+ value: 98.151
117
+ - type: recall_at_1000
118
+ value: 99.57300000000001
119
+ - type: recall_at_3
120
+ value: 51.13799999999999
121
+ - type: recall_at_5
122
+ value: 63.727000000000004
123
+ - task:
124
+ type: Clustering
125
+ dataset:
126
+ type: mteb/arxiv-clustering-p2p
127
+ name: MTEB ArxivClusteringP2P
128
+ config: default
129
+ split: test
130
+ revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8
131
+ metrics:
132
+ - type: v_measure
133
+ value: 45.59037428592033
134
+ - task:
135
+ type: Clustering
136
+ dataset:
137
+ type: mteb/arxiv-clustering-s2s
138
+ name: MTEB ArxivClusteringS2S
139
+ config: default
140
+ split: test
141
+ revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3
142
+ metrics:
143
+ - type: v_measure
144
+ value: 38.86371701986363
145
+ - task:
146
+ type: Reranking
147
+ dataset:
148
+ type: mteb/askubuntudupquestions-reranking
149
+ name: MTEB AskUbuntuDupQuestions
150
+ config: default
151
+ split: test
152
+ revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c
153
+ metrics:
154
+ - type: map
155
+ value: 61.625568691427766
156
+ - type: mrr
157
+ value: 75.83256386580486
158
+ - task:
159
+ type: STS
160
+ dataset:
161
+ type: mteb/biosses-sts
162
+ name: MTEB BIOSSES
163
+ config: default
164
+ split: test
165
+ revision: 9ee918f184421b6bd48b78f6c714d86546106103
166
+ metrics:
167
+ - type: cos_sim_pearson
168
+ value: 89.96074355094802
169
+ - type: cos_sim_spearman
170
+ value: 86.2501580394454
171
+ - type: euclidean_pearson
172
+ value: 82.18427440380462
173
+ - type: euclidean_spearman
174
+ value: 80.14760935017947
175
+ - type: manhattan_pearson
176
+ value: 82.24621578156392
177
+ - type: manhattan_spearman
178
+ value: 80.00363016590163
179
+ - task:
180
+ type: Classification
181
+ dataset:
182
+ type: mteb/banking77
183
+ name: MTEB Banking77Classification
184
+ config: default
185
+ split: test
186
+ revision: 44fa15921b4c889113cc5df03dd4901b49161ab7
187
+ metrics:
188
+ - type: accuracy
189
+ value: 84.49350649350649
190
+ - type: f1
191
+ value: 84.4249343233736
192
+ - task:
193
+ type: Clustering
194
+ dataset:
195
+ type: mteb/biorxiv-clustering-p2p
196
+ name: MTEB BiorxivClusteringP2P
197
+ config: default
198
+ split: test
199
+ revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55
200
+ metrics:
201
+ - type: v_measure
202
+ value: 36.551459722989385
203
+ - task:
204
+ type: Clustering
205
+ dataset:
206
+ type: mteb/biorxiv-clustering-s2s
207
+ name: MTEB BiorxivClusteringS2S
208
+ config: default
209
+ split: test
210
+ revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1
211
+ metrics:
212
+ - type: v_measure
213
+ value: 33.69901851846774
214
+ - task:
215
+ type: Retrieval
216
+ dataset:
217
+ type: BeIR/cqadupstack
218
+ name: MTEB CQADupstackAndroidRetrieval
219
+ config: default
220
+ split: test
221
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
222
+ metrics:
223
+ - type: map_at_1
224
+ value: 30.499
225
+ - type: map_at_10
226
+ value: 41.208
227
+ - type: map_at_100
228
+ value: 42.638
229
+ - type: map_at_1000
230
+ value: 42.754
231
+ - type: map_at_3
232
+ value: 37.506
233
+ - type: map_at_5
234
+ value: 39.422000000000004
235
+ - type: mrr_at_1
236
+ value: 37.339
237
+ - type: mrr_at_10
238
+ value: 47.051
239
+ - type: mrr_at_100
240
+ value: 47.745
241
+ - type: mrr_at_1000
242
+ value: 47.786
243
+ - type: mrr_at_3
244
+ value: 44.086999999999996
245
+ - type: mrr_at_5
246
+ value: 45.711
247
+ - type: ndcg_at_1
248
+ value: 37.339
249
+ - type: ndcg_at_10
250
+ value: 47.666
251
+ - type: ndcg_at_100
252
+ value: 52.994
253
+ - type: ndcg_at_1000
254
+ value: 54.928999999999995
255
+ - type: ndcg_at_3
256
+ value: 41.982
257
+ - type: ndcg_at_5
258
+ value: 44.42
259
+ - type: precision_at_1
260
+ value: 37.339
261
+ - type: precision_at_10
262
+ value: 9.127
263
+ - type: precision_at_100
264
+ value: 1.4749999999999999
265
+ - type: precision_at_1000
266
+ value: 0.194
267
+ - type: precision_at_3
268
+ value: 20.076
269
+ - type: precision_at_5
270
+ value: 14.449000000000002
271
+ - type: recall_at_1
272
+ value: 30.499
273
+ - type: recall_at_10
274
+ value: 60.328
275
+ - type: recall_at_100
276
+ value: 82.57900000000001
277
+ - type: recall_at_1000
278
+ value: 95.074
279
+ - type: recall_at_3
280
+ value: 44.17
281
+ - type: recall_at_5
282
+ value: 50.94
283
+ - task:
284
+ type: Retrieval
285
+ dataset:
286
+ type: BeIR/cqadupstack
287
+ name: MTEB CQADupstackEnglishRetrieval
288
+ config: default
289
+ split: test
290
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
291
+ metrics:
292
+ - type: map_at_1
293
+ value: 30.613
294
+ - type: map_at_10
295
+ value: 40.781
296
+ - type: map_at_100
297
+ value: 42.018
298
+ - type: map_at_1000
299
+ value: 42.132999999999996
300
+ - type: map_at_3
301
+ value: 37.816
302
+ - type: map_at_5
303
+ value: 39.389
304
+ - type: mrr_at_1
305
+ value: 38.408
306
+ - type: mrr_at_10
307
+ value: 46.631
308
+ - type: mrr_at_100
309
+ value: 47.332
310
+ - type: mrr_at_1000
311
+ value: 47.368
312
+ - type: mrr_at_3
313
+ value: 44.384
314
+ - type: mrr_at_5
315
+ value: 45.661
316
+ - type: ndcg_at_1
317
+ value: 38.408
318
+ - type: ndcg_at_10
319
+ value: 46.379999999999995
320
+ - type: ndcg_at_100
321
+ value: 50.81
322
+ - type: ndcg_at_1000
323
+ value: 52.663000000000004
324
+ - type: ndcg_at_3
325
+ value: 42.18
326
+ - type: ndcg_at_5
327
+ value: 43.974000000000004
328
+ - type: precision_at_1
329
+ value: 38.408
330
+ - type: precision_at_10
331
+ value: 8.656
332
+ - type: precision_at_100
333
+ value: 1.3860000000000001
334
+ - type: precision_at_1000
335
+ value: 0.184
336
+ - type: precision_at_3
337
+ value: 20.276
338
+ - type: precision_at_5
339
+ value: 14.241999999999999
340
+ - type: recall_at_1
341
+ value: 30.613
342
+ - type: recall_at_10
343
+ value: 56.44
344
+ - type: recall_at_100
345
+ value: 75.044
346
+ - type: recall_at_1000
347
+ value: 86.426
348
+ - type: recall_at_3
349
+ value: 43.766
350
+ - type: recall_at_5
351
+ value: 48.998000000000005
352
+ - task:
353
+ type: Retrieval
354
+ dataset:
355
+ type: BeIR/cqadupstack
356
+ name: MTEB CQADupstackGamingRetrieval
357
+ config: default
358
+ split: test
359
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
360
+ metrics:
361
+ - type: map_at_1
362
+ value: 37.370999999999995
363
+ - type: map_at_10
364
+ value: 49.718
365
+ - type: map_at_100
366
+ value: 50.737
367
+ - type: map_at_1000
368
+ value: 50.79
369
+ - type: map_at_3
370
+ value: 46.231
371
+ - type: map_at_5
372
+ value: 48.329
373
+ - type: mrr_at_1
374
+ value: 42.884
375
+ - type: mrr_at_10
376
+ value: 53.176
377
+ - type: mrr_at_100
378
+ value: 53.81700000000001
379
+ - type: mrr_at_1000
380
+ value: 53.845
381
+ - type: mrr_at_3
382
+ value: 50.199000000000005
383
+ - type: mrr_at_5
384
+ value: 52.129999999999995
385
+ - type: ndcg_at_1
386
+ value: 42.884
387
+ - type: ndcg_at_10
388
+ value: 55.826
389
+ - type: ndcg_at_100
390
+ value: 59.93000000000001
391
+ - type: ndcg_at_1000
392
+ value: 61.013
393
+ - type: ndcg_at_3
394
+ value: 49.764
395
+ - type: ndcg_at_5
396
+ value: 53.025999999999996
397
+ - type: precision_at_1
398
+ value: 42.884
399
+ - type: precision_at_10
400
+ value: 9.046999999999999
401
+ - type: precision_at_100
402
+ value: 1.212
403
+ - type: precision_at_1000
404
+ value: 0.135
405
+ - type: precision_at_3
406
+ value: 22.131999999999998
407
+ - type: precision_at_5
408
+ value: 15.524
409
+ - type: recall_at_1
410
+ value: 37.370999999999995
411
+ - type: recall_at_10
412
+ value: 70.482
413
+ - type: recall_at_100
414
+ value: 88.425
415
+ - type: recall_at_1000
416
+ value: 96.03399999999999
417
+ - type: recall_at_3
418
+ value: 54.43
419
+ - type: recall_at_5
420
+ value: 62.327999999999996
421
+ - task:
422
+ type: Retrieval
423
+ dataset:
424
+ type: BeIR/cqadupstack
425
+ name: MTEB CQADupstackGisRetrieval
426
+ config: default
427
+ split: test
428
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
429
+ metrics:
430
+ - type: map_at_1
431
+ value: 22.875999999999998
432
+ - type: map_at_10
433
+ value: 31.715
434
