File size: 5,634 Bytes
c0c250e
 
c40be13
 
 
 
 
 
 
c0c250e
c40be13
 
 
887ace8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c40be13
d6cd77d
 
2f2a1c8
d6cd77d
 
 
6312547
 
8f9abff
887ace8
 
 
 
 
 
 
 
 
 
 
63fef20
c40be13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6be81f3
c40be13
6be81f3
 
 
c40be13
 
 
6be81f3
c40be13
 
 
 
 
b3cc9d6
 
 
 
c40be13
887ace8
 
 
c40be13
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- llm
- code
---

# CrystalChat

We present CrystalChat, an instruction following model finetuned from [LLM360/CrystalCoder](https://huggingface.co/LLM360/CrystalCoder). Following the release of [LLM360/AmberChat](https://huggingface.co/LLM360/AmberChat)and [LLM360/AmberSafe](https://huggingface.co/LLM360/AmberSafe) in December 2023, CrystalChat is the next and most performant chat model released under LLM360. CrystalChat is trained on a carefully selected mix publicly available language and code datasets.

As always, the training data, training code, and metrics are publicly available.

## About LLM360
LLM360 is an initiative for comprehensive and fully open-sourced LLMs, 
where all training details, model checkpoints, intermediate results, and 
additional analyses are made available to the community. Our goal is to advance 
the field by inviting the community to deepen the understanding of LLMs 
together. As the first step of the project LLM360, we release all intermediate 
model checkpoints, our fully-prepared pre-training dataset, all source code and
configurations, and training details. We are
committed to continually pushing the boundaries of LLMs through this open-source 
effort.

Get access now at [LLM360 site](https://www.llm360.ai/)

# CrystalChat Performance

|           Model          | Trained Tokens | Avg. of Avg. | Language Avg. | Coding Avg. |  ARC  | HellaSwag | MMLU (5-shot) | GSM8K | Winogrande(5-shot) | TruthfulQA | HumanEval (pass@1) | MBPP (pass@1) |
|:------------------------:|:--------------:|:------------:|:-------------:|:-----------:|:-----:|:---------:|:-------------:|:-----:|:------------------:|:----------:|:------------------:|:-------------:|
| CrystalChat 7B           | 1.275T         | 44.96        | 53.29         | 36.62       | 51.71 | 76.12     | 53.22         | 28.05 | 70.64              | 47.29      | 34.12              | 39.11         |
| Mistral-7B-Instruct-v0.1 | -              | 44.34        | 54.86         | 30.62       | 58.05 | 75.71     | 55.56         | 32.00 | 74.27              | 55.90      | 29.27              | 31.96         |
| CodeLlama-7b-Instruct    | 2.5T           | 40.91        | 45.29         | 36.52       | 43.35 | 66.14     | 42.75         | 15.92 | 64.33              | 39.23      | 34.12              | 38.91         |
| Llama-2-7b-Chat          | 2T             | 34.11        | 52.86         | 15.35       | 53.07 | 78.39     | 48.42         | 18.88 | 73.09              | 45.30      | 13.26              | 17.43         |
| AmberChat 7B             | 1.25T          |     -        | 44.76         |     -       | 42.83 | 74.03     | 38.88         | 5.31  | 66.77              | 40.72      |     -              |       -       |



| Combined Language and Coding Ability           |
|------------------------------------------------|
<img src="CC-Compare.jpg" alt="arc" width="800"/>

| Performance on Standard Benchmarks             |
|------------------------------------------------|
<img src="cc-eval-std-benchmarks.png" alt="std-bench" width="600"/>

| Perforamnce on Language Benchmarks                      |
|---------------------------------------------------------|
<img src="test2.png" alt="arc" width="600"/>

## Model Description

- **Model type:** Language model with the same architecture as LLaMA-7B
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Resources for more information:**
  - [Training Code](https://github.com/LLM360/crystalcoder-train)
  - [Data Preparation](https://github.com/LLM360/crystalcoder-data-prep)
  - [Metrics](https://github.com/LLM360/Analysis360)
  - [Fully processed CrystalCoder pretraining data](https://huggingface.co/datasets/LLM360/CrystalCoderDatasets)

# Loading CrystalChat 

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained("LLM360/CrystalChat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("LLM360/CrystalChat", trust_remote_code=True).to(device)

prompt = 'int add(int x, int y) {'

input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
gen_tokens = model.generate(input_ids, do_sample=True, max_length=400)

print("-"*20 + "Output for model"  + 20 * '-')
print(tokenizer.batch_decode(gen_tokens)[0])
```
# Evaluation

Coming Soon!


# Bias, Risks, and Limitations
CrystalChat has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). The training data is known and made available [here](https://huggingface.co/datasets/LLM360/CrystalCoderDatasets). It primarily consists of SlimPajama, StarCoder, and WebCrawl dataset.

# Citation

**BibTeX:**

```bibtex
@misc{liu2023llm360,
      title={LLM360: Towards Fully Transparent Open-Source LLMs}, 
      author={Zhengzhong Liu and Aurick Qiao and Willie Neiswanger and Hongyi Wang and Bowen Tan and Tianhua Tao and Junbo Li and Yuqi Wang and Suqi Sun and Omkar Pangarkar and Richard Fan and Yi Gu and Victor Miller and Yonghao Zhuang and Guowei He and Haonan Li and Fajri Koto and Liping Tang and Nikhil Ranjan and Zhiqiang Shen and Xuguang Ren and Roberto Iriondo and Cun Mu and Zhiting Hu and Mark Schulze and Preslav Nakov and Tim Baldwin and Eric P. Xing},
      year={2023},
      eprint={2312.06550},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```