+ - type: map_at_100
435
+ value: 32.847
436
+ - type: map_at_1000
437
+ value: 32.922000000000004
438
+ - type: map_at_3
439
+ value: 29.049999999999997
440
+ - type: map_at_5
441
+ value: 30.396
442
+ - type: mrr_at_1
443
+ value: 24.52
444
+ - type: mrr_at_10
445
+ value: 33.497
446
+ - type: mrr_at_100
447
+ value: 34.455000000000005
448
+ - type: mrr_at_1000
449
+ value: 34.510000000000005
450
+ - type: mrr_at_3
451
+ value: 30.791
452
+ - type: mrr_at_5
453
+ value: 32.175
454
+ - type: ndcg_at_1
455
+ value: 24.52
456
+ - type: ndcg_at_10
457
+ value: 36.95
458
+ - type: ndcg_at_100
459
+ value: 42.238
460
+ - type: ndcg_at_1000
461
+ value: 44.147999999999996
462
+ - type: ndcg_at_3
463
+ value: 31.435000000000002
464
+ - type: ndcg_at_5
465
+ value: 33.839000000000006
466
+ - type: precision_at_1
467
+ value: 24.52
468
+ - type: precision_at_10
469
+ value: 5.9319999999999995
470
+ - type: precision_at_100
471
+ value: 0.901
472
+ - type: precision_at_1000
473
+ value: 0.11
474
+ - type: precision_at_3
475
+ value: 13.446
476
+ - type: precision_at_5
477
+ value: 9.469
478
+ - type: recall_at_1
479
+ value: 22.875999999999998
480
+ - type: recall_at_10
481
+ value: 51.38
482
+ - type: recall_at_100
483
+ value: 75.31099999999999
484
+ - type: recall_at_1000
485
+ value: 89.718
486
+ - type: recall_at_3
487
+ value: 36.26
488
+ - type: recall_at_5
489
+ value: 42.248999999999995
490
+ - task:
491
+ type: Retrieval
492
+ dataset:
493
+ type: BeIR/cqadupstack
494
+ name: MTEB CQADupstackMathematicaRetrieval
495
+ config: default
496
+ split: test
497
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
498
+ metrics:
499
+ - type: map_at_1
500
+ value: 14.984
501
+ - type: map_at_10
502
+ value: 23.457
503
+ - type: map_at_100
504
+ value: 24.723
505
+ - type: map_at_1000
506
+ value: 24.846
507
+ - type: map_at_3
508
+ value: 20.873
509
+ - type: map_at_5
510
+ value: 22.357
511
+ - type: mrr_at_1
512
+ value: 18.159
513
+ - type: mrr_at_10
514
+ value: 27.431
515
+ - type: mrr_at_100
516
+ value: 28.449
517
+ - type: mrr_at_1000
518
+ value: 28.52
519
+ - type: mrr_at_3
520
+ value: 24.979000000000003
521
+ - type: mrr_at_5
522
+ value: 26.447
523
+ - type: ndcg_at_1
524
+ value: 18.159
525
+ - type: ndcg_at_10
526
+ value: 28.627999999999997
527
+ - type: ndcg_at_100
528
+ value: 34.741
529
+ - type: ndcg_at_1000
530
+ value: 37.516
531
+ - type: ndcg_at_3
532
+ value: 23.902
533
+ - type: ndcg_at_5
534
+ value: 26.294
535
+ - type: precision_at_1
536
+ value: 18.159
537
+ - type: precision_at_10
538
+ value: 5.485
539
+ - type: precision_at_100
540
+ value: 0.985
541
+ - type: precision_at_1000
542
+ value: 0.136
543
+ - type: precision_at_3
544
+ value: 11.774
545
+ - type: precision_at_5
546
+ value: 8.731
547
+ - type: recall_at_1
548
+ value: 14.984
549
+ - type: recall_at_10
550
+ value: 40.198
551
+ - type: recall_at_100
552
+ value: 67.11500000000001
553
+ - type: recall_at_1000
554
+ value: 86.497
555
+ - type: recall_at_3
556
+ value: 27.639000000000003
557
+ - type: recall_at_5
558
+ value: 33.595000000000006
559
+ - task:
560
+ type: Retrieval
561
+ dataset:
562
+ type: BeIR/cqadupstack
563
+ name: MTEB CQADupstackPhysicsRetrieval
564
+ config: default
565
+ split: test
566
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
567
+ metrics:
568
+ - type: map_at_1
569
+ value: 29.067
570
+ - type: map_at_10
571
+ value: 39.457
572
+ - type: map_at_100
573
+ value: 40.83
574
+ - type: map_at_1000
575
+ value: 40.94
576
+ - type: map_at_3
577
+ value: 35.995
578
+ - type: map_at_5
579
+ value: 38.159
580
+ - type: mrr_at_1
581
+ value: 34.937000000000005
582
+ - type: mrr_at_10
583
+ value: 44.755
584
+ - type: mrr_at_100
585
+ value: 45.549
586
+ - type: mrr_at_1000
587
+ value: 45.589
588
+ - type: mrr_at_3
589
+ value: 41.947
590
+ - type: mrr_at_5
591
+ value: 43.733
592
+ - type: ndcg_at_1
593
+ value: 34.937000000000005
594
+ - type: ndcg_at_10
595
+ value: 45.573
596
+ - type: ndcg_at_100
597
+ value: 51.266999999999996
598
+ - type: ndcg_at_1000
599
+ value: 53.184
600
+ - type: ndcg_at_3
601
+ value: 39.961999999999996
602
+ - type: ndcg_at_5
603
+ value: 43.02
604
+ - type: precision_at_1
605
+ value: 34.937000000000005
606
+ - type: precision_at_10
607
+ value: 8.296000000000001
608
+ - type: precision_at_100
609
+ value: 1.32
610
+ - type: precision_at_1000
611
+ value: 0.167
612
+ - type: precision_at_3
613
+ value: 18.8
614
+ - type: precision_at_5
615
+ value: 13.763
616
+ - type: recall_at_1
617
+ value: 29.067
618
+ - type: recall_at_10
619
+ value: 58.298
620
+ - type: recall_at_100
621
+ value: 82.25099999999999
622
+ - type: recall_at_1000
623
+ value: 94.476
624
+ - type: recall_at_3
625
+ value: 42.984
626
+ - type: recall_at_5
627
+ value: 50.658
628
+ - task:
629
+ type: Retrieval
630
+ dataset:
631
+ type: BeIR/cqadupstack
632
+ name: MTEB CQADupstackProgrammersRetrieval
633
+ config: default
634
+ split: test
635
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
636
+ metrics:
637
+ - type: map_at_1
638
+ value: 25.985999999999997
639
+ - type: map_at_10
640
+ value: 35.746
641
+ - type: map_at_100
642
+ value: 37.067
643
+ - type: map_at_1000
644
+ value: 37.191
645
+ - type: map_at_3
646
+ value: 32.599000000000004
647
+ - type: map_at_5
648
+ value: 34.239000000000004
649
+ - type: mrr_at_1
650
+ value: 31.735000000000003
651
+ - type: mrr_at_10
652
+ value: 40.515
653
+ - type: mrr_at_100
654
+ value: 41.459
655
+ - type: mrr_at_1000
656
+ value: 41.516
657
+ - type: mrr_at_3
658
+ value: 37.938
659
+ - type: mrr_at_5
660
+ value: 39.25
661
+ - type: ndcg_at_1
662
+ value: 31.735000000000003
663
+ - type: ndcg_at_10
664
+ value: 41.484
665
+ - type: ndcg_at_100
666
+ value: 47.047
667
+ - type: ndcg_at_1000
668
+ value: 49.427
669
+ - type: ndcg_at_3
670
+ value: 36.254999999999995
671
+ - type: ndcg_at_5
672
+ value: 38.375
673
+ - type: precision_at_1
674
+ value: 31.735000000000003
675
+ - type: precision_at_10
676
+ value: 7.66
677
+ - type: precision_at_100
678
+ value: 1.234
679
+ - type: precision_at_1000
680
+ value: 0.16
681
+ - type: precision_at_3
682
+ value: 17.427999999999997
683
+ - type: precision_at_5
684
+ value: 12.328999999999999
685
+ - type: recall_at_1
686
+ value: 25.985999999999997
687
+ - type: recall_at_10
688
+ value: 53.761
689
+ - type: recall_at_100
690
+ value: 77.149
691
+ - type: recall_at_1000
692
+ value: 93.342
693
+ - type: recall_at_3
694
+ value: 39.068000000000005
695
+ - type: recall_at_5
696
+ value: 44.693
697
+ - task:
698
+ type: Retrieval
699
+ dataset:
700
+ type: BeIR/cqadupstack
701
+ name: MTEB CQADupstackRetrieval
702
+ config: default
703
+ split: test
704
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
705
+ metrics:
706
+ - type: map_at_1
707
+ value: 24.949749999999998
708
+ - type: map_at_10
709
+ value: 34.04991666666667
710
+ - type: map_at_100
711
+ value: 35.26825
712
+ - type: map_at_1000
713
+ value: 35.38316666666667
714
+ - type: map_at_3
715
+ value: 31.181333333333335
716
+ - type: map_at_5
717
+ value: 32.77391666666667
718
+ - type: mrr_at_1
719
+ value: 29.402833333333334
720
+ - type: mrr_at_10
721
+ value: 38.01633333333333
722
+ - type: mrr_at_100
723
+ value: 38.88033333333334
724
+ - type: mrr_at_1000
725
+ value: 38.938500000000005
726
+ - type: mrr_at_3
727
+ value: 35.5175
728
+ - type: mrr_at_5
729
+ value: 36.93808333333333
730
+ - type: ndcg_at_1
731
+ value: 29.402833333333334
732
+ - type: ndcg_at_10
733
+ value: 39.403166666666664
734
+ - type: ndcg_at_100
735
+ value: 44.66408333333333
736
+ - type: ndcg_at_1000
737
+ value: 46.96283333333333
738
+ - type: ndcg_at_3
739
+ value: 34.46633333333334
740
+ - type: ndcg_at_5
741
+ value: 36.78441666666667
742
+ - type: precision_at_1
743
+ value: 29.402833333333334
744
+ - type: precision_at_10
745
+ value: 6.965833333333333
746
+ - type: precision_at_100
747
+ value: 1.1330833333333334
748
+ - type: precision_at_1000
749
+ value: 0.15158333333333335
750
+ - type: precision_at_3
751
+ value: 15.886666666666665
752
+ - type: precision_at_5
753
+ value: 11.360416666666667
754
+ - type: recall_at_1
755
+ value: 24.949749999999998
756
+ - type: recall_at_10
757
+ value: 51.29325
758
+ - type: recall_at_100
759
+ value: 74.3695
760
+ - type: recall_at_1000
761
+ value: 90.31299999999999
762
+ - type: recall_at_3
763
+ value: 37.580083333333334
764
+ - type: recall_at_5
765
+ value: 43.529666666666664
766
+ - task:
767
+ type: Retrieval
768
+ dataset:
769
+ type: BeIR/cqadupstack
770
+ name: MTEB CQADupstackStatsRetrieval
771
+ config: default
772
+ split: test
773
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
774
+ metrics:
775
+ - type: map_at_1
776
+ value: 22.081999999999997
777
+ - type: map_at_10
778
+ value: 29.215999999999998
779
+ - type: map_at_100
780
+ value: 30.163
781
+ - type: map_at_1000
782
+ value: 30.269000000000002
783
+ - type: map_at_3
784
+ value: 26.942
785
+ - type: map_at_5
786
+ value: 28.236
787
+ - type: mrr_at_1
788
+ value: 24.847
789
+ - type: mrr_at_10
790
+ value: 31.918999999999997
791
+ - type: mrr_at_100
792
+ value: 32.817
793
+ - type: mrr_at_1000
794
+ value: 32.897
795
+ - type: mrr_at_3
796
+ value: 29.831000000000003
797
+ - type: mrr_at_5
798
+ value: 31.019999999999996
799
+ - type: ndcg_at_1
800
+ value: 24.847
801
+ - type: ndcg_at_10
802
+ value: 33.4
803
+ - type: ndcg_at_100
804
+ value: 38.354
805
+ - type: ndcg_at_1000
806
+ value: 41.045
807
+ - type: ndcg_at_3
808
+ value: 29.236
809
+ - type: ndcg_at_5
810
+ value: 31.258000000000003
811
+ - type: precision_at_1
812
+ value: 24.847
813
+ - type: precision_at_10
814
+ value: 5.353
815
+ - type: precision_at_100
816
+ value: 0.853
817
+ - type: precision_at_1000
818
+ value: 0.116
819
+ - type: precision_at_3
820
+ value: 12.679000000000002
821
+ - type: precision_at_5
822
+ value: 8.988
823
+ - type: recall_at_1
824
+ value: 22.081999999999997
825
+ - type: recall_at_10
826
+ value: 43.505
827
+ - type: recall_at_100
828
+ value: 66.45400000000001
829
+ - type: recall_at_1000
830
+ value: 86.378
831
+ - type: recall_at_3
832
+ value: 32.163000000000004
833
+ - type: recall_at_5
834
+ value: 37.059999999999995
835
+ - task:
836
+ type: Retrieval
837
+ dataset:
838
+ type: BeIR/cqadupstack
839
+ name: MTEB CQADupstackTexRetrieval
840
+ config: default
841
+ split: test
842
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
843
+ metrics:
844
+ - type: map_at_1
845
+ value: 15.540000000000001
846
+ - type: map_at_10
847
+ value: 22.362000000000002
848
+ - type: map_at_100
849
+ value: 23.435
850
+ - type: map_at_1000
851
+ value: 23.564
852
+ - type: map_at_3
853
+ value: 20.143
854
+ - type: map_at_5
855
+ value: 21.324
856
+ - type: mrr_at_1
857
+ value: 18.892
858
+ - type: mrr_at_10
859
+ value: 25.942999999999998
860
+ - type: mrr_at_100
861
+ value: 26.883000000000003
862
+ - type: mrr_at_1000
863
+ value: 26.968999999999998
864
+ - type: mrr_at_3
865
+ value: 23.727
866
+ - type: mrr_at_5
867
+ value: 24.923000000000002
868
+ - type: ndcg_at_1
869
+ value: 18.892
870
+ - type: ndcg_at_10
871
+ value: 26.811
872
+ - type: ndcg_at_100
873
+ value: 32.066
874
+ - type: ndcg_at_1000
875
+ value: 35.166
876
+ - type: ndcg_at_3
877
+ value: 22.706
878
+ - type: ndcg_at_5
879
+ value: 24.508
880
+ - type: precision_at_1
881
+ value: 18.892
882
+ - type: precision_at_10
883
+ value: 4.942
884
+ - type: precision_at_100
885
+ value: 0.878
886
+ - type: precision_at_1000
887
+ value: 0.131
888
+ - type: precision_at_3
889
+ value: 10.748000000000001
890
+ - type: precision_at_5
891
+ value: 7.784000000000001
892
+ - type: recall_at_1
893
+ value: 15.540000000000001
894
+ - type: recall_at_10
895
+ value: 36.742999999999995
896
+ - type: recall_at_100
897
+ value: 60.525
898
+ - type: recall_at_1000
899
+ value: 82.57600000000001
900
+ - type: recall_at_3
901
+ value: 25.252000000000002
902
+ - type: recall_at_5
903
+ value: 29.872
904
+ - task:
905
+ type: Retrieval
906
+ dataset:
907
+ type: BeIR/cqadupstack
908
+ name: MTEB CQADupstackUnixRetrieval
909
+ config: default
910
+ split: test
911
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
912
+ metrics:
913
+ - type: map_at_1
914
+ value: 24.453
915
+ - type: map_at_10
916
+ value: 33.363
917
+ - type: map_at_100
918
+ value: 34.579
919
+ - type: map_at_1000
920
+ value: 34.686
921
+ - type: map_at_3
922
+ value: 30.583
923
+ - type: map_at_5
924
+ value: 32.118
925
+ - type: mrr_at_1
926
+ value: 28.918
927
+ - type: mrr_at_10
928
+ value: 37.675
929
+ - type: mrr_at_100
930
+ value: 38.567
931
+ - type: mrr_at_1000
932
+ value: 38.632
933
+ - type: mrr_at_3
934
+ value: 35.260999999999996
935
+ - type: mrr_at_5
936
+ value: 36.576
937
+ - type: ndcg_at_1
938
+ value: 28.918
939
+ - type: ndcg_at_10
940
+ value: 38.736
941
+ - type: ndcg_at_100
942
+ value: 44.261
943
+ - type: ndcg_at_1000
944
+ value: 46.72
945
+ - type: ndcg_at_3
946
+ value: 33.81
947
+ - type: ndcg_at_5
948
+ value: 36.009
949
+ - type: precision_at_1
950
+ value: 28.918
951
+ - type: precision_at_10
952
+ value: 6.586
953
+ - type: precision_at_100
954
+ value: 1.047
955
+ - type: precision_at_1000
956
+ value: 0.13699999999999998
957
+ - type: precision_at_3
958
+ value: 15.360999999999999
959
+ - type: precision_at_5
960
+ value: 10.857999999999999
961
+ - type: recall_at_1
962
+ value: 24.453
963
+ - type: recall_at_10
964
+ value: 50.885999999999996
965
+ - type: recall_at_100
966
+ value: 75.03
967
+ - type: recall_at_1000
968
+ value: 92.123
969
+ - type: recall_at_3
970
+ value: 37.138
971
+ - type: recall_at_5
972
+ value: 42.864999999999995
973
+ - task:
974
+ type: Retrieval
975
+ dataset:
976
+ type: BeIR/cqadupstack
977
+ name: MTEB CQADupstackWebmastersRetrieval
978
+ config: default
979
+ split: test
980
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
981
+ metrics:
982
+ - type: map_at_1
983
+ value: 24.57
984
+ - type: map_at_10
985
+ value: 33.672000000000004
986
+ - type: map_at_100
987
+ value: 35.244
988
+ - type: map_at_1000
989
+ value: 35.467
990
+ - type: map_at_3
991
+ value: 30.712
992
+ - type: map_at_5
993
+ value: 32.383
994
+ - type: mrr_at_1
995
+ value: 29.644
996
+ - type: mrr_at_10
997
+ value: 38.344
998
+ - type: mrr_at_100
999
+ value: 39.219
1000
+ - type: mrr_at_1000
1001
+ value: 39.282000000000004
1002
+ - type: mrr_at_3
1003
+ value: 35.771
1004
+ - type: mrr_at_5
1005
+ value: 37.273
1006
+ - type: ndcg_at_1
1007
+ value: 29.644
1008
+ - type: ndcg_at_10
1009
+ value: 39.567
1010
+ - type: ndcg_at_100
1011
+ value: 45.097
1012
+ - type: ndcg_at_1000
1013
+ value: 47.923
1014
+ - type: ndcg_at_3
1015
+ value: 34.768
1016
+ - type: ndcg_at_5
1017
+ value: 37.122
1018
+ - type: precision_at_1
1019
+ value: 29.644
1020
+ - type: precision_at_10
1021
+ value: 7.5889999999999995
1022
+ - type: precision_at_100
1023
+ value: 1.478
1024
+ - type: precision_at_1000
1025
+ value: 0.23500000000000001
1026
+ - type: precision_at_3
1027
+ value: 16.337
1028
+ - type: precision_at_5
1029
+ value: 12.055
1030
+ - type: recall_at_1
1031
+ value: 24.57
1032
+ - type: recall_at_10
1033
+ value: 51.00900000000001
1034
+ - type: recall_at_100
1035
+ value: 75.423
1036
+ - type: recall_at_1000
1037
+ value: 93.671
1038
+ - type: recall_at_3
1039
+ value: 36.925999999999995
1040
+ - type: recall_at_5
1041
+ value: 43.245
1042
+ - task:
1043
+ type: Retrieval
1044
+ dataset:
1045
+ type: BeIR/cqadupstack
1046
+ name: MTEB CQADupstackWordpressRetrieval
1047
+ config: default
1048
+ split: test
1049
+ revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db
1050
+ metrics:
1051
+ - type: map_at_1
1052
+ value: 21.356
1053
+ - type: map_at_10
1054
+ value: 27.904
1055
+ - type: map_at_100
1056
+ value: 28.938000000000002
1057
+ - type: map_at_1000
1058
+ value: 29.036
1059
+ - type: map_at_3
1060
+ value: 25.726
1061
+ - type: map_at_5
1062
+ value: 26.935
1063
+ - type: mrr_at_1
1064
+ value: 22.551
1065
+ - type: mrr_at_10
1066
+ value: 29.259
1067
+ - type: mrr_at_100
1068
+ value: 30.272
1069
+ - type: mrr_at_1000
1070
+ value: 30.348000000000003
1071
+ - type: mrr_at_3
1072
+ value: 27.295
1073
+ - type: mrr_at_5
1074
+ value: 28.358
1075
+ - type: ndcg_at_1
1076
+ value: 22.551
1077
+ - type: ndcg_at_10
1078
+ value: 31.817
1079
+ - type: ndcg_at_100
1080
+ value: 37.164
1081
+ - type: ndcg_at_1000
1082
+ value: 39.82
1083
+ - type: ndcg_at_3
1084
+ value: 27.595999999999997
1085
+ - type: ndcg_at_5
1086
+ value: 29.568
1087
+ - type: precision_at_1
1088
+ value: 22.551
1089
+ - type: precision_at_10
1090
+ value: 4.917
1091
+ - type: precision_at_100
1092
+ value: 0.828
1093
+ - type: precision_at_1000
1094
+ value: 0.11399999999999999
1095
+ - type: precision_at_3
1096
+ value: 11.583
1097
+ - type: precision_at_5
1098
+ value: 8.133
1099
+ - type: recall_at_1
1100
+ value: 21.356
1101
+ - type: recall_at_10
1102
+ value: 42.489
1103
+ - type: recall_at_100
1104
+ value: 67.128
1105
+ - type: recall_at_1000
1106
+ value: 87.441
1107
+ - type: recall_at_3
1108
+ value: 31.165
1109
+ - type: recall_at_5
1110
+ value: 35.853
1111
+ - task:
1112
+ type: Retrieval
1113
+ dataset:
1114
+ type: climate-fever
1115
+ name: MTEB ClimateFEVER
1116
+ config: default
1117
+ split: test
1118
+ revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce
1119
+ metrics:
1120
+ - type: map_at_1
1121
+ value: 12.306000000000001
1122
+ - type: map_at_10
1123
+ value: 21.523
1124
+ - type: map_at_100
1125
+ value: 23.358
1126
+ - type: map_at_1000
1127
+ value: 23.541
1128
+ - type: map_at_3
1129
+ value: 17.809
1130
+ - type: map_at_5
1131
+ value: 19.631
1132
+ - type: mrr_at_1
1133
+ value: 27.948
1134
+ - type: mrr_at_10
1135
+ value: 40.355000000000004
1136
+ - type: mrr_at_100
1137
+ value: 41.166000000000004
1138
+ - type: mrr_at_1000
1139
+ value: 41.203
1140
+ - type: mrr_at_3
1141
+ value: 36.819
1142
+ - type: mrr_at_5
1143
+ value: 38.958999999999996
1144
+ - type: ndcg_at_1
1145
+ value: 27.948
1146
+ - type: ndcg_at_10
1147
+ value: 30.462
1148
+ - type: ndcg_at_100
1149
+ value: 37.473
1150
+ - type: ndcg_at_1000
1151
+ value: 40.717999999999996
1152
+ - type: ndcg_at_3
1153
+ value: 24.646
1154
+ - type: ndcg_at_5
1155
+ value: 26.642
1156
+ - type: precision_at_1
1157
+ value: 27.948
1158
+ - type: precision_at_10
1159
+ value: 9.648
1160
+ - type: precision_at_100
1161
+ value: 1.7239999999999998
1162
+ - type: precision_at_1000
1163
+ value: 0.232
1164
+ - type: precision_at_3
1165
+ value: 18.48
1166
+ - type: precision_at_5
1167
+ value: 14.293
1168
+ - type: recall_at_1
1169
+ value: 12.306000000000001
1170
+ - type: recall_at_10
1171
+ value: 37.181
1172
+ - type: recall_at_100
1173
+ value: 61.148
1174
+ - type: recall_at_1000
1175
+ value: 79.401
1176
+ - type: recall_at_3
1177
+ value: 22.883
1178
+ - type: recall_at_5
1179
+ value: 28.59
1180
+ - task:
1181
+ type: Retrieval
1182
+ dataset:
1183
+ type: dbpedia-entity
1184
+ name: MTEB DBPedia
1185
+ config: default
1186
+ split: test
1187
+ revision: f097057d03ed98220bc7309ddb10b71a54d667d6
1188
+ metrics:
1189
+ - type: map_at_1
1190
+ value: 9.357
1191
+ - type: map_at_10
1192
+ value: 18.849
1193
+ - type: map_at_100
1194
+ value: 25.369000000000003
1195
+ - type: map_at_1000
1196
+ value: 26.950000000000003
1197
+ - type: map_at_3
1198
+ value: 13.625000000000002
1199
+ - type: map_at_5
1200
+ value: 15.956999999999999
1201
+ - type: mrr_at_1
1202
+ value: 67.75
1203
+ - type: mrr_at_10
1204
+ value: 74.734
1205
+ - type: mrr_at_100
1206
+ value: 75.1
1207
+ - type: mrr_at_1000
1208
+ value: 75.10900000000001
1209
+ - type: mrr_at_3
1210
+ value: 73.542
1211
+ - type: mrr_at_5
1212
+ value: 74.167
1213
+ - type: ndcg_at_1
1214
+ value: 55.375
1215
+ - type: ndcg_at_10
1216
+ value: 39.873999999999995
1217
+ - type: ndcg_at_100
1218
+ value: 43.098
1219
+ - type: ndcg_at_1000
1220
+ value: 50.69200000000001
1221
+ - type: ndcg_at_3
1222
+ value: 44.856
1223
+ - type: ndcg_at_5
1224
+ value: 42.138999999999996
1225
+ - type: precision_at_1
1226
+ value: 67.75
1227
+ - type: precision_at_10
1228
+ value: 31.1
1229
+ - type: precision_at_100
1230
+ value: 9.303
1231
+ - type: precision_at_1000
1232
+ value: 2.0060000000000002
1233
+ - type: precision_at_3
1234
+ value: 48.25
1235
+ - type: precision_at_5
1236
+ value: 40.949999999999996
1237
+ - type: recall_at_1
1238
+ value: 9.357
1239
+ - type: recall_at_10
1240
+ value: 23.832
1241
+ - type: recall_at_100
1242
+ value: 47.906
1243
+ - type: recall_at_1000
1244
+ value: 71.309
1245
+ - type: recall_at_3
1246
+ value: 14.512
1247
+ - type: recall_at_5
1248
+ value: 18.3
1249
+ - task:
1250
+ type: Classification
1251
+ dataset:
1252
+ type: mteb/emotion
1253
+ name: MTEB EmotionClassification
1254
+ config: default
1255
+ split: test
1256
+ revision: 829147f8f75a25f005913200eb5ed41fae320aa1
1257
+ metrics:
1258
+ - type: accuracy
1259
+ value: 49.655
1260
+ - type: f1
1261
+ value: 45.51976190938951
1262
+ - task:
1263
+ type: Retrieval
1264
+ dataset:
1265
+ type: fever
1266
+ name: MTEB FEVER
1267
+ config: default
1268
+ split: test
1269
+ revision: 1429cf27e393599b8b359b9b72c666f96b2525f9
1270
+ metrics:
1271
+ - type: map_at_1
1272
+ value: 62.739999999999995
1273
+ - type: map_at_10
1274
+ value: 73.07000000000001
1275
+ - type: map_at_100
1276
+ value: 73.398
1277
+ - type: map_at_1000
1278
+ value: 73.41
1279
+ - type: map_at_3
1280
+ value: 71.33800000000001
1281
+ - type: map_at_5
1282
+ value: 72.423
1283
+ - type: mrr_at_1
1284
+ value: 67.777
1285
+ - type: mrr_at_10
1286
+ value: 77.873
1287
+ - type: mrr_at_100
1288
+ value: 78.091
1289
+ - type: mrr_at_1000
1290
+ value: 78.094
1291
+ - type: mrr_at_3
1292
+ value: 76.375
1293
+ - type: mrr_at_5
1294
+ value: 77.316
1295
+ - type: ndcg_at_1
1296
+ value: 67.777
1297
+ - type: ndcg_at_10
1298
+ value: 78.24
1299
+ - type: ndcg_at_100
1300
+ value: 79.557
1301
+ - type: ndcg_at_1000
1302
+ value: 79.814
1303
+ - type: ndcg_at_3
1304
+ value: 75.125
1305
+ - type: ndcg_at_5
1306
+ value: 76.834
1307
+ - type: precision_at_1
1308
+ value: 67.777
1309
+ - type: precision_at_10
1310
+ value: 9.832
1311
+ - type: precision_at_100
1312
+ value: 1.061
1313
+ - type: precision_at_1000
1314
+ value: 0.11
1315
+ - type: precision_at_3
1316
+ value: 29.433
1317
+ - type: precision_at_5
1318
+ value: 18.665000000000003
1319
+ - type: recall_at_1
1320
+ value: 62.739999999999995
1321
+ - type: recall_at_10
1322
+ value: 89.505
1323
+ - type: recall_at_100
1324
+ value: 95.102
1325
+ - type: recall_at_1000
1326
+ value: 96.825
1327
+ - type: recall_at_3
1328
+ value: 81.028
1329
+ - type: recall_at_5
1330
+ value: 85.28099999999999
1331
+ - task:
1332
+ type: Retrieval
1333
+ dataset:
1334
+ type: fiqa
1335
+ name: MTEB FiQA2018
1336
+ config: default
1337
+ split: test
1338
+ revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be
1339
+ metrics:
1340
+ - type: map_at_1
1341
+ value: 18.467
1342
+ - type: map_at_10
1343
+ value: 30.020999999999997
1344
+ - type: map_at_100
1345
+ value: 31.739
1346
+ - type: map_at_1000
1347
+ value: 31.934
1348
+ - type: map_at_3
1349
+ value: 26.003
1350
+ - type: map_at_5
1351
+ value: 28.338
1352
+ - type: mrr_at_1
1353
+ value: 35.339999999999996
1354
+ - type: mrr_at_10
1355
+ value: 44.108999999999995
1356
+ - type: mrr_at_100
1357
+ value: 44.993
1358
+ - type: mrr_at_1000
1359
+ value: 45.042
1360
+ - type: mrr_at_3
1361
+ value: 41.667
1362
+ - type: mrr_at_5
1363
+ value: 43.14
1364
+ - type: ndcg_at_1
1365
+ value: 35.339999999999996
1366
+ - type: ndcg_at_10
1367
+ value: 37.202
1368
+ - type: ndcg_at_100
1369
+ value: 43.852999999999994
1370
+ - type: ndcg_at_1000
1371
+ value: 47.235
1372
+ - type: ndcg_at_3
1373
+ value: 33.5
1374
+ - type: ndcg_at_5
1375
+ value: 34.985
1376
+ - type: precision_at_1
1377
+ value: 35.339999999999996
1378
+ - type: precision_at_10
1379
+ value: 10.247
1380
+ - type: precision_at_100
1381
+ value: 1.7149999999999999
1382
+ - type: precision_at_1000
1383
+ value: 0.232
1384
+ - type: precision_at_3
1385
+ value: 22.222
1386
+ - type: precision_at_5
1387
+ value: 16.573999999999998
1388
+ - type: recall_at_1
1389
+ value: 18.467
1390
+ - type: recall_at_10
1391
+ value: 44.080999999999996
1392
+ - type: recall_at_100
1393
+ value: 68.72200000000001
1394
+ - type: recall_at_1000
1395
+ value: 89.087
1396
+ - type: recall_at_3
1397
+ value: 30.567
1398
+ - type: recall_at_5
1399
+ value: 36.982
1400
+ - task:
1401
+ type: Retrieval
1402
+ dataset:
1403
+ type: hotpotqa
1404
+ name: MTEB HotpotQA
1405
+ config: default
1406
+ split: test
1407
+ revision: 766870b35a1b9ca65e67a0d1913899973551fc6c
1408
+ metrics:
1409
+ - type: map_at_1
1410
+ value: 35.726
1411
+ - type: map_at_10
1412
+ value: 50.207
1413
+ - type: map_at_100
1414
+ value: 51.05499999999999
1415
+ - type: map_at_1000
1416
+ value: 51.12799999999999
1417
+ - type: map_at_3
1418
+ value: 47.576
1419
+ - type: map_at_5
1420
+ value: 49.172
1421
+ - type: mrr_at_1
1422
+ value: 71.452
1423
+ - type: mrr_at_10
1424
+ value: 77.41900000000001
1425
+ - type: mrr_at_100
1426
+ value: 77.711
1427
+ - type: mrr_at_1000
1428
+ value: 77.723
1429
+ - type: mrr_at_3
1430
+ value: 76.39399999999999
1431
+ - type: mrr_at_5
1432
+ value: 77.00099999999999
1433
+ - type: ndcg_at_1
1434
+ value: 71.452
1435
+ - type: ndcg_at_10
1436
+ value: 59.260999999999996
1437
+ - type: ndcg_at_100
1438
+ value: 62.424
1439
+ - type: ndcg_at_1000
1440
+ value: 63.951
1441
+ - type: ndcg_at_3
1442
+ value: 55.327000000000005
1443
+ - type: ndcg_at_5
1444
+ value: 57.416999999999994
1445
+ - type: precision_at_1
1446
+ value: 71.452
1447
+ - type: precision_at_10
1448
+ value: 12.061
1449
+ - type: precision_at_100
1450
+ value: 1.455
1451
+ - type: precision_at_1000
1452
+ value: 0.166
1453
+ - type: precision_at_3
1454
+ value: 34.36
1455
+ - type: precision_at_5
1456
+ value: 22.266
1457
+ - type: recall_at_1
1458
+ value: 35.726
1459
+ - type: recall_at_10
1460
+ value: 60.304
1461
+ - type: recall_at_100
1462
+ value: 72.75500000000001
1463
+ - type: recall_at_1000
1464
+ value: 82.978
1465
+ - type: recall_at_3
1466
+ value: 51.54
1467
+ - type: recall_at_5
1468
+ value: 55.665
1469
+ - task:
1470
+ type: Classification
1471
+ dataset:
1472
+ type: mteb/imdb
1473
+ name: MTEB ImdbClassification
1474
+ config: default
1475
+ split: test
1476
+ revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4
1477
+ metrics:
1478
+ - type: accuracy
1479
+ value: 66.63759999999999
1480
+ - type: ap
1481
+ value: 61.48938261286748
1482
+ - type: f1
1483
+ value: 66.35089269264965
1484
+ - task:
1485
+ type: Retrieval
1486
+ dataset:
1487
+ type: msmarco
1488
+ name: MTEB MSMARCO
1489
+ config: default
1490
+ split: validation
1491
+ revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849
1492
+ metrics:
1493
+ - type: map_at_1
1494
+ value: 20.842
1495
+ - type: map_at_10
1496
+ value: 32.992
1497
+ - type: map_at_100
1498
+ value: 34.236
1499
+ - type: map_at_1000
1500
+ value: 34.286
1501
+ - type: map_at_3
1502
+ value: 29.049000000000003
1503
+ - type: map_at_5
1504
+ value: 31.391999999999996
1505
+ - type: mrr_at_1
1506
+ value: 21.375
1507
+ - type: mrr_at_10
1508
+ value: 33.581
1509
+ - type: mrr_at_100
1510
+ value: 34.760000000000005
1511
+ - type: mrr_at_1000
1512
+ value: 34.803
1513
+ - type: mrr_at_3
1514
+ value: 29.704000000000004
1515
+ - type: mrr_at_5
1516
+ value: 32.015
1517
+ - type: ndcg_at_1
1518
+ value: 21.375
1519
+ - type: ndcg_at_10
1520
+ value: 39.905
1521
+ - type: ndcg_at_100
1522
+ value: 45.843
1523
+ - type: ndcg_at_1000
1524
+ value: 47.083999999999996
1525
+ - type: ndcg_at_3
1526
+ value: 31.918999999999997
1527
+ - type: ndcg_at_5
1528
+ value: 36.107
1529
+ - type: precision_at_1
1530
+ value: 21.375
1531
+ - type: precision_at_10
1532
+ value: 6.393
1533
+ - type: precision_at_100
1534
+ value: 0.935
1535
+ - type: precision_at_1000
1536
+ value: 0.104
1537
+ - type: precision_at_3
1538
+ value: 13.663
1539
+ - type: precision_at_5
1540
+ value: 10.324
1541
+ - type: recall_at_1
1542
+ value: 20.842
1543
+ - type: recall_at_10
1544
+ value: 61.17
1545
+ - type: recall_at_100
1546
+ value: 88.518
1547
+ - type: recall_at_1000
1548
+ value: 97.993
1549
+ - type: recall_at_3
1550
+ value: 39.571
1551
+ - type: recall_at_5
1552
+ value: 49.653999999999996
1553
+ - task:
1554
+ type: Classification
1555
+ dataset:
1556
+ type: mteb/mtop_domain
1557
+ name: MTEB MTOPDomainClassification (en)
1558
+ config: en
1559
+ split: test
1560
+ revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3
1561
+ metrics:
1562
+ - type: accuracy
1563
+ value: 93.46557227542178
1564
+ - type: f1
1565
+ value: 92.87345917772146
1566
+ - task:
1567
+ type: Classification
1568
+ dataset:
1569
+ type: mteb/mtop_intent
1570
+ name: MTEB MTOPIntentClassification (en)
1571
+ config: en
1572
+ split: test
1573
+ revision: 6299947a7777084cc2d4b64235bf7190381ce755
1574
+ metrics:
1575
+ - type: accuracy
1576
+ value: 72.42134062927497
1577
+ - type: f1
1578
+ value: 55.03624810959269
1579
+ - task:
1580
+ type: Classification
1581
+ dataset:
1582
+ type: mteb/amazon_massive_intent
1583
+ name: MTEB MassiveIntentClassification (en)
1584
+ config: en
1585
+ split: test
1586
+ revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea
1587
+ metrics:
1588
+ - type: accuracy
1589
+ value: 70.3866845998655
1590
+ - type: f1
1591
+ value: 68.9674519872921
1592
+ - task:
1593
+ type: Classification
1594
+ dataset:
1595
+ type: mteb/amazon_massive_scenario
1596
+ name: MTEB MassiveScenarioClassification (en)
1597
+ config: en
1598
+ split: test
1599
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1600
+ metrics:
1601
+ - type: accuracy
1602
+ value: 76.27774041694687
1603
+ - type: f1
1604
+ value: 76.72936190462792
1605
+ - task:
1606
+ type: Clustering
1607
+ dataset:
1608
+ type: mteb/medrxiv-clustering-p2p
1609
+ name: MTEB MedrxivClusteringP2P
1610
+ config: default
1611
+ split: test
1612
+ revision: dcefc037ef84348e49b0d29109e891c01067226b
1613
+ metrics:
1614
+ - type: v_measure
1615
+ value: 31.511745925773337
1616
+ - task:
1617
+ type: Clustering
1618
+ dataset:
1619
+ type: mteb/medrxiv-clustering-s2s
1620
+ name: MTEB MedrxivClusteringS2S
1621
+ config: default
1622
+ split: test
1623
+ revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc
1624
+ metrics:
1625
+ - type: v_measure
1626
+ value: 28.764235987575365
1627
+ - task:
1628
+ type: Reranking
1629
+ dataset:
1630
+ type: mteb/mind_small
1631
+ name: MTEB MindSmallReranking
1632
+ config: default
1633
+ split: test
1634
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1635
+ metrics:
1636
+ - type: map
1637
+ value: 32.29353136386601
1638
+ - type: mrr
1639
+ value: 33.536774455851685
1640
+ - task:
1641
+ type: Retrieval
1642
+ dataset:
1643
+ type: nfcorpus
1644
+ name: MTEB NFCorpus
1645
+ config: default
1646
+ split: test
1647
+ revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610
1648
+ metrics:
1649
+ - type: map_at_1
1650
+ value: 5.702
1651
+ - type: map_at_10
1652
+ value: 13.642000000000001
1653
+ - type: map_at_100
1654
+ value: 17.503
1655
+ - type: map_at_1000
1656
+ value: 19.126
1657
+ - type: map_at_3
1658
+ value: 9.748
1659
+ - type: map_at_5
1660
+ value: 11.642
1661
+ - type: mrr_at_1
1662
+ value: 45.82
1663
+ - type: mrr_at_10
1664
+ value: 54.821
1665
+ - type: mrr_at_100
1666
+ value: 55.422000000000004
1667
+ - type: mrr_at_1000
1668
+ value: 55.452999999999996
1669
+ - type: mrr_at_3
1670
+ value: 52.373999999999995
1671
+ - type: mrr_at_5
1672
+ value: 53.937000000000005
1673
+ - type: ndcg_at_1
1674
+ value: 44.272
1675
+ - type: ndcg_at_10
1676
+ value: 36.213
1677
+ - type: ndcg_at_100
1678
+ value: 33.829
1679
+ - type: ndcg_at_1000
1680
+ value: 42.557
1681
+ - type: ndcg_at_3
1682
+ value: 40.814
1683
+ - type: ndcg_at_5
1684
+ value: 39.562000000000005
1685
+ - type: precision_at_1
1686
+ value: 45.511
1687
+ - type: precision_at_10
1688
+ value: 27.214
1689
+ - type: precision_at_100
1690
+ value: 8.941
1691
+ - type: precision_at_1000
1692
+ value: 2.1870000000000003
1693
+ - type: precision_at_3
1694
+ value: 37.874
1695
+ - type: precision_at_5
1696
+ value: 34.489
1697
+ - type: recall_at_1
1698
+ value: 5.702
1699
+ - type: recall_at_10
1700
+ value: 17.638
1701
+ - type: recall_at_100
1702
+ value: 34.419
1703
+ - type: recall_at_1000
1704
+ value: 66.41
1705
+ - type: recall_at_3
1706
+ value: 10.914
1707
+ - type: recall_at_5
1708
+ value: 14.032
1709
+ - task:
1710
+ type: Retrieval
1711
+ dataset:
1712
+ type: nq
1713
+ name: MTEB NQ
1714
+ config: default
1715
+ split: test
1716
+ revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c
1717
+ metrics:
1718
+ - type: map_at_1
1719
+ value: 30.567
1720
+ - type: map_at_10
1721
+ value: 45.01
1722
+ - type: map_at_100
1723
+ value: 46.091
1724
+ - type: map_at_1000
1725
+ value: 46.126
1726
+ - type: map_at_3
1727
+ value: 40.897
1728
+ - type: map_at_5
1729
+ value: 43.301
1730
+ - type: mrr_at_1
1731
+ value: 34.56
1732
+ - type: mrr_at_10
1733
+ value: 47.725
1734
+ - type: mrr_at_100
1735
+ value: 48.548
1736
+ - type: mrr_at_1000
1737
+ value: 48.571999999999996
1738
+ - type: mrr_at_3
1739
+ value: 44.361
1740
+ - type: mrr_at_5
1741
+ value: 46.351
1742
+ - type: ndcg_at_1
1743
+ value: 34.531
1744
+ - type: ndcg_at_10
1745
+ value: 52.410000000000004
1746
+ - type: ndcg_at_100
1747
+ value: 56.999
1748
+ - type: ndcg_at_1000
1749
+ value: 57.830999999999996
1750
+ - type: ndcg_at_3
1751
+ value: 44.734
1752
+ - type: ndcg_at_5
1753
+ value: 48.701
1754
+ - type: precision_at_1
1755
+ value: 34.531
1756
+ - type: precision_at_10
1757
+ value: 8.612
1758
+ - type: precision_at_100
1759
+ value: 1.118
1760
+ - type: precision_at_1000
1761
+ value: 0.12
1762
+ - type: precision_at_3
1763
+ value: 20.307
1764
+ - type: precision_at_5
1765
+ value: 14.519000000000002
1766
+ - type: recall_at_1
1767
+ value: 30.567
1768
+ - type: recall_at_10
1769
+ value: 72.238
1770
+ - type: recall_at_100
1771
+ value: 92.154
1772
+ - type: recall_at_1000
1773
+ value: 98.375
1774
+ - type: recall_at_3
1775
+ value: 52.437999999999995
1776
+ - type: recall_at_5
1777
+ value: 61.516999999999996
1778
+ - task:
1779
+ type: Retrieval
1780
+ dataset:
1781
+ type: quora
1782
+ name: MTEB QuoraRetrieval
1783
+ config: default
1784
+ split: test
1785
+ revision: 6205996560df11e3a3da9ab4f926788fc30a7db4
1786
+ metrics:
1787
+ - type: map_at_1
1788
+ value: 65.98
1789
+ - type: map_at_10
1790
+ value: 80.05600000000001
1791
+ - type: map_at_100
1792
+ value: 80.76299999999999
1793
+ - type: map_at_1000
1794
+ value: 80.786
1795
+ - type: map_at_3
1796
+ value: 76.848
1797
+ - type: map_at_5
1798
+ value: 78.854
1799
+ - type: mrr_at_1
1800
+ value: 75.86
1801
+ - type: mrr_at_10
1802
+ value: 83.397
1803
+ - type: mrr_at_100
1804
+ value: 83.555
1805
+ - type: mrr_at_1000
1806
+ value: 83.557
1807
+ - type: mrr_at_3
1808
+ value: 82.033
1809
+ - type: mrr_at_5
1810
+ value: 82.97
1811
+ - type: ndcg_at_1
1812
+ value: 75.88000000000001
1813
+ - type: ndcg_at_10
1814
+ value: 84.58099999999999
1815
+ - type: ndcg_at_100
1816
+ value: 86.151
1817
+ - type: ndcg_at_1000
1818
+ value: 86.315
1819
+ - type: ndcg_at_3
1820
+ value: 80.902
1821
+ - type: ndcg_at_5
1822
+ value: 82.953
1823
+ - type: precision_at_1
1824
+ value: 75.88000000000001
1825
+ - type: precision_at_10
1826
+ value: 12.986
1827
+ - type: precision_at_100
1828
+ value: 1.5110000000000001
1829
+ - type: precision_at_1000
1830
+ value: 0.156
1831
+ - type: precision_at_3
1832
+ value: 35.382999999999996
1833
+ - type: precision_at_5
1834
+ value: 23.555999999999997
1835
+ - type: recall_at_1
1836
+ value: 65.98
1837
+ - type: recall_at_10
1838
+ value: 93.716
1839
+ - type: recall_at_100
1840
+ value: 99.21799999999999
1841
+ - type: recall_at_1000
1842
+ value: 99.97
1843
+ - type: recall_at_3
1844
+ value: 83.551
1845
+ - type: recall_at_5
1846
+ value: 88.998
1847
+ - task:
1848
+ type: Clustering
1849
+ dataset:
1850
+ type: mteb/reddit-clustering
1851
+ name: MTEB RedditClustering
1852
+ config: default
1853
+ split: test
1854
+ revision: b2805658ae38990172679479369a78b86de8c390
1855
+ metrics:
1856
+ - type: v_measure
1857
+ value: 40.45148482612238
1858
+ - task:
1859
+ type: Clustering
1860
+ dataset:
1861
+ type: mteb/reddit-clustering-p2p
1862
+ name: MTEB RedditClusteringP2P
1863
+ config: default
1864
+ split: test
1865
+ revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
1866
+ metrics:
1867
+ - type: v_measure
1868
+ value: 55.749490673039126
1869
+ - task:
1870
+ type: Retrieval
1871
+ dataset:
1872
+ type: scidocs
1873
+ name: MTEB SCIDOCS
1874
+ config: default
1875
+ split: test
1876
+ revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5
1877
+ metrics:
1878
+ - type: map_at_1
1879
+ value: 4.903
1880
+ - type: map_at_10
1881
+ value: 11.926
1882
+ - type: map_at_100
1883
+ value: 13.916999999999998
1884
+ - type: map_at_1000
1885
+ value: 14.215
1886
+ - type: map_at_3
1887
+ value: 8.799999999999999
1888
+ - type: map_at_5
1889
+ value: 10.360999999999999
1890
+ - type: mrr_at_1
1891
+ value: 24.099999999999998
1892
+ - type: mrr_at_10
1893
+ value: 34.482
1894
+ - type: mrr_at_100
1895
+ value: 35.565999999999995
1896
+ - type: mrr_at_1000
1897
+ value: 35.619
1898
+ - type: mrr_at_3
1899
+ value: 31.433
1900
+ - type: mrr_at_5
1901
+ value: 33.243
1902
+ - type: ndcg_at_1
1903
+ value: 24.099999999999998
1904
+ - type: ndcg_at_10
1905
+ value: 19.872999999999998
1906
+ - type: ndcg_at_100
1907
+ value: 27.606
1908
+ - type: ndcg_at_1000
1909
+ value: 32.811
1910
+ - type: ndcg_at_3
1911
+ value: 19.497999999999998
1912
+ - type: ndcg_at_5
1913
+ value: 16.813
1914
+ - type: precision_at_1
1915
+ value: 24.099999999999998
1916
+ - type: precision_at_10
1917
+ value: 10.08
1918
+ - type: precision_at_100
1919
+ value: 2.122
1920
+ - type: precision_at_1000
1921
+ value: 0.337
1922
+ - type: precision_at_3
1923
+ value: 18.2
1924
+ - type: precision_at_5
1925
+ value: 14.62
1926
+ - type: recall_at_1
1927
+ value: 4.903
1928
+ - type: recall_at_10
1929
+ value: 20.438000000000002
1930
+ - type: recall_at_100
1931
+ value: 43.043
1932
+ - type: recall_at_1000
1933
+ value: 68.41000000000001
1934
+ - type: recall_at_3
1935
+ value: 11.068
1936
+ - type: recall_at_5
1937
+ value: 14.818000000000001
1938
+ - task:
1939
+ type: STS
1940
+ dataset:
1941
+ type: mteb/sickr-sts
1942
+ name: MTEB SICK-R
1943
+ config: default
1944
+ split: test
1945
+ revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
1946
+ metrics:
1947
+ - type: cos_sim_pearson
1948
+ value: 78.58086597995997
1949
+ - type: cos_sim_spearman
1950
+ value: 69.63214182814991
1951
+ - type: euclidean_pearson
1952
+ value: 72.76175489042691
1953
+ - type: euclidean_spearman
1954
+ value: 67.84965161872971
1955
+ - type: manhattan_pearson
1956
+ value: 72.73812689782592
1957
+ - type: manhattan_spearman
1958
+ value: 67.83610439531277
1959
+ - task:
1960
+ type: STS
1961
+ dataset:
1962
+ type: mteb/sts12-sts
1963
+ name: MTEB STS12
1964
+ config: default
1965
+ split: test
1966
+ revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f
1967
+ metrics:
1968
+ - type: cos_sim_pearson
1969
+ value: 75.13970861325006
1970
+ - type: cos_sim_spearman
1971
+ value: 67.5020551515597
1972
+ - type: euclidean_pearson
1973
+ value: 66.33415412418276
1974
+ - type: euclidean_spearman
1975
+ value: 66.82145056673268
1976
+ - type: manhattan_pearson
1977
+ value: 66.55489484006415
1978
+ - type: manhattan_spearman
1979
+ value: 66.95147433279057
1980
+ - task:
1981
+ type: STS
1982
+ dataset:
1983
+ type: mteb/sts13-sts
1984
+ name: MTEB STS13
1985
+ config: default
1986
+ split: test
1987
+ revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9
1988
+ metrics:
1989
+ - type: cos_sim_pearson
1990
+ value: 78.85850536483447
1991
+ - type: cos_sim_spearman
1992
+ value: 79.1633350177206
1993
+ - type: euclidean_pearson
1994
+ value: 72.74090561408477
1995
+ - type: euclidean_spearman
1996
+ value: 73.57374448302961
1997
+ - type: manhattan_pearson
1998
+ value: 72.92980654233226
1999
+ - type: manhattan_spearman
2000
+ value: 73.72777155112588
2001
+ - task:
2002
+ type: STS
2003
+ dataset:
2004
+ type: mteb/sts14-sts
2005
+ name: MTEB STS14
2006
+ config: default
2007
+ split: test
2008
+ revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b
2009
+ metrics:
2010
+ - type: cos_sim_pearson
2011
+ value: 79.51125593897028
2012
+ - type: cos_sim_spearman
2013
+ value: 74.46048326701329
2014
+ - type: euclidean_pearson
2015
+ value: 70.87726087052985
2016
+ - type: euclidean_spearman
2017
+ value: 67.7721470654411
2018
+ - type: manhattan_pearson
2019
+ value: 71.05892792135637
2020
+ - type: manhattan_spearman
2021
+ value: 67.93472619779037
2022
+ - task:
2023
+ type: STS
2024
+ dataset:
2025
+ type: mteb/sts15-sts
2026
+ name: MTEB STS15
2027
+ config: default
2028
+ split: test
2029
+ revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6
2030
+ metrics:
2031
+ - type: cos_sim_pearson
2032
+ value: 83.8299348880489
2033
+ - type: cos_sim_spearman
2034
+ value: 84.47194637929275
2035
+ - type: euclidean_pearson
2036
+ value: 78.68768462480418
2037
+ - type: euclidean_spearman
2038
+ value: 79.80526323901917
2039
+ - type: manhattan_pearson
2040
+ value: 78.6810718151946
2041
+ - type: manhattan_spearman
2042
+ value: 79.7820584821254
2043
+ - task:
2044
+ type: STS
2045
+ dataset:
2046
+ type: mteb/sts16-sts
2047
+ name: MTEB STS16
2048
+ config: default
2049
+ split: test
2050
+ revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd
2051
+ metrics:
2052
+ - type: cos_sim_pearson
2053
+ value: 79.99206664843005
2054
+ - type: cos_sim_spearman
2055
+ value: 80.96089203722137
2056
+ - type: euclidean_pearson
2057
+ value: 71.31216213716365
2058
+ - type: euclidean_spearman
2059
+ value: 71.45258140049407
2060
+ - type: manhattan_pearson
2061
+ value: 71.26140340402836
2062
+ - type: manhattan_spearman
2063
+ value: 71.3896894666943
2064
+ - task:
2065
+ type: STS
2066
+ dataset:
2067
+ type: mteb/sts17-crosslingual-sts
2068
+ name: MTEB STS17 (en-en)
2069
+ config: en-en
2070
+ split: test
2071
+ revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0
2072
+ metrics:
2073
+ - type: cos_sim_pearson
2074
+ value: 87.35697089594868
2075
+ - type: cos_sim_spearman
2076
+ value: 87.78202647220289
2077
+ - type: euclidean_pearson
2078
+ value: 84.20969668786667
2079
+ - type: euclidean_spearman
2080
+ value: 83.91876425459982
2081
+ - type: manhattan_pearson
2082
+ value: 84.24429755612542
2083
+ - type: manhattan_spearman
2084
+ value: 83.98826315103398
2085
+ - task:
2086
+ type: STS
2087
+ dataset:
2088
+ type: mteb/sts22-crosslingual-sts
2089
+ name: MTEB STS22 (en)
2090
+ config: en
2091
+ split: test
2092
+ revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906
2093
+ metrics:
2094
+ - type: cos_sim_pearson
2095
+ value: 69.06962775868384
2096
+ - type: cos_sim_spearman
2097
+ value: 69.34889515492327
2098
+ - type: euclidean_pearson
2099
+ value: 69.28108180412313
2100
+ - type: euclidean_spearman
2101
+ value: 69.6437114853659
2102
+ - type: manhattan_pearson
2103
+ value: 69.39974983734993
2104
+ - type: manhattan_spearman
2105
+ value: 69.69057284482079
2106
+ - task:
2107
+ type: STS
2108
+ dataset:
2109
+ type: mteb/stsbenchmark-sts
2110
+ name: MTEB STSBenchmark
2111
+ config: default
2112
+ split: test
2113
+ revision: 8913289635987208e6e7c72789e4be2fe94b6abd
2114
+ metrics:
2115
+ - type: cos_sim_pearson
2116
+ value: 82.42553734213958
2117
+ - type: cos_sim_spearman
2118
+ value: 81.38977341532744
2119
+ - type: euclidean_pearson
2120
+ value: 76.47494587945522
2121
+ - type: euclidean_spearman
2122
+ value: 75.92794860531089
2123
+ - type: manhattan_pearson
2124
+ value: 76.4768777169467
2125
+ - type: manhattan_spearman
2126
+ value: 75.9252673228599
2127
+ - task:
2128
+ type: Reranking
2129
+ dataset:
2130
+ type: mteb/scidocs-reranking
2131
+ name: MTEB SciDocsRR
2132
+ config: default
2133
+ split: test
2134
+ revision: 56a6d0140cf6356659e2a7c1413286a774468d44
2135
+ metrics:
2136
+ - type: map
2137
+ value: 80.78825425914722
2138
+ - type: mrr
2139
+ value: 94.60017197762296
2140
+ - task:
2141
+ type: Retrieval
2142
+ dataset:
2143
+ type: scifact
2144
+ name: MTEB SciFact
2145
+ config: default
2146
+ split: test
2147
+ revision: a75ae049398addde9b70f6b268875f5cbce99089
2148
+ metrics:
2149
+ - type: map_at_1
2150
+ value: 60.633
2151
+ - type: map_at_10
2152
+ value: 70.197
2153
+ - type: map_at_100
2154
+ value: 70.758
2155
+ - type: map_at_1000
2156
+ value: 70.765
2157
+ - type: map_at_3
2158
+ value: 67.082
2159
+ - type: map_at_5
2160
+ value: 69.209
2161
+ - type: mrr_at_1
2162
+ value: 63.333
2163
+ - type: mrr_at_10
2164
+ value: 71.17
2165
+ - type: mrr_at_100
2166
+ value: 71.626
2167
+ - type: mrr_at_1000
2168
+ value: 71.633
2169
+ - type: mrr_at_3
2170
+ value: 68.833
2171
+ - type: mrr_at_5
2172
+ value: 70.6
2173
+ - type: ndcg_at_1
2174
+ value: 63.333
2175
+ - type: ndcg_at_10
2176
+ value: 74.697
2177
+ - type: ndcg_at_100
2178
+ value: 76.986
2179
+ - type: ndcg_at_1000
2180
+ value: 77.225
2181
+ - type: ndcg_at_3
2182
+ value: 69.527
2183
+ - type: ndcg_at_5
2184
+ value: 72.816
2185
+ - type: precision_at_1
2186
+ value: 63.333
2187
+ - type: precision_at_10
2188
+ value: 9.9
2189
+ - type: precision_at_100
2190
+ value: 1.103
2191
+ - type: precision_at_1000
2192
+ value: 0.11199999999999999
2193
+ - type: precision_at_3
2194
+ value: 26.889000000000003
2195
+ - type: precision_at_5
2196
+ value: 18.2
2197
+ - type: recall_at_1
2198
+ value: 60.633
2199
+ - type: recall_at_10
2200
+ value: 87.36699999999999
2201
+ - type: recall_at_100
2202
+ value: 97.333
2203
+ - type: recall_at_1000
2204
+ value: 99.333
2205
+ - type: recall_at_3
2206
+ value: 73.656
2207
+ - type: recall_at_5
2208
+ value: 82.083
2209
+ - task:
2210
+ type: PairClassification
2211
+ dataset:
2212
+ type: mteb/sprintduplicatequestions-pairclassification
2213
+ name: MTEB SprintDuplicateQuestions
2214
+ config: default
2215
+ split: test
2216
+ revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea
2217
+ metrics:
2218
+ - type: cos_sim_accuracy
2219
+ value: 99.76633663366337
2220
+ - type: cos_sim_ap
2221
+ value: 93.84024096781063
2222
+ - type: cos_sim_f1
2223
+ value: 88.08080808080808
2224
+ - type: cos_sim_precision
2225
+ value: 88.9795918367347
2226
+ - type: cos_sim_recall
2227
+ value: 87.2
2228
+ - type: dot_accuracy
2229
+ value: 99.46336633663367
2230
+ - type: dot_ap
2231
+ value: 75.78127156965245
2232
+ - type: dot_f1
2233
+ value: 71.41403865717193
2234
+ - type: dot_precision
2235
+ value: 72.67080745341616
2236
+ - type: dot_recall
2237
+ value: 70.19999999999999
2238
+ - type: euclidean_accuracy
2239
+ value: 99.67524752475248
2240
+ - type: euclidean_ap
2241
+ value: 88.61274955249769
2242
+ - type: euclidean_f1
2243
+ value: 82.30852211434735
2244
+ - type: euclidean_precision
2245
+ value: 89.34426229508196
2246
+ - type: euclidean_recall
2247
+ value: 76.3
2248
+ - type: manhattan_accuracy
2249
+ value: 99.67722772277227
2250
+ - type: manhattan_ap
2251
+ value: 88.77516158012779
2252
+ - type: manhattan_f1
2253
+ value: 82.36536430834212
2254
+ - type: manhattan_precision
2255
+ value: 87.24832214765101
2256
+ - type: manhattan_recall
2257
+ value: 78.0
2258
+ - type: max_accuracy
2259
+ value: 99.76633663366337
2260
+ - type: max_ap
2261
+ value: 93.84024096781063
2262
+ - type: max_f1
2263
+ value: 88.08080808080808
2264
+ - task:
2265
+ type: Clustering
2266
+ dataset:
2267
+ type: mteb/stackexchange-clustering
2268
+ name: MTEB StackExchangeClustering
2269
+ config: default
2270
+ split: test
2271
+ revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235
2272
+ metrics:
2273
+ - type: v_measure
2274
+ value: 59.20812266121527
2275
+ - task:
2276
+ type: Clustering
2277
+ dataset:
2278
+ type: mteb/stackexchange-clustering-p2p
2279
+ name: MTEB StackExchangeClusteringP2P
2280
+ config: default
2281
+ split: test
2282
+ revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0
2283
+ metrics:
2284
+ - type: v_measure
2285
+ value: 33.954248554638056
2286
+ - task:
2287
+ type: Reranking
2288
+ dataset:
2289
+ type: mteb/stackoverflowdupquestions-reranking
2290
+ name: MTEB StackOverflowDupQuestions
2291
+ config: default
2292
+ split: test
2293
+ revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9
2294
+ metrics:
2295
+ - type: map
2296
+ value: 51.52800990025549
2297
+ - type: mrr
2298
+ value: 52.360394915541974
2299
+ - task:
2300
+ type: Summarization
2301
+ dataset:
2302
+ type: mteb/summeval
2303
+ name: MTEB SummEval
2304
+ config: default
2305
+ split: test
2306
+ revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122
2307
+ metrics:
2308
+ - type: cos_sim_pearson
2309
+ value: 30.737881131277356
2310
+ - type: cos_sim_spearman
2311
+ value: 31.45979323917254
2312
+ - type: dot_pearson
2313
+ value: 26.24686017962023
2314
+ - type: dot_spearman
2315
+ value: 25.006732878791743
2316
+ - task:
2317
+ type: Retrieval
2318
+ dataset:
2319
+ type: trec-covid
2320
+ name: MTEB TRECCOVID
2321
+ config: default
2322
+ split: test
2323
+ revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217
2324
+ metrics:
2325
+ - type: map_at_1
2326
+ value: 0.253
2327
+ - type: map_at_10
2328
+ value: 2.1399999999999997
2329
+ - type: map_at_100
2330
+ value: 12.873000000000001
2331
+ - type: map_at_1000
2332
+ value: 31.002000000000002
2333
+ - type: map_at_3
2334
+ value: 0.711
2335
+ - type: map_at_5
2336
+ value: 1.125
2337
+ - type: mrr_at_1
2338
+ value: 96.0
2339
+ - type: mrr_at_10
2340
+ value: 98.0
2341
+ - type: mrr_at_100
2342
+ value: 98.0
2343
+ - type: mrr_at_1000
2344
+ value: 98.0
2345
+ - type: mrr_at_3
2346
+ value: 98.0
2347
+ - type: mrr_at_5
2348
+ value: 98.0
2349
+ - type: ndcg_at_1
2350
+ value: 94.0
2351
+ - type: ndcg_at_10
2352
+ value: 84.881
2353
+ - type: ndcg_at_100
2354
+ value: 64.694
2355
+ - type: ndcg_at_1000
2356
+ value: 56.85
2357
+ - type: ndcg_at_3
2358
+ value: 90.061
2359
+ - type: ndcg_at_5
2360
+ value: 87.155
2361
+ - type: precision_at_1
2362
+ value: 96.0
2363
+ - type: precision_at_10
2364
+ value: 88.8
2365
+ - type: precision_at_100
2366
+ value: 65.7
2367
+ - type: precision_at_1000
2368
+ value: 25.080000000000002
2369
+ - type: precision_at_3
2370
+ value: 92.667
2371
+ - type: precision_at_5
2372
+ value: 90.0
2373
+ - type: recall_at_1
2374
+ value: 0.253
2375
+ - type: recall_at_10
2376
+ value: 2.292
2377
+ - type: recall_at_100
2378
+ value: 15.78
2379
+ - type: recall_at_1000
2380
+ value: 53.015
2381
+ - type: recall_at_3
2382
+ value: 0.7270000000000001
2383
+ - type: recall_at_5
2384
+ value: 1.162
2385
+ - task:
2386
+ type: Retrieval
2387
+ dataset:
2388
+ type: webis-touche2020
2389
+ name: MTEB Touche2020
2390
+ config: default
2391
+ split: test
2392
+ revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b
2393
+ metrics:
2394
+ - type: map_at_1
2395
+ value: 2.116
2396
+ - type: map_at_10
2397
+ value: 9.625
2398
+ - type: map_at_100
2399
+ value: 15.641
2400
+ - type: map_at_1000
2401
+ value: 17.127
2402
+ - type: map_at_3
2403
+ value: 4.316
2404
+ - type: map_at_5
2405
+ value: 6.208
2406
+ - type: mrr_at_1
2407
+ value: 32.653
2408
+ - type: mrr_at_10
2409
+ value: 48.083999999999996
2410
+ - type: mrr_at_100
2411
+ value: 48.631
2412
+ - type: mrr_at_1000
2413
+ value: 48.649
2414
+ - type: mrr_at_3
2415
+ value: 42.857
2416
+ - type: mrr_at_5
2417
+ value: 46.224
2418
+ - type: ndcg_at_1
2419
+ value: 29.592000000000002
2420
+ - type: ndcg_at_10
2421
+ value: 25.430999999999997
2422
+ - type: ndcg_at_100
2423
+ value: 36.344
2424
+ - type: ndcg_at_1000
2425
+ value: 47.676
2426
+ - type: ndcg_at_3
2427
+ value: 26.144000000000002
2428
+ - type: ndcg_at_5
2429
+ value: 26.304
2430
+ - type: precision_at_1
2431
+ value: 32.653
2432
+ - type: precision_at_10
2433
+ value: 24.082
2434
+ - type: precision_at_100
2435
+ value: 7.714
2436
+ - type: precision_at_1000
2437
+ value: 1.5310000000000001
2438
+ - type: precision_at_3
2439
+ value: 26.531
2440
+ - type: precision_at_5
2441
+ value: 26.939
2442
+ - type: recall_at_1
2443
+ value: 2.116
2444
+ - type: recall_at_10
2445
+ value: 16.794
2446
+ - type: recall_at_100
2447
+ value: 47.452
2448
+ - type: recall_at_1000
2449
+ value: 82.312
2450
+ - type: recall_at_3
2451
+ value: 5.306
2452
+ - type: recall_at_5
2453
+ value: 9.306000000000001
2454
+ - task:
2455
+ type: Classification
2456
+ dataset:
2457
+ type: mteb/toxic_conversations_50k
2458
+ name: MTEB ToxicConversationsClassification
2459
+ config: default
2460
+ split: test
2461
+ revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
2462
+ metrics:
2463
+ - type: accuracy
2464
+ value: 67.709
2465
+ - type: ap
2466
+ value: 13.541535578501716
2467
+ - type: f1
2468
+ value: 52.569619919446794
2469
+ - task:
2470
+ type: Classification
2471
+ dataset:
2472
+ type: mteb/tweet_sentiment_extraction
2473
+ name: MTEB TweetSentimentExtractionClassification
2474
+ config: default
2475
+ split: test
2476
+ revision: 62146448f05be9e52a36b8ee9936447ea787eede
2477
+ metrics:
2478
+ - type: accuracy
2479
+ value: 56.850594227504246
2480
+ - type: f1
2481
+ value: 57.233377364910574
2482
+ - task:
2483
+ type: Clustering
2484
+ dataset:
2485
+ type: mteb/twentynewsgroups-clustering
2486
+ name: MTEB TwentyNewsgroupsClustering
2487
+ config: default
2488
+ split: test
2489
+ revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4
2490
+ metrics:
2491
+ - type: v_measure
2492
+ value: 39.463722986090474
2493
+ - task:
2494
+ type: PairClassification
2495
+ dataset:
2496
+ type: mteb/twittersemeval2015-pairclassification
2497
+ name: MTEB TwitterSemEval2015
2498
+ config: default
2499
+ split: test
2500
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2501
+ metrics:
2502
+ - type: cos_sim_accuracy
2503
+ value: 84.09131549144662
2504
+ - type: cos_sim_ap
2505
+ value: 66.86677647503386
2506
+ - type: cos_sim_f1
2507
+ value: 62.94631710362049
2508
+ - type: cos_sim_precision
2509
+ value: 59.73933649289099
2510
+ - type: cos_sim_recall
2511
+ value: 66.51715039577837
2512
+ - type: dot_accuracy
2513
+ value: 80.27656911247541
2514
+ - type: dot_ap
2515
+ value: 54.291720398612085
2516
+ - type: dot_f1
2517
+ value: 54.77150537634409
2518
+ - type: dot_precision
2519
+ value: 47.58660957571039
2520
+ - type: dot_recall
2521
+ value: 64.5118733509235
2522
+ - type: euclidean_accuracy
2523
+ value: 82.76211480002385
2524
+ - type: euclidean_ap
2525
+ value: 62.430397690753296
2526
+ - type: euclidean_f1
2527
+ value: 59.191590539356774
2528
+ - type: euclidean_precision
2529
+ value: 56.296119971435374
2530
+ - type: euclidean_recall
2531
+ value: 62.401055408970976
2532
+ - type: manhattan_accuracy
2533
+ value: 82.7561542588067
2534
+ - type: manhattan_ap
2535
+ value: 62.41882051995577
2536
+ - type: manhattan_f1
2537
+ value: 59.32101002778785
2538
+ - type: manhattan_precision
2539
+ value: 54.71361711611321
2540
+ - type: manhattan_recall
2541
+ value: 64.77572559366754
2542
+ - type: max_accuracy
2543
+ value: 84.09131549144662
2544
+ - type: max_ap
2545
+ value: 66.86677647503386
2546
+ - type: max_f1
2547
+ value: 62.94631710362049
2548
+ - task:
2549
+ type: PairClassification
2550
+ dataset:
2551
+ type: mteb/twitterurlcorpus-pairclassification
2552
+ name: MTEB TwitterURLCorpus
2553
+ config: default
2554
+ split: test
2555
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2556
+ metrics:
2557
+ - type: cos_sim_accuracy
2558
+ value: 88.79574649745798
2559
+ - type: cos_sim_ap
2560
+ value: 85.28960532524223
2561
+ - type: cos_sim_f1
2562
+ value: 77.98460043358001
2563
+ - type: cos_sim_precision
2564
+ value: 75.78090948714224
2565
+ - type: cos_sim_recall
2566
+ value: 80.32029565753002
2567
+ - type: dot_accuracy
2568
+ value: 85.5939767920208
2569
+ - type: dot_ap
2570
+ value: 76.14131706694056
2571
+ - type: dot_f1
2572
+ value: 72.70246298696868
2573
+ - type: dot_precision
2574
+ value: 65.27012127894156
2575
+ - type: dot_recall
2576
+ value: 82.04496458269172
2577
+ - type: euclidean_accuracy
2578
+ value: 86.72332828812046
2579
+ - type: euclidean_ap
2580
+ value: 80.84854809178995
2581
+ - type: euclidean_f1
2582
+ value: 72.47657499809551
2583
+ - type: euclidean_precision
2584
+ value: 71.71717171717171
2585
+ - type: euclidean_recall
2586
+ value: 73.25223283030489
2587
+ - type: manhattan_accuracy
2588
+ value: 86.7563162184189
2589
+ - type: manhattan_ap
2590
+ value: 80.87598895575626
2591
+ - type: manhattan_f1
2592
+ value: 72.54617892068092
2593
+ - type: manhattan_precision
2594
+ value: 68.49268225960881
2595
+ - type: manhattan_recall
2596
+ value: 77.10963966738528
2597
+ - type: max_accuracy
2598
+ value: 88.79574649745798
2599
+ - type: max_ap
2600
+ value: 85.28960532524223
2601
+ - type: max_f1
2602
+ value: 77.98460043358001
2603
+ ---